Search results for: critical energy level
21823 A Framework for Green Use and Disposal of Information Communication Technology Devices
Authors: Frezer Alem Kebede
Abstract:
The notion of viewing ICT as merely support for the business process has shifted towards viewing ICT as a critical business enabler. As such, the need for ICT devices has increased, contributing to high electronic equipment acquisition and disposal. Hence, its use and disposal must be seen in light of environmental sustainability, i.e., in terms of green use and disposal. However, there are limited studies on green Use and Disposal framework to be used as guiding lens by organizations in developing countries. And this study endeavors to address that need taking one of the largest multinational ICT intensive company in the country. The design and development of this framework passed through several stages, initially factors affecting green use and disposal were identified after quantitative and qualitative data analysis then there were multiple brainstorming sessions for the design enhancement as participative modelling was employed. Given the difference in scope and magnitude of the challenges identified, the proposed framework approaches green use and disposal in four imperatives; strategically, tactically, operationally and through continuous improvement.Keywords: energy efficiency, green disposal, green ICT, green use, green use and disposal framework, sustainability
Procedia PDF Downloads 21021822 Economic Load Dispatch with Valve-Point Loading Effect by Using Differential Evolution Immunized Ant Colony Optimization Technique
Authors: Nur Azzammudin Rahmat, Ismail Musirin, Ahmad Farid Abidin
Abstract:
Economic load dispatch is performed by the utilities in order to determine the best generation level at the most feasible operating cost. In order to guarantee satisfying energy delivery to the consumer, a precise calculation of generation level is required. In order to achieve accurate and practical solution, several considerations such as prohibited operating zones, valve-point effect and ramp-rate limit need to be taken into account. However, these considerations cause the optimization to become complex and difficult to solve. This research focuses on the valve-point effect that causes ripple in the fuel-cost curve. This paper also proposes Differential Evolution Immunized Ant Colony Optimization (DEIANT) in solving economic load dispatch problem with valve-point effect. Comparative studies involving DEIANT, EP and ACO are conducted on IEEE 30-Bus RTS for performance assessments. Results indicate that DEIANT is superior to the other compared methods in terms of calculating lower operating cost and power loss.Keywords: ant colony optimization (ACO), differential evolution (DE), differential evolution immunized ant colony optimization (DEIANT), economic load dispatch (ELD)
Procedia PDF Downloads 44921821 Short-Term Energy Efficiency Decay and Risk Analysis of Ground Source Heat Pump System
Authors: Tu Shuyang, Zhang Xu, Zhou Xiang
Abstract:
The objective of this paper is to investigate the effect of short-term heat exchange decay of ground heat exchanger (GHE) on the ground source heat pump (GSHP) energy efficiency and capacity. A resistance-capacitance (RC) model was developed and adopted to simulate the transient characteristics of the ground thermal condition and heat exchange. The capacity change of the GSHP was linked to the inlet and outlet water temperature by polynomial fitting according to measured parameters given by heat pump manufacturers. Thus, the model, which combined the heat exchange decay with the capacity change, reflected the energy efficiency decay of the whole system. A case of GSHP system was analyzed by the model, and the result showed that there was risk that the GSHP might not meet the load demand because of the efficiency decay in a short-term operation. The conclusion would provide some guidances for GSHP system design to overcome the risk.Keywords: capacity, energy efficiency, GSHP, heat exchange
Procedia PDF Downloads 35021820 Hydro-Sedimentological Evaluation in Itajurú Channel–Araruama Lagoon-Rj, Due Superelevation of the Sea Level by Climate Change
Authors: Paulo José Sigaúque, Paulo Rosman
Abstract:
The Itajurú channel, located in the Eastern side of the Araruama lagoon, Rio de Janeiro state, is the one who makes the connection between Araruama lagoon and the sea. It is important to understand the hydrodynamic circulation of the location and effects of the sedimentological processes, and also estimate of the hydrodynamic and sedimentological processes in the future after the sea level change due to effects of climate change. This work presents results of a study about sediments dynamics in the Araruama lagoon focusing on the Itajurú channel region considering the present mean sea level and a foreseen sea level rise of 0.5 meters due to climate changes. The study was conducted with the aid of computer modeling for hydrodynamic and morphodynamic in SisBaHiA®. The results indicate that Araruama lagoon is composed by two hydrodynamics compartments; one is dominated by the action of the tide between the entrance of the channel and the strait of Perynas, and another one by the action of wind in narrow region between strait of Perynas and western extreme of the lagoon. With sea level rise, the magnitude of current velocities and flow rates is increased and consequently flow of sediment transport from upstream to downstream of Itajurú channel is increased and has more effect in the bridge Feliciano Sodré.Keywords: hydrodinamic, superelevation, sea level, climate change
Procedia PDF Downloads 30521819 Desalination Technologies and Desalination Integrated with Renewable Energies – A Case Study
Authors: Ahmadali Shirazytabar, Hamidreza Namazi
Abstract:
As water resources are rapidly getting diminished, more and more interest is paid to the desalination of saline waters. Desalination has become a reliable and cost effective solution in provision of fresh water particularly in the arid areas of the world such as Middle East countries. However, the dramatic increase of utilizing desalination will cause a series of problems which are significantly related to energy consumption and environment impacts. The use of renewable energy sources to provide energy required by desalination processes is a feasible and simultaneously environmental friendly solution. In this study an attempt has been made to present a review on desalination technologies, desalination integrated with renewable energies, in brief, and practical progresses made during recent years particularly in the field of desalination by wind energy which is the most common form of renewable energies. Moreover, an economic analysis of a wind powered RO desalination system comprising of 10×2.5 MW wind turbines is done, and the results will be compared to those of a cogeneration system comprising of one 25 MW gas turbines, heat recovery steam generators (HRSG) and MED-TVC desalination.Keywords: wind turbine, desalination, RO, MED, cogeneration, gas turbine, HRSG
Procedia PDF Downloads 39621818 Thermodynamic Study of Homo-Pairs in Molten Cd-Me, (Me=Ga,in) Binary Systems
Authors: Yisau Adelaja Odusote, Olakanmi Felix Akinto
Abstract:
The associative tendency between like atoms in molten Cd-Ga and Cd-In alloy systems has been studied by using the Quasi-Chemical Approximation Model (QCAM). The concentration dependence of the microscopic functions (the concentration-concentration fluctuations in the long-wavelength limits, Scc(0), the chemical short-range order (CSRO) parameter α1 as well as the chemical diffusion) and the mixing properties as the free energy of mixing, GM, enthalpy of mixing and entropy of mixing of the two molten alloys have been determined. Thermodynamic properties of both systems deviate positively from Raoult's law, while the systems are characterized by positive interaction energy. The role of atomic size ratio on the alloying properties was discussed.Keywords: homo-pairs, interchange energy, enthalpy, entropy, Cd-Ga, Cd-In
Procedia PDF Downloads 43721817 Develop a Software to Hydraulic Redesign a Depropanizer Column to Minimize Energy Consumption
Authors: Mahdi Goharrokhi, Rasool Shiri, Eiraj Naser
Abstract:
A depropanizer column of a particular refinery was redesigned in this work. That is, minimum reflux ratio, minimum number of trays, feed tray location and the hydraulic characteristics of the tower were calculated and compared with the actual values of the existing tower. To Design review of the tower, fundamental equations were used to develop software which its results were compared with two commercial software results. In each case PR EOS was used. Based on the total energy consumption in reboiler and condenser, feed tray location was also determined using case study definition for tower.Keywords: column, hydraulic design, pressure drop, energy consumption
Procedia PDF Downloads 42421816 Lifelong Distance Learning and Skills Development: A Case Study Analysis in Greece
Authors: Eleni Giouli
Abstract:
Distance learning provides a flexible approach to education, enabling busy learners to complete their coursework at their own pace, on their own schedule, and from a convenient location. This flexibility combined with a series of other issues; make the benefits of lifelong distance learning numerous. The purpose of the paper is to investigate whether distance education can contribute to the improvement of adult skills in Greece, highlighting in this way the necessity of the lifelong distance learning. To investigate this goal, a questionnaire is constructed and analyzed based on responses from 3,016 attendees of lifelong distance learning programs in the e-learning of the National and Kapodistrian University of Athens in Greece. In order to do so, a series of relationships is examined including the effects of a) the gender, b) the previous educational level, c) the current employment status, and d) the method used in the distance learning program, on the development of new general, technical, administrative, social, cultural, entrepreneurial and green skills. The basic conclusions that emerge after using a binary logistic framework are that the following factors are critical in order to develop new skills: the gender, the education level and the educational method used in the lifelong distance learning program. The skills more significantly affected by those factors are the acquiring new skills in general, as well as acquiring general, language and cultural, entrepreneurial and green skills, while for technical and social skills only gender and educational method play a crucial role. Moreover, routine skills and social skills are not affected by the four factors included in the analysis.Keywords: adult skills, distance learning, education, lifelong learning
Procedia PDF Downloads 13721815 Artificial Bee Colony Based Modified Energy Efficient Predictive Routing in MANET
Authors: Akhil Dubey, Rajnesh Singh
Abstract:
In modern days there occur many rapid modifications in field of ad hoc network. These modifications create many revolutionary changes in the routing. Predictive energy efficient routing is inspired on the bee’s behavior of swarm intelligence. Predictive routing improves the efficiency of routing in the energetic point of view. The main aim of this routing is the minimum energy consumption during communication and maximized intermediate node’s remaining battery power. This routing is based on food searching behavior of bees. There are two types of bees for the exploration phase the scout bees and for the evolution phase forager bees use by this routing. This routing algorithm computes the energy consumption, fitness ratio and goodness of the path. In this paper we review the literature related with predictive routing, presenting modified routing and simulation result of this algorithm comparison with artificial bee colony based routing schemes in MANET and see the results of path fitness and probability of fitness.Keywords: mobile ad hoc network, artificial bee colony, PEEBR, modified predictive routing
Procedia PDF Downloads 41621814 Intermittent Effect of Coupled Thermal and Acoustic Sources on Combustion: A Spatial Perspective
Authors: Pallavi Gajjar, Vinayak Malhotra
Abstract:
Rockets have been known to have played a predominant role in spacecraft propulsion. The quintessential aspect of combustion-related requirements of a rocket engine is the minimization of the surrounding risks/hazards. Over time, it has become imperative to understand the combustion rate variation in presence of external energy source(s). Rocket propulsion represents a special domain of chemical propulsion assisted by high speed flows in presence of acoustics and thermal source(s). Jet noise leads to a significant loss of resources and every year a huge amount of financial aid is spent to prevent it. External heat source(s) induce high possibility of fire risk/hazards which can sufficiently endanger the operation of a space vehicle. Appreciable work had been done with justifiable simplification and emphasis on the linear variation of external energy source(s), which yields good physical insight but does not cater to accurate predictions. Present work experimentally attempts to understand the correlation between inter-energy conversions with the non-linear placement of external energy source(s). The work is motivated by the need to have better fire safety and enhanced combustion. The specific objectives of the work are a) To interpret the related energy transfer for combustion in presence of alternate external energy source(s) viz., thermal and acoustic, b) To fundamentally understand the role of key controlling parameters viz., separation distance, the number of the source(s), selected configurations and their non-linear variation to resemble real-life cases. An experimental setup was prepared using incense sticks as potential fuel and paraffin wax candles as the external energy source(s). The acoustics was generated using frequency generator, and source(s) were placed at selected locations. Non-equidistant parametric experimentation was carried out, and the effects were noted on regression rate changes. The results are expected to be very helpful in offering a new perspective into futuristic rocket designs and safety.Keywords: combustion, acoustic energy, external energy sources, regression rate
Procedia PDF Downloads 14021813 Defect Profile Simulation of Oxygen Implantation into Si and GaAs
Authors: N. Dahbi, R. B. Taleb
Abstract:
This study concerns the ion implantation of oxygen in two semiconductors Si and GaAs realized by a simulation using the SRIM tool. The goal of this study is to compare the effect of implantation energy on the distribution of implant ions in the two targets and to examine the different processes resulting from the interaction between the ions of oxygen and the target atoms (Si, GaAs). SRIM simulation results indicate that the implanted ions have a profile as a function of Gaussian-type; oxygen produced more vacancies and implanted deeper in Si compared to GaAs. Also, most of the energy loss is due to ionization and phonon production, where vacancy production amounts to few percent of the total energy.Keywords: defect profile, GaAs, ion implantation, SRIM, phonon production, vacancies
Procedia PDF Downloads 18521812 Analysing Tertiary Lecturers’ Teaching Practices and Their English Major Students’ Learning Practices with Information and Communication Technology (ICT) Utilization in Promoting Higher-Order Thinking Skills (HOTs)
Authors: Malini Ganapathy, Sarjit Kaur
Abstract:
Maximising learning with higher-order thinking skills with Information and Communications Technology (ICT) has been deep-rooted and emphasised in various developed countries such as the United Kingdom, the United States of America and Singapore. The transformation of the education curriculum in the Malaysia Education Development Plan (PPPM) 2013-2025 focuses on the concept of Higher Order Thinking (HOT) skills which aim to produce knowledgeable students who are critical and creative in their thinking and can compete at the international level. HOT skills encourage students to apply, analyse, evaluate and think creatively in and outside the classroom. In this regard, the National Education Blueprint (2013-2025) is grounded based on high-performing systems which promote a transformation of the Malaysian education system in line with the vision of Malaysia’s National Philosophy in achieving educational outcomes which are of world class status. This study was designed to investigate ESL students’ learning practices on the emphasis of promoting HOTs while using ICT in their curricula. Data were collected using a stratified random sampling where 100 participants were selected to take part in the study. These respondents were a group of undergraduate students who undertook ESL courses in a public university in Malaysia. A three-part questionnaire consisting of demographic information, students’ learning experience and ICT utilization practices was administered in the data collection process. Findings from this study provide several important insights on students’ learning experiences and ICT utilization in developing HOT skills.Keywords: English as a second language students, critical and creative thinking, learning, information and communication technology and higher order thinking skills
Procedia PDF Downloads 49021811 Microbial Fuel Cells: Performance and Applications
Authors: Andrea Pietrelli, Vincenzo Ferrara, Bruno Allard, Francois Buret, Irene Bavasso, Nicola Lovecchio, Francesca Costantini, Firas Khaled
Abstract:
This paper aims to show some applications of microbial fuel cells (MFCs), an energy harvesting technique, as clean power source to supply low power device for application like wireless sensor network (WSN) for environmental monitoring. Furthermore, MFC can be used directly as biosensor to analyse parameters like pH and temperature or arranged in form of cluster devices in order to use as small power plant. An MFC is a bioreactor that converts energy stored in chemical bonds of organic matter into electrical energy, through a series of reactions catalysed by microorganisms. We have developed a lab-scale terrestrial microbial fuel cell (TMFC), based on soil that acts as source of bacteria and flow of nutrient and a lab-scale waste water microbial fuel cell (WWMFC), where waste water acts as flow of nutrient and bacteria. We performed large series of tests to exploit the capability as biosensor. The pH value has strong influence on the open circuit voltage (OCV) delivered from TMFCs. We analyzed three condition: test A and B were filled with same soil but changing pH from 6 to 6.63, test C was prepared using a different soil with a pH value of 6.3. Experimental results clearly show how with higher pH value a higher OCV was produced; indeed reactors are influenced by different values of pH which increases the voltage in case of a higher pH value until the best pH value of 7 is achieved. The influence of pH on OCV of lab-scales WWMFC was analyzed at pH value of 6.5, 7, 7.2, 7.5 and 8. WWMFCs are influenced from temperature more than TMFCs. We tested the power performance of WWMFCs considering four imposed values of ambient temperature. Results show how power performance increase proportionally with higher temperature values, doubling the output power from 20° to 40°. The best value of power produced from our lab-scale TMFC was equal to 310 μW using peaty soil, at 1KΩ, corresponding to a current of 0.5 mA. A TMFC can supply proper energy to low power devices of a WSN by means of the design of three stages scheme of an energy management system, which adapts voltage level of TMFC to those required by a WSN node, as 3.3V. Using a commercial DC/DC boost converter, that needs an input voltage of 700 mV, the current source of 0.5 mA, charges a capacitor of 6.8 mF until it will have accumulated an amount of charge equal to 700 mV in a time of 10 s. The output stage includes an output switch that close the circuit after a time of 10s + 1.5ms because the converter can boost the voltage from 0.7V to 3.3V in 1.5 ms. Furthermore, we tested in form of clusters connected in series up to 20 WWMFCs, we have obtained a high voltage value as output, around 10V, but low current value. MFC can be considered a suitable clean energy source to be used to supply low power devices as a WSN node or to be used directly as biosensor.Keywords: energy harvesting, low power electronics, microbial fuel cell, terrestrial microbial fuel cell, waste-water microbial fuel cell, wireless sensor network
Procedia PDF Downloads 20721810 Process Integration of Natural Gas Hydrate Production by CH₄-CO₂/H₂ Replacement Coupling Steam Methane Reforming
Authors: Mengying Wang, Xiaohui Wang, Chun Deng, Bei Liu, Changyu Sun, Guangjin Chen, Mahmoud El-Halwagi
Abstract:
Significant amounts of natural gas hydrates (NGHs) are considered potential new sustainable energy resources in the future. However, common used methods for methane gas recovery from hydrate sediments require high investment but with low gas production efficiency, and may cause potential environment and security problems. Therefore, there is a need for effective gas production from hydrates. The natural gas hydrate production method by CO₂/H₂ replacement coupling steam methane reforming can improve the replacement effect and reduce the cost of gas separation. This paper develops a simulation model of the gas production process integrated with steam reforming and membrane separation. The process parameters (i.e., reactor temperature, pressure, H₂O/CH₄ ratio) and the composition of CO₂ and H₂ in the feed gas are analyzed. Energy analysis is also conducted. Two design scenarios with different composition of CO₂ and H₂ in the feed gas are proposed and evaluated to assess the energy efficiency of the novel system. Results show that when the composition of CO₂ in the feed gas is between 43 % and 72 %, there is a certain composition that can meet the requirement that the flow rate of recycled gas is equal to that of feed gas, so as to ensure that the subsequent production process does not need to add feed gas or discharge recycled gas. The energy efficiency of the CO₂ in feed gas at 43 % and 72 % is greater than 1, and the energy efficiency is relatively higher when the CO₂ mole fraction in feed gas is 72 %.Keywords: Gas production, hydrate, process integration, steam reforming
Procedia PDF Downloads 18321809 Transparency Obligations under the AI Act Proposal: A Critical Legal Analysis
Authors: Michael Lognoul
Abstract:
In April 2021, the European Commission released its AI Act Proposal, which is the first policy proposal at the European Union level to target AI systems comprehensively, in a horizontal manner. This Proposal notably aims to achieve an ecosystem of trust in the European Union, based on the respect of fundamental rights, regarding AI. Among many other requirements, the AI Act Proposal aims to impose several generic transparency obligationson all AI systems to the benefit of natural persons facing those systems (e.g. information on the AI nature of systems, in case of an interaction with a human). The Proposal also provides for more stringent transparency obligations, specific to AI systems that qualify as high-risk, to the benefit of their users, notably on the characteristics, capabilities, and limitations of the AI systems they use. Against that background, this research firstly presents all such transparency requirements in turn, as well as related obligations, such asthe proposed obligations on record keeping. Secondly, it focuses on a legal analysis of their scope of application, of the content of the obligations, and on their practical implications. On the scope of transparency obligations tailored for high-risk AI systems, the research notably notes that it seems relatively narrow, given the proposed legal definition of the notion of users of AI systems. Hence, where end-users do not qualify as users, they may only receive very limited information. This element might potentially raise concern regarding the objective of the Proposal. On the content of the transparency obligations, the research highlights that the information that should benefit users of high-risk AI systems is both very broad and specific, from a technical perspective. Therefore, the information required under those obligations seems to create, prima facie, an adequate framework to ensure trust for users of high-risk AI systems. However, on the practical implications of these transparency obligations, the research notes that concern arises due to potential illiteracy of high-risk AI systems users. They might not benefit from sufficient technical expertise to fully understand the information provided to them, despite the wording of the Proposal, which requires that information should be comprehensible to its recipients (i.e. users).On this matter, the research points that there could be, more broadly, an important divergence between the level of detail of the information required by the Proposal and the level of expertise of users of high-risk AI systems. As a conclusion, the research provides policy recommendations to tackle (part of) the issues highlighted. It notably recommends to broaden the scope of transparency requirements for high-risk AI systems to encompass end-users. It also suggests that principles of explanation, as they were put forward in the Guidelines for Trustworthy AI of the High Level Expert Group, should be included in the Proposal in addition to transparency obligations.Keywords: aI act proposal, explainability of aI, high-risk aI systems, transparency requirements
Procedia PDF Downloads 31721808 Improving Carbon Fiber Structural Battery Performance with Polymer Interface
Authors: Kathleen Moyer, Nora Ait Boucherbil, Murtaza Zohair, Janna Eaves-Rathert, Cary Pint
Abstract:
This study demonstrates the significance of interface engineering in the field of structural energy by being the first case where the performance of the system with the structural battery is greater than the performance of the same system with a battery separate from the system. The benefits of improving the interface in the structural battery were tested by creating carbon fiber composite batteries (and independent graphite electrodes and lithium iron phosphate electrodes) with and without an improved interface. Mechanical data on the structural batteries were collected using tensile tests and electrochemical data was collected using scanning electron microscopy equipment. The full-cell lithium-ion structural batteries had capacity retention of over 80% exceeding 100 cycles with an average energy density of 52 W h kg−1 and a maximum energy density of 58 W h kg−1. Most scientific developments in the field of structural energy have been done with supercapacitors. Most scientific developments with structural batteries have been done where batteries are simply incorporated into the structural element. That method has limited advantages and can create mechanical disadvantages. This study aims to show that a large improvement in structure energy research can be made by improving the interface between the structural device and the battery.Keywords: composite materials, electrochemical performance, mechanical properties, polymer interface, structural batteries
Procedia PDF Downloads 10921807 An Overview of Onshore and Offshore Wind Turbines
Authors: Mohammad Borhani, Afshin Danehkar
Abstract:
With the increase in population and the upward trend of energy demand, mankind has thought of using suppliers that guarantee a stable supply of energy, unlike fossil fuels, which, in addition to the widespread emission of greenhouse gases that one of the main factors in the destruction of the ozone layer and it will be finished in a short time in the not-so-distant future. In this regard, one of the sustainable ways of energy supply is the use of wind converters. That convert wind energy into electricity. For this reason, this research focused on wind turbines and their installation conditions. The main classification of wind turbines is based on the axis of rotation, which is divided into two groups: horizontal axis and vertical axis; each of these two types, with the advancement of technology in man-made environments such as cities, villages, airports, and other human environments can be installed and operated. The main difference between offshore and onshore wind turbines is their installation and foundation. Which are usually divided into five types; including of Monopile Wind Turbines, Jacket Wind Turbines, Tripile Wind Turbines, Gravity-Based Wind Turbines, and Floating Offshore Wind Turbines. For installation in a wind power plant requires an arrangement that produces electric power, the distance between the turbines is usually between 5 or 7 times the diameter of the rotor and if perpendicular to the wind direction be If they are 3 to 5 times the diameter of the rotor, they will be more efficient.Keywords: wind farms, Savonius, Darrieus, offshore wind turbine, renewable energy
Procedia PDF Downloads 11721806 Sociolinguistic and Critical Discourse Analysis of Nigerian Proverbs: The Differences between the Representation of the Genders
Authors: Crescentia Ugwuona
Abstract:
Considering the importance of proverbs in socio-cultural life through socialization in any given society, it is deemed important for people to understand the hidden meanings that proverbs may convey. So far, there has been hardly any systematic research in the representation of different genders in Nigeria. Although there are writings on the representation of women in Nigerian proverbs, they are based on the writers’ introspection. Beyond that, investigators often tend to overlook the representations of men in proverbs. This study therefore explores from the perspective of sociolinguistics and critical discourse analysis (CDA) how different genders (men and women) are represented in Nigerian proverbs with particular reference to Igbo-Nigerians; with the aim of uncovering hidden gender inequalities that exist in them. The analysis reveals that Igbo proverbs consistently perpetuate an ideology of gender inequality, that is, male proverbs depict male achievements, power, bravery, and male supremacy; while that of female connotes their submissions to cultural and traditional female domestic roles, chastity, less competent, and women subjugation. The study alerts to how gendered language in proverbs can reflect, create, and sustain gender inequality in societies; and contributes to an education aimed at gender equality, emancipator practice of appropriate language in proverbs, respect for human rights; and of the need to develop strategies for addressing the problem.Keywords: critical discourse analysis, gender representation, gender stereotypes, Igbo-Nigerian, sociolinguistics analysis, proverbs
Procedia PDF Downloads 27721805 A Review of Magnesium Air Battery Systems: From Design Aspects to Performance Characteristics
Authors: R. Sharma, J. K. Bhatnagar, Poonam, R. C. Sharma
Abstract:
Metal–air batteries have been designed and developed as an essential source of electric power to propel automobiles, make electronic equipment functional, and use them as the source of power in remote areas and space. High energy and power density, lightweight, easy recharge capabilities, and low cost are essential features of these batteries. Both primary and rechargeable magnesium air batteries are highly promising. Our focus will be on the basics of electrode reaction kinetics of Mg–air cell in this paper. Design and development of Mg or Mg alloys as anode materials, design and composition of air cathode, and promising electrolytes for Mg–air batteries have been reviewed. A brief note on the possible and proposed improvements in design and functionality is also incorporated. This article may serve as the primary and premier document in the critical research area of Mg-air battery systems.Keywords: air cathode, battery design, magnesium air battery, magnesium anode, rechargeable magnesium air battery
Procedia PDF Downloads 24321804 International Solar Alliance: A Case for Indian Solar Diplomacy
Authors: Swadha Singh
Abstract:
International Solar Alliance is the foremost treaty-based global organization concerned with tapping the potential of sun-abundant nations between the Tropics of Cancer and Capricorn and enables co-operation among them. As a founding member of the International Solar Alliance, India exhibits its positioning as an upcoming leader in clean energy. India has set ambitious goals and targets to expand the share of solar in its energy mix and is playing a proactive role both at the regional and global levels. ISA aims to serve multiple goals- bring about scale commercialization of solar power, boost domestic manufacturing, and leverage solar diplomacy in African countries, amongst others. Against this backdrop, this paper attempts to examine the ways in which ISA as an intergovernmental organization under Indian leadership can leverage the cause of clean energy (solar) diplomacy and effectively shape partnerships and collaborations with other developing countries in terms of sharing solar technology, capacity building, risk mitigation, mobilizing financial investment and providing an aggregate market. A more specific focus of ISA is on the developing countries, which in the absence of a collective, are constrained by technology and capital scarcity, despite being naturally endowed with solar resources. Solar rich but finance-constrained economies face political risk, foreign exchange risk, and off-taker risk. Scholars argue that aligning India’s climate change discourse and growth prospects in its engagements, collaborations, and partnerships at the bilateral, multilateral and regional level can help promote trade, attract investments, and promote resilient energy transition both in India and in partner countries. For developing countries, coming together in an action-oriented way on issues of climate and clean energy is particularly important since it is developing and underdeveloped countries that face multiple and coalescing challenges such as the adverse impact of climate change, uneven and low access to reliable energy, and pressing employment needs. Investing in green recovery is agreed to be an assured way to create resilient value chains, create sustainable livelihoods, and help mitigate climate threats. If India is able to ‘green its growth’ process, it holds the potential to emerge as a climate leader internationally. It can use its experience in the renewable sector to guide other developing countries in balancing multiple similar objectives of development, energy security, and sustainability. The challenges underlying solar expansion in India have lessons to offer other developing countries, giving India an opportunity to assume a leadership role in solar diplomacy and expand its geopolitical influence through inter-governmental organizations such as ISA. It is noted that India has limited capacity to directly provide financial funds and support and is not a leading manufacturer of cheap solar equipment, as does China; however, India can nonetheless leverage its large domestic market to scale up the commercialization of solar power and offer insights and learnings to similarly placed abundant solar countries. The paper examines the potential of and limits placed on India’s solar diplomacy.Keywords: climate diplomacy, energy security, solar diplomacy, renewable energy
Procedia PDF Downloads 11821803 Thermal Characterization of Smart and Large-Scale Building Envelope System in a Subtropical Climate
Authors: Andrey A. Chernousov, Ben Y. B. Chan
Abstract:
The thermal behavior of a large-scale, phase change material (PCM) enhanced building envelope system was studied in regard to the need for pre-fabricated construction in subtropical regions. The proposed large-scale envelope consists of a reinforced aluminum skin, insulation core, phase change material and reinforced gypsum board. The PCM impact on an energy efficiency of an enveloped room was resolved by validation of the Energy Plus numerical scheme and optimization of a smart material location in the core. The PCM location was optimized by a minimization method of a cooling energy demand. It has been shown that there is good agreement between the test and simulation results. The optimal location of the PCM layer in Hong Kong summer conditions has been then recomputed for core thicknesses of 40, 60 and 80 mm. A non-dimensional value of the optimal PCM location was obtained to be same for all the studied cases and the considered external and internal conditions.Keywords: thermal performance, phase change material, energy efficiency, PCM optimization
Procedia PDF Downloads 40221802 Multiobjective Optimization of Wastwater Treatment by Electrochemical Process
Authors: Malek Bendjaballah, Hacina Saidi, Sarra Hamidoud
Abstract:
The aim of this study is to model and optimize the performance of a new electrocoagulation (E.C) process for the treatment of wastewater as well as the energy consumption in order to extrapolate it to the industrial scale. Through judicious application of an experimental design (DOE), it has been possible to evaluate the individual effects and interactions that have a significant influence on both objective functions (maximizing efficiency and minimizing energy consumption) by using aluminum electrodes as sacrificial anode. Preliminary experiments have shown that the pH of the medium, the applied potential and the treatment time with E.C are the main parameters. A factorial design 33 has been adopted to model performance and energy consumption. Under optimal conditions, the pollution reduction efficiency is 93%, combined with a minimum energy consumption of 2.60.10-3 kWh / mg-COD. The potential or current applied and the processing time and their interaction were the most influential parameters in the mathematical models obtained. The results of the modeling were also correlated with the experimental ones. The results offer promising opportunities to develop a clean process and inexpensive technology to eliminate or reduce wastewater,Keywords: electrocoagulation, green process, experimental design, optimization
Procedia PDF Downloads 9721801 A Spectroscopic Study by Photoluminescence of Erbium in Gallium Nitride
Authors: A. Melouah, M. Diaf
Abstract:
The III-N nitride semiconductors appear to be excellent host materials, in particular, GaN epilayers doped with Erbium ions have shown a highly reduced thermal quenching of the Er luminescence intensity from cryogenic to elevated temperatures. The remarkable stability may be due to the large energy band gap of the material. Two methods are used for doping the Gallium nitride films with Erbium ions; ion implantation in the wafers obtained by (CVDOM) and in-situ incorporation during epitaxial growth of the layers by (MBE). Photoluminescence (PL) spectroscopy has been the main optical technique used to characterize the emission of Er-doped III-N semiconductor materials. This technique involves optical excitation of Er3+ ions and measurement of the spectrum of the light emission as a function of energy (wavelength). Excitation at above band gap energy leads to the creation of Electron-Hole pairs. Some of this pairs may transfer their energy to the Er3+ ions, exciting the 4f-electrons and resulting in optical emission. This corresponds to an indirect excitation of the Er3+ ions by electron-hole pairs. The direct excitation by the optical pumping of the radiation can be obtained.Keywords: photoluminescence, Erbium, GaN, semiconductor materials
Procedia PDF Downloads 41421800 A Non-Invasive Blood Glucose Monitoring System Using near-Infrared Spectroscopy with Remote Data Logging
Authors: Bodhayan Nandi, Shubhajit Roy Chowdhury
Abstract:
This paper presents the development of a portable blood glucose monitoring device based on Near-Infrared Spectroscopy. The system supports Internet connectivity through WiFi and uploads the time series data of glucose concentration of patients to a server. In addition, the server is given sufficient intelligence to predict the future pathophysiological state of a patient given the current and past pathophysiological data. This will enable to prognosticate the approaching critical condition of the patient much before the critical condition actually occurs.The server hosts web applications to allow authorized users to monitor the data remotely.Keywords: non invasive, blood glucose concentration, microcontroller, IoT, application server, database server
Procedia PDF Downloads 22021799 Internet of Things Edge Device Power Modelling and Optimization Simulator
Authors: Cian O'Shea, Ross O'Halloran, Peter Haigh
Abstract:
Wireless Sensor Networks (WSN) are Internet of Things (IoT) edge devices. They are becoming widely adopted in many industries, including health care, building energy management, and conditional monitoring. As the scale of WSN deployments increases, the cost and complexity of battery replacement and disposal become more significant and in time may become a barrier to adoption. Harvesting ambient energies provide a pathway to reducing dependence on batteries and in the future may lead to autonomously powered sensors. This work describes a simulation tool that enables the user to predict the battery life of a wireless sensor that utilizes energy harvesting to supplement the battery power. To create this simulator, all aspects of a typical WSN edge device were modelled including, sensors, transceiver, and microcontroller as well as the energy source components (batteries, solar cells, thermoelectric generators (TEG), supercapacitors and DC/DC converters). The tool allows the user to plug and play different pre characterized devices as well as add user-defined devices. The goal of this simulation tool is to predict the lifetime of a device and scope for extension using ambient energy sources.Keywords: Wireless Sensor Network, IoT, edge device, simulation, solar cells, TEG, supercapacitor, energy harvesting
Procedia PDF Downloads 13021798 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.Keywords: deep learning, long short term memory, energy, renewable energy load forecasting
Procedia PDF Downloads 26621797 Verification of a Simple Model for Rolling Isolation System Response
Authors: Aarthi Sridhar, Henri Gavin, Karah Kelly
Abstract:
Rolling Isolation Systems (RISs) are simple and effective means to mitigate earthquake hazards to equipment in critical and precious facilities, such as hospitals, network collocation facilities, supercomputer centers, and museums. The RIS works by isolating components acceleration the inertial forces felt by the subsystem. The RIS consists of two platforms with counter-facing concave surfaces (dishes) in each corner. Steel balls lie inside the dishes and allow the relative motion between the top and bottom platform. Formerly, a mathematical model for the dynamics of RISs was developed using Lagrange’s equations (LE) and experimentally validated. A new mathematical model was developed using Gauss’s Principle of Least Constraint (GPLC) and verified by comparing impulse response trajectories of the GPLC model and the LE model in terms of the peak displacements and accelerations of the top platform. Mathematical models for the RIS are tedious to derive because of the non-holonomic rolling constraints imposed on the system. However, using Gauss’s Principle of Least constraint to find the equations of motion removes some of the obscurity and yields a system that can be easily extended. Though the GPLC model requires more state variables, the equations of motion are far simpler. The non-holonomic constraint is enforced in terms of accelerations and therefore requires additional constraint stabilization methods in order to avoid the possibility that numerical integration methods can cause the system to go unstable. The GPLC model allows the incorporation of more physical aspects related to the RIS, such as contribution of the vertical velocity of the platform to the kinetic energy and the mass of the balls. This mathematical model for the RIS is a tool to predict the motion of the isolation platform. The ability to statistically quantify the expected responses of the RIS is critical in the implementation of earthquake hazard mitigation.Keywords: earthquake hazard mitigation, earthquake isolation, Gauss’s Principle of Least Constraint, nonlinear dynamics, rolling isolation system
Procedia PDF Downloads 25021796 Inadequate Intake of Energy and Nutrients: A Comparative Cross-Sectional Study Between Sport and Non-sport Science University Students of Southern Ethiopia
Authors: Beruk Berhanu Desalegn, Kebede Awgechew, Addisalem Mesfin
Abstract:
Introduction: This study aimed to investigate and compare the energy and selected nutrient intakes of sport science and non-sport science University students of Southern Ethiopia. Method: Multiple-day dietary data were collected from 166 university students (76 sport science and 90 non-sport sciences). Average daily energy and nutrient intake, and inadequate intakes were calculated using NutriSurvey (NS). Results: There were significant differences (p < 0.05) in the median intakes of energy, total carbohydrate, and vitamin B1 between female students from the sport science and non-sport science groups, but only the median intake of iron was significantly different (p < 0.05) between the male sport and non-sport science students’ group. The prevalence of inadequate intake of vitamin B1 were significantly (p<0.05) higher in the male and female from the non-sport science groups compared to the male and female students’ groups in the sport science, respectively. Whereas, the prevalence of inadequate iron intake by the male sport science students’ group was significantly (p<0.05) higher compared to their counterparts. Similarly, the prevalence of inadequate energy among the females from the sport science group was significantly (p<0.05) higher compared to the female students from the non-sport science department group. The prevalence of inadequate intakes of dietary energy, and the majority of the nutrients (protein, fat, vitamin A, B1, B2, and magnesium) were high (>50%) in selected University students. Conclusion: The energy and majority of nutrient intakes by the students in the selected universities of southern Ethiopia were sub-optimal. Therefore, activities that will improve the dietary intake of University students should include weekly meal plan revision considering their average recommended nutrient intake (RNI).Keywords: dietary intake, sport science, University students, Ethiopia
Procedia PDF Downloads 8421795 Bosporus Evolution: Its Role in the Black Sea Forming
Authors: I. V. Kuzminov
Abstract:
The research is dedicated to the issue of Bosporus evolution and its key role in the Black Sea forming. Up till nowadays, there is no distinct picture of the historical and geographical events of the last 10 thousand years on the territory from Altai up to the Alps. The present article is an attempt to clarify and, moreover, link the presented version to the historical and climatic events of this period. The paper is a development of the basic idea stated in "Hypothesis on the Black Sea origin". The succession of events in dynamics is offered in this article. In the article, it is shown that fluctuation of the level of the World Ocean is a mirror of the basic events connected with the climate on the Earth on the one hand and hydraulic processes on the other hand. In the present article, it is come out with the assumption that at the formation of passage, there were some cycles of change in a level of the World ocean. The phase of the beginning of climate warming is characterized by an increase in the level of inland water bodies on the way of meltwater runoff and an increase in the World ocean level. The end of the warming phase is characterized by the continuation of a rise in the level of the World ocean and the drying up of inland water bodies deprived of meltwater replenishment.Keywords: Bosporus, Ryan-Pitman hypothesis, fluctuations of the World Ocean level, the Paratethys Sea, catastrophic breakthrough
Procedia PDF Downloads 11021794 A Practice of Zero Trust Architecture in Financial Transactions
Authors: Liwen Wang, Yuting Chen, Tong Wu, Shaolei Hu
Abstract:
In order to enhance the security of critical financial infrastructure, this study carries out a transformation of the architecture of a financial trading terminal to a zero trust architecture (ZTA), constructs an active defense system for cybersecurity, improves the security level of trading services in the Internet environment, enhances the ability to prevent network attacks and unknown risks, and reduces the industry and security risks brought about by cybersecurity risks. This study introduces the SDP technology of ZTA, adapts and applies it to a financial trading terminal to achieve security optimization and fine-grained business grading control. The upgraded architecture of the trading terminal moves security protection forward to the user access layer, replaces VPN to optimize remote access, and significantly improves the security protection capability of Internet transactions. The study achieves 1. deep integration with the access control architecture of the transaction system; 2. no impact on the performance of terminals and gateways, and no perception of application system upgrades; 3. customized checklist and policy configuration; 4. introduction of industry-leading security technology such as single-packet authorization (SPA) and secondary authentication. This study carries out a successful application of ZTA in the field of financial trading and provides transformation ideas for other similar systems while improving the security level of financial transaction services in the Internet environment.Keywords: zero trust, trading terminal, architecture, network security, cybersecurity
Procedia PDF Downloads 167