Search results for: corpus-driven approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13966

Search results for: corpus-driven approach

11746 Applying Program Theory-Driven Approach to Design and Evaluate a Teacher Professional Development Program

Authors: S. C. Lin, M. S. Wu

Abstract:

Japanese Scholar Manabu Sato has been advocating the Learning Community, which changed Japanese fundamental education during the last three decades. It was also called a “Quiet Revolution.” Manabu Sato criticized that traditional education only focused on individual competition, exams, teacher-centered instruction, and memorization. The students lacked leaning motivation. Therefore, Manabu Sato proclaimed that learning should be a sustainable process of “constantly weaving the relationship and the meanings” by having dialogues with learning materials, with peers, and with oneself. For a long time, secondary school education in Taiwan has been focused on exams and emphasized reciting and memorizing. The incident of “giving up learning” happened to some students. Manabu Sato’s learning community program has been implemented very successfully in Japan. It is worth exploring if learning community can resolve the issue of “Escape from learning” phenomenon among secondary school students in Taiwan. This study was the first year of a two-year project. This project applied a program theory-driven approach to evaluating the impact of teachers’ professional development interventions on students’ learning by using a mix of methods, qualitative inquiry, and quasi-experimental design. The current study was to show the results of using the method of theory-driven approach to program planning to design and evaluate a teachers’ professional development program (TPDP). The Manabu Sato’s learning community theory was applied to structure all components of a 54-hour workshop. The participants consisted of seven secondary school science teachers from two schools. The research procedure was comprised of: 1) Defining the problem and assessing participants’ needs; 2) Selecting the Theoretical Framework; 3) Determining theory-based goals and objectives; 4) Designing the TPDP intervention; 5) Implementing the TPDP intervention; 6) Evaluating the TPDP intervention. Data was collected from a number of different sources, including TPDP checklist, activity responses of workshop, LC subject matter test, teachers’ e-portfolio, course design documents, and teachers’ belief survey. The major findings indicated that program design was suitable to participants. More than 70% of the participants were satisfied with program implementation. They revealed that TPDP was beneficial to their instruction and promoted their professional capacities. However, due to heavy teaching loadings during the project some participants were unable to attend all workshops. To resolve this problem, the author provided options to them by watching DVD or reading articles offered by the research team. This study also established a communication platform for participants to share their thoughts and learning experiences. The TPDP had marked impacts on participants’ teaching beliefs. They believe that learning should be a sustainable process of “constantly weaving the relationship and the meanings” by having dialogues with learning materials, with peers, and with oneself. Having learned from TPDP, they applied a “learner-centered” approach and instructional strategies to design their courses, such as learning by doing, collaborative learning, and reflective learning. To conclude, participants’ beliefs, knowledge, and skills were promoted by the program instructions.

Keywords: program theory-driven approach, learning community, teacher professional development program, program evaluation

Procedia PDF Downloads 309
11745 Introducing Standardized Nursing Language in Reporting Nursing Care in Resource-Limited Care Environments: An Exploratory Study

Authors: Naomi Mutea, Jossete Jones

Abstract:

The project aimed at exploring the views and perceptions of nurse leaders and educators regarding use of International Classification for Nursing Practice (ICNP) in an informal approach which involved face to face discussions, after which a decision would be made on whether to proceed and propose introduction of ICNP project in Kenya as a pilot project which would mean all nurses would use a standard approach to reporting and documenting nursing care. In addition the project was to determine the best approaches/methods that can be used to introduce ICNP in the Kenyan nursing education and practice environment using the findings of the pilot project. Further four cardex reports were reviewed to establish if nurses on the bedside used a standardized language in documenting and reporting care processes. The cardex reports showed that nurses do not use ICNP or any other standardized language. The results of the discussions revealed that this would be a challenge due to several challenges experienced in conducting nursing research in resource-limited environments. The following questions were asked during the informal discussions with the educators/leaders: •What is currently being taught in terms of standardized nursing language? •Are you familiar with ICNP? •Do you view it advantageous to have a standardized language? •What is the greatest need at the moment in terms of curriculum development for BSN regarding use of standardized nursing language? •If you had a wish to change something in your curriculum, what would that be?

Keywords: nursing, standardized language, ICNP, resource-limited care environments

Procedia PDF Downloads 420
11744 Life Course Events, Residential and Job Relocation and Commute Time in Australian Cities

Authors: Solmaz Jahed Shiran, Elizabeth Taylor, John Hearne

Abstract:

Over the past decade a growing body of research, known as mobility biography approach has emerged that focuses on changes in travel behaviour over the life course of individuals. Mobility biographies suggest that changes in travel behaviour have a certain relation to important key events in life courses such as residential relocation, workplace changes, marriage and the birth of children. Taking this approach as the theoretical background, this study uses data from the Household, Income and Labor Dynamics Survey in Australia (HILDA) to model a set of life course events and their interaction with the commute time. By analysing longitudinal data, it is possible to assign different key events during the life course to change a person’s travel behaviour. Changes in the journey-to-work travel time is used as an indication of travel behaviour change in this study. Results of a linear regression model for change in commute time show a significant influence from socio-demographic factors like income and age, the previous home-to-work commute time and remoteness of the residence. Residential relocation and job change have significant influences on commute time. Other life events such as birth of a child, marriage and divorce or separation have also a strong impact on commute time change. Overall, the research confirms previous studies of links between life course events and travel behaviour.

Keywords: life course events, residential mobility, travel behaviour, commute time, job change

Procedia PDF Downloads 208
11743 Positioning a Southern Inclusive Framework Embedded in the Social Model of Disability Theory Contextualised for Guyana

Authors: Lidon Lashley

Abstract:

This paper presents how the social model of disability can be used to reshape inclusive education practices in Guyana. Inclusive education in Guyana is metamorphosizing but still firmly held in the tenets of the Medical Model of Disability which influences the experiences of children with Special Education Needs and/or Disabilities (SEN/D). An ethnographic approach to data gathering was employed in this study. Qualitative data was gathered from the voices of children with and without SEN/D as well as their mainstream teachers to present the interplay of discourses and subjectivities in the situation. The data was analyzed using Adele Clarke's postmodern approach to grounded theory analysis called situational analysis. The data suggest that it is possible but will be challenging to fully contextualize and adopt Loreman's synthesis and Booths and Ainscow's Index in the two mainstream schools studied. In addition, the data paved the way for the presentation of the social model framework specific to Guyana called 'Southern Inclusive Education Framework for Guyana' and its support tool called 'The Inclusive Checker created for Southern mainstream primary classrooms.

Keywords: social model of disability, medical model of disability, subjectivities, metamorphosis, special education needs, postcolonial Guyana, inclusion, culture, mainstream primary schools, Loreman's synthesis, Booths and Ainscow's index

Procedia PDF Downloads 163
11742 Dynamic Environmental Impact Study during the Construction of the French Nuclear Power Plants

Authors: A. Er-Raki, D. Hartmann, J. P. Belaud, S. Negny

Abstract:

This paper has a double purpose: firstly, a literature review of the life cycle analysis (LCA) and secondly a comparison between conventional (static) LCA and multi-level dynamic LCA on the following items: (i) inventories evolution with time (ii) temporal evolution of the databases. The first part of the paper summarizes the state of the art of the static LCA approach. The different static LCA limits have been identified and especially the non-consideration of the spatial and temporal evolution in the inventory, for the characterization factors (FCs) and into the databases. Then a description of the different levels of integration of the notion of temporality in life cycle analysis studies was made. In the second part, the dynamic inventory has been evaluated firstly for a single nuclear plant and secondly for the entire French nuclear power fleet by taking into account the construction durations of all the plants. In addition, the databases have been adapted by integrating the temporal variability of the French energy mix. Several iterations were used to converge towards the real environmental impact of the energy mix. Another adaptation of the databases to take into account the temporal evolution of the market data of the raw material was made. An identification of the energy mix of the time studied was based on an extrapolation of the production reference values of each means of production. An application to the construction of the French nuclear power plants from 1971 to 2000 has been performed, in which a dynamic inventory of raw material has been evaluated. Then the impacts were characterized by the ILCD 2011 characterization method. In order to compare with a purely static approach, a static impact assessment was made with the V 3.4 Ecoinvent data sheets without adaptation and a static inventory considering that all the power stations would have been built at the same time. Finally, a comparison between static and dynamic LCA approaches was set up to determine the gap between them for each of the two levels of integration. The results were analyzed to identify the contribution of the evolving nuclear power fleet construction to the total environmental impacts of the French energy mix during the same period. An equivalent strategy using a dynamic approach will further be applied to identify the environmental impacts that different scenarios of the energy transition could bring, allowing to choose the best energy mix from an environmental viewpoint.

Keywords: LCA, static, dynamic, inventory, construction, nuclear energy, energy mix, energy transition

Procedia PDF Downloads 106
11741 Evaluation of the Internal Quality for Pineapple Based on the Spectroscopy Approach and Neural Network

Authors: Nonlapun Meenil, Pisitpong Intarapong, Thitima Wongsheree, Pranchalee Samanpiboon

Abstract:

In Thailand, once pineapples are harvested, they must be classified into two classes based on their sweetness: sweet and unsweet. This paper has studied and developed the assessment of internal quality of pineapples using a low-cost compact spectroscopy sensor according to the Spectroscopy approach and Neural Network (NN). During the experiments, Batavia pineapples were utilized, generating 100 samples. The extracted pineapple juice of each sample was used to determine the Soluble Solid Content (SSC) labeling into sweet and unsweet classes. In terms of experimental equipment, the sensor cover was specifically designed to install the sensor and light source to read the reflectance at a five mm depth from pineapple flesh. By using a spectroscopy sensor, data on visible and near-infrared reflectance (Vis-NIR) were collected. The NN was used to classify the pineapple classes. Before the classification step, the preprocessing methods, which are Class balancing, Data shuffling, and Standardization were applied. The 510 nm and 900 nm reflectance values of the middle parts of pineapples were used as features of the NN. With the Sequential model and Relu activation function, 100% accuracy of the training set and 76.67% accuracy of the test set were achieved. According to the abovementioned information, using a low-cost compact spectroscopy sensor has achieved favorable results in classifying the sweetness of the two classes of pineapples.

Keywords: neural network, pineapple, soluble solid content, spectroscopy

Procedia PDF Downloads 81
11740 Data and Model-based Metamodels for Prediction of Performance of Extended Hollo-Bolt Connections

Authors: M. Cabrera, W. Tizani, J. Ninic, F. Wang

Abstract:

Open section beam to concrete-filled tubular column structures has been increasingly utilized in construction over the past few decades due to their enhanced structural performance, as well as economic and architectural advantages. However, the use of this configuration in construction is limited due to the difficulties in connecting the structural members as there is no access to the inner part of the tube to install standard bolts. Blind-bolted systems are a relatively new approach to overcome this limitation as they only require access to one side of the tubular section to tighten the bolt. The performance of these connections in concrete-filled steel tubular sections remains uncharacterized due to the complex interactions between concrete, bolt, and steel section. Over the last years, research in structural performance has moved to a more sophisticated and efficient approach consisting of machine learning algorithms to generate metamodels. This method reduces the need for developing complex, and computationally expensive finite element models, optimizing the search for desirable design variables. Metamodels generated by a data fusion approach use numerical and experimental results by combining multiple models to capture the dependency between the simulation design variables and connection performance, learning the relations between different design parameters and predicting a given output. Fully characterizing this connection will transform high-rise and multistorey construction by means of the introduction of design guidance for moment-resisting blind-bolted connections, which is currently unavailable. This paper presents a review of the steps taken to develop metamodels generated by means of artificial neural network algorithms which predict the connection stress and stiffness based on the design parameters when using Extended Hollo-Bolt blind bolts. It also provides consideration of the failure modes and mechanisms that contribute to the deformability as well as the feasibility of achieving blind-bolted rigid connections when using the blind fastener.

Keywords: blind-bolted connections, concrete-filled tubular structures, finite element analysis, metamodeling

Procedia PDF Downloads 160
11739 Opinions and Perceptions of Clinical Staff towards Caring for Obese Patients: A Qualitative Research Study in a Cardiac Centre in Bahrain

Authors: Catherine Mary Abou-Zaid, Sandra Goodwin

Abstract:

This study was conducted in a cardiac center in Bahrain. The rise in the amount of obese patients’ both men and women, being admitted for surgical procedures has become an issue to the nurses and doctors as these patients pose a high risk of major complications arising from their problem. The cessation of obesity in the country is very high and obesity-related diseases has been the cause of concern among men and women, also related individual diseases such as cardiovascular, diabetes and chronic respiratory diseases are rising dramatically within Bahrain in the last 10 years. Rationale for the Study: The ontological approach will help to understand and assess the true nature of the social world and how the world looks at obesity. Obesity has to be looked at as being a realistic ongoing issue. The epistemological approach will look at the theory of the origins of the nature of knowledge, set the rule of validating and learning in the social world of what can be done to curb this concept and how this can help prevent otherwise preventable diseases. Design Methodology: The qualitative design methodology took the form of an ontological/epistemological approach using phenomenology as a framework. The study was based on a social research issue, therefore, ontological ‘realism and idealism’ will feature as the nature of the world from a social and natural context. Epistemological positions of the study will be how we as researchers will find the actual social world and the limiting of that knowledge. The one-to-one interviews will be transcribed and the taped verbatim will be coded and charted giving the thematic analytic results. Recommendations: The significance of the research brought many recommendations. These recommendations were taken from the themes and sub-themes and were presented to the centers management and the necessary arrangements for updating knowledge and attitudes towards obesity in cardiac patients was then presented to the in-service education department. Workshops and training sessions on promoting health education were organized and put into the educational calendar for the next academic year. These sessions would look at patient autonomy, the patients’ rights, healthy eating for patients and families and the risks associated with obesity in cardiac disease processes.

Keywords: cardiac patients, diabetes, education & training, obesity cessation, qualitative

Procedia PDF Downloads 334
11738 Comparative Economic Analysis of Floating Photovoltaic Systems Using a Synthesis Approach

Authors: Ching-Feng Chen

Abstract:

The floating photovoltaic (FPV) system highlights economic benefits and energy performance to carbon dioxide (CO₂) discharges. Due to land resource scarcity and many negligent water territories, such as reservoirs, dams, and lakes in Japan and Taiwan, both countries are actively developing FPV and responding to the pricing of the emissions trading systems (ETS). This paper performs a case study through a synthesis approach to compare the economic indicators between the FPVs of Taiwan’s Agongdian Reservoir and Japan’s Yamakura Dam. The research results show that the metrics of the system capacity, installation costs, bank interest rates, and ETS and Electricity Bills affect FPV operating gains. In the post-Feed-In-Tariff (FIT) phase, investing in FPV in Japan is more profitable than in Taiwan. The former’s positive net present value (NPV), eminent internal rate of return (IRR) (11.6%), and benefit-cost ratio (BCR) above 1 (2.0) at the discount rate of 10% indicate that investing the FPV in Japan is more favorable than in Taiwan. In addition, the breakeven point is modest (about 61.3%.). The presented methodology in the study helps investors evaluate schemes’ pros and cons and determine whether a decision is beneficial while funding PV or FPV projects.

Keywords: carbon border adjustment mechanism, floating photovoltaic, emissions trading systems, net present value, internal rate of return, benefit-cost ratio

Procedia PDF Downloads 76
11737 A Neural Network Approach to Understanding Turbulent Jet Formations

Authors: Nurul Bin Ibrahim

Abstract:

Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.

Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence

Procedia PDF Downloads 74
11736 Mental Health Representation in Video Games

Authors: Leonid Rybakovski

Abstract:

Contemporary media offer a variety of themes for the diverse tastes of their audiences. The Digital games medium was mostly perceived as an instrument of entertainment. But being a part of global trends while constantly pushing the boundaries of storytelling in virtual reality and standing on the edge of technology also brings huge responsibility for game designers around the globe. A very recent emerging topic over the last years was an individual's mental state. In recent years there has been a shift in mental problems representations in commercial game releases such as Hell blade: Senua's Sacrifice and Sea of Solitude. The aim of this study is to research the approach of mental illness representation in media and digital games over the years and to suggest alternatives for putting characters who suffer from mental illness at the forefront of the storyline. This study traces dominant representations of characters with mental illness in digital games, reflecting the major change of the game industry toward inclusiveness. At the same time, the research embraces a hybrid approach to the academic study of digital games and includes the development of a game that follows a post-traumatic young girl, forcing the users to live her life through her eyes. The game prototype was developed as part of the Mdes Game Design and Development program and consisted of academic research and game development practices.

Keywords: framing analysis, mental condition, up keying, game mechanics

Procedia PDF Downloads 175
11735 Bayesian Structural Identification with Systematic Uncertainty Using Multiple Responses

Authors: André Jesus, Yanjie Zhu, Irwanda Laory

Abstract:

Structural health monitoring is one of the most promising technologies concerning aversion of structural risk and economic savings. Analysts often have to deal with a considerable variety of uncertainties that arise during a monitoring process. Namely the widespread application of numerical models (model-based) is accompanied by a widespread concern about quantifying the uncertainties prevailing in their use. Some of these uncertainties are related with the deterministic nature of the model (code uncertainty) others with the variability of its inputs (parameter uncertainty) and the discrepancy between a model/experiment (systematic uncertainty). The actual process always exhibits a random behaviour (observation error) even when conditions are set identically (residual variation). Bayesian inference assumes that parameters of a model are random variables with an associated PDF, which can be inferred from experimental data. However in many Bayesian methods the determination of systematic uncertainty can be problematic. In this work systematic uncertainty is associated with a discrepancy function. The numerical model and discrepancy function are approximated by Gaussian processes (surrogate model). Finally, to avoid the computational burden of a fully Bayesian approach the parameters that characterise the Gaussian processes were estimated in a four stage process (modular Bayesian approach). The proposed methodology has been successfully applied on fields such as geoscience, biomedics, particle physics but never on the SHM context. This approach considerably reduces the computational burden; although the extent of the considered uncertainties is lower (second order effects are neglected). To successfully identify the considered uncertainties this formulation was extended to consider multiple responses. The efficiency of the algorithm has been tested on a small scale aluminium bridge structure, subjected to a thermal expansion due to infrared heaters. Comparison of its performance with responses measured at different points of the structure and associated degrees of identifiability is also carried out. A numerical FEM model of the structure was developed and the stiffness from its supports is considered as a parameter to calibrate. Results show that the modular Bayesian approach performed best when responses of the same type had the lowest spatial correlation. Based on previous literature, using different types of responses (strain, acceleration, and displacement) should also improve the identifiability problem. Uncertainties due to parametric variability, observation error, residual variability, code variability and systematic uncertainty were all recovered. For this example the algorithm performance was stable and considerably quicker than Bayesian methods that account for the full extent of uncertainties. Future research with real-life examples is required to fully access the advantages and limitations of the proposed methodology.

Keywords: bayesian, calibration, numerical model, system identification, systematic uncertainty, Gaussian process

Procedia PDF Downloads 329
11734 A Case Study of Ontology-Based Sentiment Analysis for Fan Pages

Authors: C. -L. Huang, J. -H. Ho

Abstract:

Social media has become more and more important in our life. Many enterprises promote their services and products to fans via the social media. The positive or negative sentiment of feedbacks from fans is very important for enterprises to improve their products, services, and promotion activities. The purpose of this paper is to understand the sentiment of the fan’s responses by analyzing the responses posted by fans on Facebook. The entity and aspect of fan’s responses were analyzed based on a predefined ontology. The ontology for cell phone sentiment analysis consists of aspect categories on the top level as follows: overall, shape, hardware, brand, price, and service. Each category consists of several sub-categories. All aspects for a fan’s response were found based on the ontology, and their corresponding sentimental terms were found using lexicon-based approach. The sentimental scores for aspects of fan responses were obtained by summarizing the sentimental terms in responses. The frequency of 'like' was also weighted in the sentimental score calculation. Three famous cell phone fan pages on Facebook were selected as demonstration cases to evaluate performances of the proposed methodology. Human judgment by several domain experts was also built for performance comparison. The performances of proposed approach were as good as those of human judgment on precision, recall and F1-measure.

Keywords: opinion mining, ontology, sentiment analysis, text mining

Procedia PDF Downloads 234
11733 Cancer and Disability: A Psychosocial Approach in Puerto Rican Women as Cancer Survivors

Authors: Hector Jose Velazquez-Gonzalez, Norma Maldonado-Santiago, Laura Pietri-Gomez

Abstract:

Cancer is one of the first cause of death in the world, most of them are women. In Puerto Rico, there is a permanent controversy on the conceptuation of what really involves a disability, also in when a chronic illness, like cancer, should be considered a disability. The aim of the research was to identify functional limitation in 50 women survivors of cancer. In turn, to know the meanings that 6 women attributed to cancer with a focus on functionality. We conducted a mix method research based on surveys and narratives. We administered the World Health Organization Disability Assessment, version 2.0, which obtained a Cronbach’s alpha of .949 on the general scale, and from .773 to .956 on the six domains. The domain that obtained the highest average was social participation (M= 33.89, SD= 20.434), but it was not significant in the disability percentage. Also, there was no significance in the disability percentage in the other five domains. In a matter of meanings, we conduct a semistructured interview to 6 participants. All of them do not refer to cancer as a disability, either they do not know that in Puerto Rico cancer is considered as a disability by the law. However, participants agree that cancer at the time of treatment and subsequent to it, has significant effects on functional limitations (fatigue, pain, cognitive limitations, and weakness, among others. Psychooncologic practice should encourage the constant assessment of the functionality to identify the needs that emerge from oncological diagnosis. So that psychosocial intervention could be considered as critical in cancer treatment to promote a better quality of life and well-being in a person with cancer.

Keywords: cancer, Puerto Rico, disability, psychosocial approach

Procedia PDF Downloads 280
11732 A Case Study on the Numerical-Probability Approach for Deep Excavation Analysis

Authors: Komeil Valipourian

Abstract:

Urban advances and the growing need for developing infrastructures has increased the importance of deep excavations. In this study, after the introducing probability analysis as an important issue, an attempt has been made to apply it for the deep excavation project of Bangkok’s Metro as a case study. For this, the numerical probability model has been developed based on the Finite Difference Method and Monte Carlo sampling approach. The results indicate that disregarding the issue of probability in this project will result in an inappropriate design of the retaining structure. Therefore, probabilistic redesign of the support is proposed and carried out as one of the applications of probability analysis. A 50% reduction in the flexural strength of the structure increases the failure probability just by 8% in the allowable range and helps improve economic conditions, while maintaining mechanical efficiency. With regard to the lack of efficient design in most deep excavations, by considering geometrical and geotechnical variability, an attempt was made to develop an optimum practical design standard for deep excavations based on failure probability. On this basis, a practical relationship is presented for estimating the maximum allowable horizontal displacement, which can help improve design conditions without developing the probability analysis.

Keywords: numerical probability modeling, deep excavation, allowable maximum displacement, finite difference method (FDM)

Procedia PDF Downloads 129
11731 Design of an Eddy Current Brake System for the Use of Roller Coasters Based on a Human Factors Engineering Approach

Authors: Adam L. Yanagihara, Yong Seok Park

Abstract:

The goal of this paper is to converge upon a design of a brake system that could be used for a roller coaster found at an amusement park. It was necessary to find what could be deemed as a “comfortable” deceleration so that passengers do not feel as if they are suddenly jerked and pressed against the restraining harnesses. A human factors engineering approach was taken in order to determine this deceleration. Using a previous study that tested the deceleration of transit vehicles, it was found that a -0.45 G deceleration would be used as a design requirement to build this system around. An adjustable linear eddy current brake using permanent magnets would be the ideal system to use in order to meet this design requirement. Anthropometric data were then used to determine a realistic weight and length of the roller coaster that the brake was being designed for. The weight and length data were then factored into magnetic brake force equations. These equations were used to determine how the brake system and the brake run layout would be designed. A final design for the brake was determined and it was found that a total of 12 brakes would be needed with a maximum braking distance of 53.6 m in order to stop a roller coaster travelling at its top speed and loaded to maximum capacity. This design is derived from theoretical calculations, but is within the realm of feasibility.

Keywords: eddy current brake, engineering design, design synthesis, human factors engineering

Procedia PDF Downloads 126
11730 Strategic Mine Planning: A SWOT Analysis Applied to KOV Open Pit Mine in the Democratic Republic of Congo

Authors: Patrick May Mukonki

Abstract:

KOV pit (Kamoto Oliveira Virgule) is located 10 km from Kolwezi town, one of the mineral rich town in the Lualaba province of the Democratic Republic of Congo. The KOV pit is currently operating under the Katanga Mining Limited (KML), a Glencore-Gecamines (a State Owned Company) join venture. Recently, the mine optimization process provided a life of mine of approximately 10 years withnice pushbacks using the Datamine NPV Scheduler software. In previous KOV pit studies, we recently outlined the impact of the accuracy of the geological information on a long-term mine plan for a big copper mine such as KOV pit. The approach taken, discussed three main scenarios and outlined some weaknesses on the geological information side, and now, in this paper that we are going to develop here, we are going to highlight, as an overview, those weaknesses, strengths and opportunities, in a global SWOT analysis. The approach we are taking here is essentially descriptive in terms of steps taken to optimize KOV pit and, at every step, we categorized the challenges we faced to have a better tradeoff between what we called strengths and what we called weaknesses. The same logic is applied in terms of the opportunities and threats. The SWOT analysis conducted in this paper demonstrates that, despite a general poor ore body definition, and very rude ground water conditions, there is room for improvement for such high grade ore body.

Keywords: mine planning, mine optimization, mine scheduling, SWOT analysis

Procedia PDF Downloads 226
11729 The Quality of Food and Drink Product Labels Translation from Indonesian into English

Authors: Rudi Hartono, Bambang Purwanto

Abstract:

The translation quality of food and drink labels from Indonesian into English is poor because the translation is not accurate, less natural, and difficult to read. The label translation can be found in some cans packages of food and drink products produced and marketed by several companies in Indonesia. If this problem is left unchecked, it will lead to a misunderstanding on the translation results and make consumers confused. This study was conducted to analyze the translation errors on food and drink products labels and formulate the solution for the better translation quality. The research design was the evaluation research with a holistic criticism approach. The data used were words, phrases, and sentences translated from Indonesian to English language printed on food and drink product labels. The data were processed by using Interactive Model Analysis that carried out three main steps: collecting, classifying, and verifying data. Furthermore, the data were analyzed by using content analysis to view the accuracy, naturalness, and readability of translation. The results showed that the translation quality of food and drink product labels from Indonesian to English has the level of accuracy (60%), level of naturalness (50%), and level readability (60%). This fact needs a help to create an effective strategy for translating food and drink product labels later.

Keywords: translation quality, food and drink product labels, a holistic criticism approach, interactive model, content analysis

Procedia PDF Downloads 378
11728 Challenges Faced by the Teachers Regarding Student Assessment at Distant and Online Learning Mode

Authors: Ameema Mahroof, Muhammad Saeed

Abstract:

Purpose: The paper aimed to explore the problems faced by the faculty in a distant and online learning environment. It proposes the remedies of the problems faced by the teachers. In distant and online learning mode, the methods of student assessment are different than traditional learning mode. In this paper, the assessment strategies of these learning modes are identified, and the challenges faced by the teachers regarding these assessment methods are explored. Design/Methodology/Approach: The study is qualitative and opted for an exploratory study, including eight interviews with faculty of distant and online universities. The data for this small scale study was gathered using semi-structured interviews. Findings: Findings of the study revealed that assignment and tests are the most effective way of assessment in these modes. It further showed that less student-teacher interaction, plagiarized assignments, passive students, less time for marking are the main challenges faced by the teachers in these modes. Research Limitations: Because of the chosen research approach, the study might not be able to provide generalizable results. That’s why it is recommended to do further studies on this topic. Practical Implications: The paper includes implications for the better assessment system in online and distant learning mode. Originality/Value: This paper fulfills an identified need to study the challenges and problems faced by the teachers regarding student assessment.

Keywords: online learning, distant learning, student assessment, assignments

Procedia PDF Downloads 168
11727 A Design Decision Framework for Net-Zero Carbon Buildings in Hot Climates: A Modeled Approach and Expert’s Feedback

Authors: Eric Ohene, Albert P. C. Chan, Shu-Chien HSU

Abstract:

The rising building energy consumption and related carbon emissions make it necessary to construct net-zero carbon buildings (NZCBs). The objective of net-zero buildings has raised the benchmark for building performance and will alter how buildings are designed and constructed. However, there have been growing concerns about uncertainty in net-zero building design and cost implications in decision-making. Lessons from practice have shown that a robust net-zero building design is complex, expensive, and time-consuming. Moreover, climate conditions have an enormous implication for choosing the best-optimal passive and active solutions to ensure building energy performance while ensuring the indoor comfort performance of occupants. It is observed that 20% of the design decisions made in the initial design phase influence 80% of all design decisions. To design and construct NZCBs, it is crucial to ensure adequate decision-making during the early design phases. Therefore, this study aims to explore practical strategies to design NZCBs and to offer a design framework that could help decision-making during the design stage of net-zero buildings. A parametric simulation approach was employed, and experts (i.e., architects, building designers) perspectives on the decision framework were solicited. The study could be helpful to building designers and architects to guide their decision-making during the design stage of NZCBs.

Keywords: net-zero, net-zero carbon building, energy efficiency, parametric simulation, hot climate

Procedia PDF Downloads 109
11726 Flood Planning Based on Risk Optimization: A Case Study in Phan-Calo River Basin in Vinh Phuc Province, Vietnam

Authors: Nguyen Quang Kim, Nguyen Thu Hien, Nguyen Thien Dung

Abstract:

Flood disasters are increasing worldwide in both frequency and magnitude. Every year in Vietnam, flood causes great damage to people, property, and environmental degradation. The flood risk management policy in Vietnam is currently updated. The planning of flood mitigation strategies is reviewed to make a decision how to reach sustainable flood risk reduction. This paper discusses the basic approach where the measures of flood protection are chosen based on minimizing the present value of expected monetary expenses, total residual risk and costs of flood control measures. This approach will be proposed and demonstrated in a case study for flood risk management in Vinh Phuc province of Vietnam. Research also proposed the framework to find a solution of optimal protection level and optimal measures of the flood. It provides an explicit economic basis for flood risk management plans and interactive effects of options for flood damage reduction. The results of the case study are demonstrated and discussed which would provide the processing of actions helped decision makers to choose flood risk reduction investment options.

Keywords: drainage plan, flood planning, flood risk, residual risk, risk optimization

Procedia PDF Downloads 248
11725 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.

Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation

Procedia PDF Downloads 76
11724 An Approach of Node Model TCnNet: Trellis Coded Nanonetworks on Graphene Composite Substrate

Authors: Diogo Ferreira Lima Filho, José Roberto Amazonas

Abstract:

Nanotechnology opens the door to new paradigms that introduces a variety of novel tools enabling a plethora of potential applications in the biomedical, industrial, environmental, and military fields. This work proposes an integrated node model by applying the same concepts of TCNet to networks of nanodevices where the nodes are cooperatively interconnected with a low-complexity Mealy Machine (MM) topology integrating in the same electronic system the modules necessary for independent operation in wireless sensor networks (WSNs), consisting of Rectennas (RF to DC power converters), Code Generators based on Finite State Machine (FSM) & Trellis Decoder and On-chip Transmit/Receive with autonomy in terms of energy sources applying the Energy Harvesting technique. This approach considers the use of a Graphene Composite Substrate (GCS) for the integrated electronic circuits meeting the following characteristics: mechanical flexibility, miniaturization, and optical transparency, besides being ecological. In addition, graphene consists of a layer of carbon atoms with the configuration of a honeycomb crystal lattice, which has attracted the attention of the scientific community due to its unique Electrical Characteristics.

Keywords: composite substrate, energy harvesting, finite state machine, graphene, nanotechnology, rectennas, wireless sensor networks

Procedia PDF Downloads 108
11723 DNA Nano Wires: A Charge Transfer Approach

Authors: S. Behnia, S. Fathizadeh, A. Akhshani

Abstract:

In the recent decades, DNA has increasingly interested in the potential technological applications that not directly related to the coding for functional proteins that is the expressed in form of genetic information. One of the most interesting applications of DNA is related to the construction of nanostructures of high complexity, design of functional nanostructures in nanoelectronical devices, nanosensors and nanocercuits. In this field, DNA is of fundamental interest to the development of DNA-based molecular technologies, as it possesses ideal structural and molecular recognition properties for use in self-assembling nanodevices with a definite molecular architecture. Also, the robust, one-dimensional flexible structure of DNA can be used to design electronic devices, serving as a wire, transistor switch, or rectifier depending on its electronic properties. In order to understand the mechanism of the charge transport along DNA sequences, numerous studies have been carried out. In this regard, conductivity properties of DNA molecule could be investigated in a simple, but chemically specific approach that is intimately related to the Su-Schrieffer-Heeger (SSH) model. In SSH model, the non-diagonal matrix element dependence on intersite displacements is considered. In this approach, the coupling between the charge and lattice deformation is along the helix. This model is a tight-binding linear nanoscale chain established to describe conductivity phenomena in doped polyethylene. It is based on the assumption of a classical harmonic interaction between sites, which is linearly coupled to a tight-binding Hamiltonian. In this work, the Hamiltonian and corresponding motion equations are nonlinear and have high sensitivity to initial conditions. Then, we have tried to move toward the nonlinear dynamics and phase space analysis. Nonlinear dynamics and chaos theory, regardless of any approximation, could open new horizons to understand the conductivity mechanism in DNA. For a detailed study, we have tried to study the current flowing in DNA and investigated the characteristic I-V diagram. As a result, It is shown that there are the (quasi-) ohmic areas in I-V diagram. On the other hand, the regions with a negative differential resistance (NDR) are detectable in diagram.

Keywords: DNA conductivity, Landauer resistance, negative di erential resistance, Chaos theory, mean Lyapunov exponent

Procedia PDF Downloads 427
11722 Production of Metal Powder Using Twin Arc Spraying Process for Additive Manufacturing

Authors: D. Chen, H. Daoud, C. Kreiner, U. Glatzel

Abstract:

Additive Manufacturing (AM) provides promising opportunities to optimize and to produce tooling by integrating near-contour tempering channels for more efficient cooling. To enhance the properties of the produced tooling using additive manufacturing, prototypes should be produced in short periods. Thereby, this requires a small amount of tailored powders, which either has a high production cost or is commercially unavailable. Hence, in this study, an arc spray atomization approach to produce a tailored metal powder at a lower cost and even in small quantities, in comparison to the conventional powder production methods, was proposed. This approach involves converting commercially available metal wire into powder by modifying the wire arc spraying process. The influences of spray medium and gas pressure on the powder properties were investigated. As a result, particles with smooth surface and lower porosity were obtained, when nonoxidizing gases are used for thermal spraying. The particle size decreased with increasing of the gas pressure, and the particles sizes are in the range from 10 to 70 µm, which is desirable for selective laser melting (SLM). A comparison of microstructure and mechanical behavior of SLM generated parts using arc sprayed powders (alloy: X5CrNiCuNb 16-4) and commercial powder (alloy: X5CrNiCuNb 16-4) was also conducted.

Keywords: additive manufacturing, arc spraying, powder production, selective laser melting

Procedia PDF Downloads 140
11721 Evaluation of Water Management Options to Improve the Crop Yield and Water Productivity for Semi-Arid Watershed in Southern India Using AquaCrop Model

Authors: V. S. Manivasagam, R. Nagarajan

Abstract:

Modeling the soil, water and crop growth interactions are attaining major importance, considering the future climate change and water availability for agriculture to meet the growing food demand. Progress in understanding the crop growth response during water stress period through crop modeling approach provides an opportunity for improving and sustaining the future agriculture water use efficiency. An attempt has been made to evaluate the potential use of crop modeling approach for assessing the minimal supplementary irrigation requirement for crop growth during water limited condition and its practical significance in sustainable improvement of crop yield and water productivity. Among the numerous crop models, water driven-AquaCrop model has been chosen for the present study considering the modeling approach and water stress impact on yield simulation. The study has been evaluated in rainfed maize grown area of semi-arid Shanmuganadi watershed (a tributary of the Cauvery river system) located in southern India during the rabi cropping season (October-February). In addition to actual rainfed maize growth simulation, irrigated maize scenarios were simulated for assessing the supplementary irrigation requirement during water shortage condition for the period 2012-2015. The simulation results for rainfed maize have shown that the average maize yield of 0.5-2 t ha-1 was observed during deficit monsoon season (<350 mm) whereas 5.3 t ha-1 was noticed during sufficient monsoonal period (>350 mm). Scenario results for irrigated maize simulation during deficit monsoonal period has revealed that 150-200 mm of supplementary irrigation has ensured the 5.8 t ha-1 of irrigated maize yield. Thus, study results clearly portrayed that minimal application of supplementary irrigation during the critical growth period along with the deficit rainfall has increased the crop water productivity from 1.07 to 2.59 kg m-3 for major soil types. Overall, AquaCrop is found to be very effective for the sustainable irrigation assessment considering the model simplicity and minimal inputs requirement.

Keywords: AquaCrop, crop modeling, rainfed maize, water stress

Procedia PDF Downloads 270
11720 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia

Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski

Abstract:

The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.

Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils

Procedia PDF Downloads 369
11719 Integrating Renewable Energy Forecasting Systems with HEMS and Developing It with a Bottom-Up Approach

Authors: Punit Gandhi, J. C. Brezet, Tim Gorter, Uchechi Obinna

Abstract:

This paper introduces how weather forecasting could help in more efficient energy management for smart homes with the use of Home Energy Management Systems (HEMS). The paper also focuses on educating consumers and helping them make more informed decisions while using the HEMS. A combined approach of technical and user perspective has been selected to develop a novel HEMS-product-service combination in a more comprehensive manner. The current HEMS switches on/off the energy intensive appliances based on the fluctuating electricity tariffs, but with weather forecasting, it is possible to shift the time of use of energy intensive appliances to maximum electricity production from the renewable energy system installed in the house. Also, it is possible to estimate the heating/cooling load of the house for the day ahead demand. Hence, relevant insight is gained in the expected energy production and consumption load for the next day, facilitating better (more efficient, peak shaved, cheaper, etc.) energy management practices for smart homes. In literature, on the user perspective, it has been observed that consumers lose interest in using HEMS after three to four months. Therefore, to further help in better energy management practices, the new system had to be designed in a way that consumers would sustain their interaction with the system on a structural basis. It is hypothesized that, if consumers feel more comfortable with using such system, it would lead to a prolonged usage, including more energy savings and hence financial savings. To test the hypothesis, a survey for the HEMS is conducted, to which 59 valid responses were recorded. Analysis of the survey helped in designing a system which imparts better information about the energy production and consumption to the consumers. It is also found from the survey that, consumers like a variety of options and they do not like a constant reminder of what they should do. Hence, the final system is designed to encourage consumers to make an informed decision about their energy usage with a wide variety of behavioral options available. It is envisaged that the new system will be tested in several pioneering smart energy grid projects in both the Netherlands and India, with a continued ‘design thinking’ approach, combining the technical and user perspective, as the basis for further improvements.

Keywords: weather forecasting, smart grid, renewable energy forecasting, user defined HEMS

Procedia PDF Downloads 235
11718 Revolutionizing Gaming Setup Design: Utilizing Generative and Iterative Methods to Prop and Environment Design, Transforming the Landscape of Game Development Through Automation and Innovation

Authors: Rashmi Malik, Videep Mishra

Abstract:

The practice of generative design has become a transformative approach for an efficient way of generating multiple iterations for any design project. The conventional way of modeling the game elements is very time-consuming and requires skilled artists to design. A 3D modeling tool like 3D S Max, Blender, etc., is used traditionally to create the game library, which will take its stipulated time to model. The study is focused on using the generative design tool to increase the efficiency in game development at the stage of prop and environment generation. This will involve procedural level and customized regulated or randomized assets generation. The paper will present the system design approach using generative tools like Grasshopper (visual scripting) and other scripting tools to automate the process of game library modeling. The script will enable the generation of multiple products from the single script, thus creating a system that lets designers /artists customize props and environments. The main goal is to measure the efficacy of the automated system generated to create a wide variety of game elements, further reducing the need for manual content creation and integrating it into the workflow of AAA and Indie Games.

Keywords: iterative game design, generative design, gaming asset automation, generative game design

Procedia PDF Downloads 73
11717 Biosurfactant: A Greener Approach for Enhanced Concrete Rheology and Strength

Authors: Olivia Anak Rayeg, Clotilda Binti Petrus, Arnel Reanturco Ascotia, Ang Chung Huap, Caroline Marajan, Rudy Tawie Joseph Sipi

Abstract:

Concrete is essential for global infrastructure, yet enhancing its rheology and strength in an environmentally sustainable manner remains a significant challenge. Conventional chemical admixtures often pose environmental and health risks. This study explores the use of a phospholipid biosurfactant, derived from Rhizopus oryzae, as an environmentally friendly admixture in concrete. Various concentrations of the biosurfactant were integrated into fresh concrete, partially replacing the water content. The inclusion of the biosurfactant markedly enhanced the workability of the concrete, as demonstrated by Vertical Slump, Slump Flow, and T50 tests. After a 28-day curing period, the concrete's mechanical properties were assessed through compressive strength and bonding tests. Results revealed that substituting up to 10% of the water with the biosurfactant not only improved workability but also significantly increased both compressive and flexural strength. These findings highlight the potential of phospholipid biosurfactant as a biodegradable and non-toxic alternative to traditional admixtures, enhancing both structural integrity and sustainability in concrete. This approach reduces environmental impact and production costs, marking a significant advancement in sustainable construction technology.

Keywords: concrete rheology, green admixture, fungal biosurfactant, phospholipids, rhizopus oryzae

Procedia PDF Downloads 47