Search results for: the creative learning process
19019 The Place of Open Distance Education in Achieving Sustainable Development Goals (SDGs)
Authors: Morakinyo Akintolu, Moeketsi Letseka
Abstract:
In the year 2015, the United Nation member states, through the representative of all heads of states present, adopted the 17 Global goals known as the Sustainable Development Goals in their capacity to bring about social, economic, and cultural development to the world. Therefore, the need to accommodate equitable development one of the major goals is to achieve equitable and quality education for all to bring about international development. In this light, the study investigates the role of open distance learning in achieving sustainable development goals. Open distance learning comes as a second chance to individuals in disseminating educational content to students who missed the opportunity of attending the traditional school setting. Therefore, this study investigates if the SDGs reflect this type of learning (ODL) in creating Education for all according to the 2030 agenda by the United Nations. It further ascertains the role of ODL in achieving SDGs, the challenges encountered as well as the way forward.Keywords: open distance learning, sustainable development goals, distance education, achieving, 2030 agenda
Procedia PDF Downloads 14219018 Australian Teachers and School Leaders’ Use of Differentiated Learning Experiences as Responsive Teaching for Students with ADHD
Authors: Kathy Gibbs
Abstract:
There is a paucity of research in Australia about educators’ use of differentiated instruction (DI) to support the learning of students with ADHD. This study reports on small-scale, qualitative research using interviews with teachers and school leaders to identify how they use DI as an effective teaching instruction for students with ADHD. Findings showed that teachers and school leaders have a good understanding of ADHD; teachers use DI as an effective teaching practice to enhance learning for this student group and ensure the classroom environment is safe and secure. However, they do not adjust assessments for students with ADHD. School leaders are not clear on how teachers differentiate assessments or adapt to the classroom environment. These results highlight the need for further research at the teacher and teacher-educator level teachers to ensure teaching practices are effective in reducing unwanted behaviours that prevent students with ADHD from achieving their full academic potential.Keywords: teachers, differentiated instruction, ADHD, student learning, educators knowledge
Procedia PDF Downloads 5919017 TDApplied: An R Package for Machine Learning and Inference with Persistence Diagrams
Authors: Shael Brown, Reza Farivar
Abstract:
Persistence diagrams capture valuable topological features of datasets that other methods cannot uncover. Still, their adoption in data pipelines has been limited due to the lack of publicly available tools in R (and python) for analyzing groups of them with machine learning and statistical inference. In an easy-to-use and scalable R package called TDApplied, we implement several applied analysis methods tailored to groups of persistence diagrams. The two main contributions of our package are comprehensiveness (most functions do not have implementations elsewhere) and speed (shown through benchmarking against other R packages). We demonstrate applications of the tools on simulated data to illustrate how easily practical analyses of any dataset can be enhanced with topological information.Keywords: machine learning, persistence diagrams, R, statistical inference
Procedia PDF Downloads 9119016 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering
Authors: R. Nandhini, Gaurab Mudbhari
Abstract:
Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.Keywords: machine learning, deep learning, image classification, image clustering
Procedia PDF Downloads 2119015 Digital Literacy, Assessment and Higher Education
Authors: James Moir
Abstract:
Recent evidence suggests that academic staff face difficulties in applying new technologies as a means of assessing higher order assessment outcomes such as critical thinking, problem solving and creativity. Although higher education institutional mission statements and course unit outlines purport the value of these higher order skills there is still some question about how well academics are equipped to design curricula and, in particular, assessment strategies accordingly. Despite a rhetoric avowing the benefits of these higher order skills, it has been suggested that academics set assessment tasks up in such a way as to inadvertently lead students on the path towards lower order outcomes. This is a controversial claim, and one that this papers seeks to explore and critique in terms of challenging the conceptual basis of assessing higher order skills through new technologies. It is argued that the use of digital media in higher education is leading to a focus on students’ ability to use and manipulate of these products as an index of their flexibility and adaptability to the demands of the knowledge economy. This focus mirrors market flexibility and encourages programmes and courses of study to be rhetorically packaged as such. Curricular content has become a means to procure more or less elaborate aggregates of attributes. Higher education is now charged with producing graduates who are entrepreneurial and creative in order to drive forward economic sustainability. It is argued that critical independent learning can take place through the democratisation afforded by cultural and knowledge digitization and that assessment needs to acknowledge the changing relations between audience and author, expert and amateur, creator and consumer.Keywords: higher education, curriculum, new technologies, assessment, higher order skills
Procedia PDF Downloads 37719014 Towards Inclusive Learning Society: Learning for Work in the Swedish Context
Authors: Irina Rönnqvist
Abstract:
The world is constantly changing; therefore previous views or cultural patterns and programs formed by the “old world” cannot be suitable for solving actual problems. Indeed, reformation of an education system is unlikely to be effective without understanding of the processes that emerge in the field of employment. There is a problem in overcoming of the negative trends that determine imbalance of needs of the qualified work force and preparation of professionals by an education system. At the contemporary stage of economics the processes occurring in the field of labor and employment reproduce the picture of economic development of the country that cannot be imagined without the factor of labor mobility (e.g. migration). On the one hand, adult education has a significant impact on multifaceted development of economy. On the other hand, Sweden has one of the world's most generous asylum reception systems and the most liberal labor migration policy among the OECD countries. This effect affects the increased productivity. The focus of this essay is on problems of education and employment concerning social inclusion of migrants in working life in Sweden.Keywords: migration, adaptation, formal learning, informal learning, Sweden
Procedia PDF Downloads 33019013 Uncertainty Estimation in Neural Networks through Transfer Learning
Authors: Ashish James, Anusha James
Abstract:
The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions.Keywords: uncertainty estimation, neural networks, transfer learning, regression
Procedia PDF Downloads 14519012 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation
Authors: Miguel Contreras, David Long, Will Bachman
Abstract:
Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models
Procedia PDF Downloads 20919011 Efficient Rehearsal Free Zero Forgetting Continual Learning Using Adaptive Weight Modulation
Authors: Yonatan Sverdlov, Shimon Ullman
Abstract:
Artificial neural networks encounter a notable challenge known as continual learning, which involves acquiring knowledge of multiple tasks over an extended period. This challenge arises due to the tendency of previously learned weights to be adjusted to suit the objectives of new tasks, resulting in a phenomenon called catastrophic forgetting. Most approaches to this problem seek a balance between maximizing performance on the new tasks and minimizing the forgetting of previous tasks. In contrast, our approach attempts to maximize the performance of the new task, while ensuring zero forgetting. This is accomplished through the introduction of task-specific modulation parameters for each task, and only these parameters are learned for the new task, after a set of initial tasks have been learned. Through comprehensive experimental evaluations, our model demonstrates superior performance in acquiring and retaining novel tasks that pose difficulties for other multi-task models. This emphasizes the efficacy of our approach in preventing catastrophic forgetting while accommodating the acquisition of new tasks.Keywords: continual learning, life-long learning, neural analogies, adaptive modulation
Procedia PDF Downloads 7519010 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation
Authors: Peiming Li
Abstract:
This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.Keywords: federated learning system, block chain, decentralized oracles, hidden markov model
Procedia PDF Downloads 6719009 Business Education and Passion: The Place of Amore, Consciousness, Discipline, and Commitment as Holonomic Constructs in Pedagogy, A Conceptual Exploration
Authors: Jennifer K. Bowerman, Rhonda L. Reich
Abstract:
The purpose of this paper is to explore the concepts ACDC (Amore, Consciousness, Discipline, and Commitment) which the authors first discovered as a philosophy and framework for recruitment and organizational development in a successful start-up tech company in Brazil. This paper represents an exploration of these concepts as a potential pedagogical foundation for undergraduate business education in the classroom. It explores whether their application has potential to build emotional and practical resilience in the face of constant organizational and societal change. Derived from Holonomy this paper explains the concepts and develops a narrative around how change influences the operation of organizations. Using examples from leading edge organizational theorists, it explains why a different educational approach grounded in ACDC concepts may not only have relevance for the working world, but also for undergraduates about to enter that world. The authors propose that in the global context of constant change, it makes sense to develop an approach to education, particularly business education, beyond cognitive knowledge, models and tools, in such a way that emotional and practical resilience and creative thinking may be developed. Using the classroom as an opportunity to explore these concepts, and aligning personal passion with the necessary discipline and commitment, may provide students with a greater sense of their own worth and potential as they venture into their ever-changing futures.Keywords: ACDC, holonomic thinking, organizational learning, organizational change, business pedagogy
Procedia PDF Downloads 24119008 The Effect of Technology- facilitated Lesson Study toward Teacher’s Computer Assisted Language Learning Competencies
Authors: Yi-Ning Chang
Abstract:
With the rapid advancement of technology, it has become crucial for educators to adeptly integrate technology into their teaching and develop a robust Computer-Assisted Language Learning (CALL) competency. Addressing this need, the present study adopted a technology-based Lesson Study approach to assess its impact on the CALL competency and professional capabilities of EFL teachers. Additionally, the study delved into teachers' perceptions of the benefits derived from participating in the creation of technologically integrated lesson plans. The iterative process of technology-based Lesson Study facilitated ample peer discussion, enabling teachers to flexibly design and implement lesson plans that incorporate various technological tools. This 15-week study included 10 in- service teachers from a university of science and technology in the central of Taiwan. The collected data included pre- and post- lesson planning scores, pre- and post- TPACK survey scores, classroom observation forms, designed lesson plans, and reflective essays. The pre- and post- lesson planning and TPACK survey scores were analyzed employing a pair-sampled t test; students’ reflective essays were respectively analyzed applying content analysis. The findings revealed that the teachers’ lesson planning ability and CALL competencies were improved. Teachers perceived a better understanding of integrating technology with teaching subjects, more effective teaching skills, and a deeper understanding of technology. Pedagogical implications and future studies are also discussed.Keywords: CALL, language learning, lesson study, lesson plan
Procedia PDF Downloads 4519007 Machine Learning in Agriculture: A Brief Review
Authors: Aishi Kundu, Elhan Raza
Abstract:
"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting
Procedia PDF Downloads 11019006 Investigating Chinese Students' Engagement with Teacher Feedback: Multiple Case Studies in a UK University
Authors: Fangfei Li
Abstract:
This research was conducted to explore how Chinese overseas students, who rarely received teacher feedback during their undergraduate studies in China, engaged in a different feedback provision context in the UK universities. In particular, this research provides some insights into Chinese students’ perspectives on how they made sense of the teacher feedback they obtained and how they took it on board in their assignments. Research questions in this study are 1) What are Chinese overseas students’ perceptions of teacher feedback on courses in UK higher education? 2) How do they respond to the teacher feedback they obtained? 3) What factors might influence their engagement with teacher feedback? Multiple case studies of five Chinese overseas students in a UK university have been carried out to address the research questions. The main data collection instruments are various types of semi-structured interviews, consisting of background interviews, scenario-based activities, stimulated recall sessions and retrospective interviews. Research findings indicate that student engagement with teacher feedback is a complex learning process incorporating several stages: from initial teacher input to ultimate transformational learning. Apart from students interpreting teachers’ comments/suggestions by themselves, students’ understandings of and responses to teacher feedback could also be influenced by pre-submission guidance, peer discussion, use of exemplars and post-submission discussion with teachers. These are key factors influencing students to make use of teacher feedback. Findings also reveal that the level of students’ reflections on tutor feedback influences the quality of their assignments and even their future learning. To sum up, this paper will discuss the current concepts of teacher feedback in existing studies and research findings of this study from which reconceptualization of teacher feedback has occurred.Keywords: Chinese students, student engagement, teacher feedback, the UK higher education
Procedia PDF Downloads 36019005 Social and Educational AI for Diversity: Research on Democratic Values to Develop Artificial Intelligence Tools to Guarantee Access for all to Educational Tools and Public Services
Authors: Roberto Feltrero, Sara Osuna-Acedo
Abstract:
Responsible Research and Innovation have to accomplish one fundamental aim: everybody has to participate in the benefits of innovation, but also innovation has to be democratic; that is to say, everybody may have the possibility to participate in the decisions in the innovation process. Particularly, a democratic and inclusive model of social participation and innovation includes persons with disabilities and people at risk of discrimination. Innovations on Artificial Intelligence for social development have to accomplish the same dual goal: improving equality for accessing fields of public interest like education, training and public services, as well as improving civic and democratic participation in the process of developing such innovations for all. This research aims to develop innovations, policies and policy recommendations to apply and disseminate such artificial intelligence and social model for making educational and administrative processes more accessible. First, designing a citizen participation process to engage citizens in the designing and use of artificial intelligence tools for public services. This will result in improving trust in democratic institutions contributing to enhancing the transparency, effectiveness, accountability and legitimacy of public policy-making and allowing people to participate in the development of ethical standards for the use of such technologies. Second, improving educational tools for lifelong learning with AI models to improve accountability and educational data management. Dissemination, education and social participation will be integrated, measured and evaluated in innovative educational processes to make accessible all the educational technologies and content developed on AI about responsible and social innovation. A particular case will be presented regarding access for all to educational tools and public services. This accessibility requires cognitive adaptability because, many times, legal or administrative language is very complex. Not only for people with cognitive disabilities but also for old people or citizens at risk of educational or social discrimination. Artificial Intelligence natural language processing technologies can provide tools to translate legal, administrative, or educational texts to a more simple language that can be accessible to everybody. Despite technological advances in language processing and machine learning, this becomes a huge project if we really want to respect ethical and legal consequences because that kinds of consequences can only be achieved with civil and democratic engagement in two realms: 1) to democratically select texts that need and can be translated and 2) to involved citizens, experts and nonexperts, to produce and validate real examples of legal texts with cognitive adaptations to feed artificial intelligence algorithms for learning how to translate those texts to a more simple and accessible language, adapted to any kind of population.Keywords: responsible research and innovation, AI social innovations, cognitive accessibility, public participation
Procedia PDF Downloads 9619004 IoT and Deep Learning approach for Growth Stage Segregation and Harvest Time Prediction of Aquaponic and Vermiponic Swiss Chards
Authors: Praveen Chandramenon, Andrew Gascoyne, Fideline Tchuenbou-Magaia
Abstract:
Aquaponics offers a simple conclusive solution to the food and environmental crisis of the world. This approach combines the idea of Aquaculture (growing fish) to Hydroponics (growing vegetables and plants in a soilless method). Smart Aquaponics explores the use of smart technology including artificial intelligence and IoT, to assist farmers with better decision making and online monitoring and control of the system. Identification of different growth stages of Swiss Chard plants and predicting its harvest time is found to be important in Aquaponic yield management. This paper brings out the comparative analysis of a standard Aquaponics with a Vermiponics (Aquaponics with worms), which was grown in the controlled environment, by implementing IoT and deep learning-based growth stage segregation and harvest time prediction of Swiss Chards before and after applying an optimal freshwater replenishment. Data collection, Growth stage classification and Harvest Time prediction has been performed with and without water replenishment. The paper discusses the experimental design, IoT and sensor communication with architecture, data collection process, image segmentation, various regression and classification models and error estimation used in the project. The paper concludes with the results comparison, including best models that performs growth stage segregation and harvest time prediction of the Aquaponic and Vermiponic testbed with and without freshwater replenishment.Keywords: aquaponics, deep learning, internet of things, vermiponics
Procedia PDF Downloads 7619003 Large-Scale Electroencephalogram Biometrics through Contrastive Learning
Authors: Mostafa ‘Neo’ Mohsenvand, Mohammad Rasool Izadi, Pattie Maes
Abstract:
EEG-based biometrics (user identification) has been explored on small datasets of no more than 157 subjects. Here we show that the accuracy of modern supervised methods falls rapidly as the number of users increases to a few thousand. Moreover, supervised methods require a large amount of labeled data for training which limits their applications in real-world scenarios where acquiring data for training should not take more than a few minutes. We show that using contrastive learning for pre-training, it is possible to maintain high accuracy on a dataset of 2130 subjects while only using a fraction of labels. We compare 5 different self-supervised tasks for pre-training of the encoder where our proposed method achieves the accuracy of 96.4%, improving the baseline supervised models by 22.75% and the competing self-supervised model by 3.93%. We also study the effects of the length of the signal and the number of channels on the accuracy of the user-identification models. Our results reveal that signals from temporal and frontal channels contain more identifying features compared to other channels.Keywords: brainprint, contrastive learning, electroencephalo-gram, self-supervised learning, user identification
Procedia PDF Downloads 16119002 Effectiveness of Self-Learning Module on the Academic Performance of Students in Statistics and Probability
Authors: Aneia Rajiel Busmente, Renato Gunio Jr., Jazin Mautante, Denise Joy Mendoza, Raymond Benedict Tagorio, Gabriel Uy, Natalie Quinn Valenzuela, Ma. Elayza Villa, Francine Yezha Vizcarra, Sofia Madelle Yapan, Eugene Kurt Yboa
Abstract:
COVID-19’s rapid spread caused a dramatic change in the nation, especially the educational system. The Department of Education was forced to adopt a practical learning platform without neglecting health, a printed modular distance learning. The Philippines' K–12 curriculum includes Statistics and Probability as one of the key courses as it offers students the knowledge to evaluate and comprehend data. Due to student’s difficulty and lack of understanding of the concepts of Statistics and Probability in Normal Distribution. The Self-Learning Module in Statistics and Probability about the Normal Distribution created by the Department of Education has several problems, including many activities, unclear illustrations, and insufficient examples of concepts which enables learners to have a difficulty accomplishing the module. The purpose of this study is to determine the effectiveness of self-learning module on the academic performance of students in the subject Statistics and Probability, it will also explore students’ perception towards the quality of created Self-Learning Module in Statistics and Probability. Despite the availability of Self-Learning Modules in Statistics and Probability in the Philippines, there are still few literatures that discuss its effectiveness in improving the performance of Senior High School students in Statistics and Probability. In this study, a Self-Learning Module on Normal Distribution is evaluated using a quasi-experimental design. STEM students in Grade 11 from National University's Nazareth School will be the study's participants, chosen by purposive sampling. Google Forms will be utilized to find at least 100 STEM students in Grade 11. The research instrument consists of 20-item pre- and post-test to assess participants' knowledge and performance regarding Normal Distribution, and a Likert scale survey to evaluate how the students perceived the self-learning module. Pre-test, post-test, and Likert scale surveys will be utilized to gather data, with Jeffreys' Amazing Statistics Program (JASP) software being used for analysis.Keywords: self-learning module, academic performance, statistics and probability, normal distribution
Procedia PDF Downloads 12019001 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds
Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang
Abstract:
Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.Keywords: pose estimation, deep learning, point cloud, bin-picking, 3D computer vision
Procedia PDF Downloads 16519000 Optimizing Performance of Tablet's Direct Compression Process Using Fuzzy Goal Programming
Authors: Abbas Al-Refaie
Abstract:
This paper aims at improving the performance of the tableting process using statistical quality control and fuzzy goal programming. The tableting process was studied. Statistical control tools were used to characterize the existing process for three critical responses including the averages of a tablet’s weight, hardness, and thickness. At initial process factor settings, the estimated process capability index values for the tablet’s averages of weight, hardness, and thickness were 0.58, 3.36, and 0.88, respectively. The L9 array was utilized to provide experimentation design. Fuzzy goal programming was then employed to find the combination of optimal factor settings. Optimization results showed that the process capability index values for a tablet’s averages of weight, hardness, and thickness were improved to 1.03, 4.42, and 1.42, respectively. Such improvements resulted in significant savings in quality and production costs.Keywords: fuzzy goal programming, control charts, process capability, tablet optimization
Procedia PDF Downloads 27618999 SEM Image Classification Using CNN Architectures
Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran
Abstract:
A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope
Procedia PDF Downloads 13018998 Exploring Students’ Satisfaction Levels with Online Facilitation Provided by National Open University of Nigeria’s Facilitators
Authors: Louis Okon Akpan
Abstract:
National Open University of Nigeria (NOUN) is an open and distance learning institution whose aim is to provide education for all and also promote lifelong learning in Nigeria. Before now, student-centred learning was adopted. In recent times, online facilitation has been introduced. Therefore, the study explores ways in which students are satisfied with online facilitation provided by NOUN lecturers. A qualitative approach was adopted. The interpretive paradigm was employed as a lens to interpret narratives from the participants. In order to gather information for the study, a semi-structured interview was developed for sixteen participants who were purposively selected from eight facilities of the university. After data gathering from the field, it was subjected to transcription and coding. The emergence of themes from the coded data was analysed using thematic analysis. Findings indicated that students found online learning, recently introduced by the university management, extremely fulfilling and rewarding.Keywords: online facilitation, lecturer, students’ satisfaction, National Open University of Nigeria
Procedia PDF Downloads 8718997 Linearization and Process Standardization of Construction Design Engineering Workflows
Authors: T. R. Sreeram, S. Natarajan, C. Jena
Abstract:
Civil engineering construction is a network of tasks involving varying degree of complexity and streamlining, and standardization is the only way to establish a systemic approach to design. While there are off the shelf tools such as AutoCAD that play a role in the realization of design, the repeatable process in which these tools are deployed often is ignored. The present paper addresses this challenge through a sustainable design process and effective standardizations at all stages in the design workflow. The same is demonstrated through a case study in the context of construction, and further improvement points are highlighted.Keywords: syste, lean, value stream, process improvement
Procedia PDF Downloads 12618996 Reading Out of Curiosity: Making Undergraduates Competent in English
Authors: Ruwan Gunawardane
Abstract:
Second language teaching and learning is a complex process in which various factors are identified as having a negative impact on the competency in English among undergraduates of Sri Lanka. One such issue is the lack of intrinsic motivation among them to learn English despite the fact that they all know the importance of English. This study attempted to ascertain how the intrinsic motivation of undergraduates to learn English can be improved through reading out of curiosity. Humans are curious by nature, and cognitive psychology says that curiosity facilitates learning, memory, and motivation. The researcher carried out this study during the closure of universities due to the outbreak of the coronavirus through ‘Online Reading Café’, an online reading programme introduced by himself. He invited 1166 students of the Faculty of Science, University of Ruhuna, to read 50 articles taken from CNN and the BBC and posted at least two to three articles on the LMS of the faculty almost every day over a period of 23 days. The themes of the articles were based on the universe, exploration of planets, scientific experiments, evolution, etc., and the students were encouraged to collect as many words, phrases, and sentence structures as possible while reading and to form meaningful sentences using them. The data obtained through the students’ feedback was qualitatively analyzed. It was found that these undergraduates were interested in reading something out of curiosity, due to which intrinsic motivation is enhanced, and it facilitates competence in L2.Keywords: English, competence, reading, curiosity
Procedia PDF Downloads 14118995 Instructional Resources Development in Open and Distance Learning: Prospects and Challenges of Media Integration in Nigeria
Authors: Felix E. Gbenoba, Opeyemi Dahunsi
Abstract:
Self-instructional materials are at the heart of instructional delivery in Open and Distance Learning (ODL). The success of any ODL institution depends on the availability of instructional materials in quality and quantity. An ODL study material is expected to fully play the teacher plays in the face-to-face learning environment. In Nigeria, efforts to deliver ODL learning materials have been peculiarly challenging. Although researchers are unrelenting in hewing out ways to make ODL delivery in Africa generally and Nigeria in particular, meet the learners’ needs and acceptable global practices, the prospects of integrating instructional media into distance learning courses are largely unexplored. In the present study, we critically examine the prospects of integration of instructional media into ODL courses for pedagogic and other benefits it portends for delivery via the distance learning mode. Although efforts to integrate media in ODL have been recorded before now, the reality has not matched the expectation so far in Nigeria. This does not mean that the existing instructional materials have not produced any significant positive results in improving the overall learning (and teaching) experience in its institutions; it implies that increased integration as suggested here will further improve the experience as well as bring up the new challenges. Obstacles and problems of instructional materials and media development that could have affected the open educational resource initiatives are well established. The first aspect of this paper recalls the revolutionary strides that ODL brought to delivery of education in Nigeria particularly. The other aspect is on what instructional media are, their role, prospects and challenges for ODL in Nigeria; these are examined vis a vis the challenges of development, production and distribution of print instructional materials as the major format of instructional delivery at Nigeria’s only single mode ODL institution, NOUN. In the third aspect, we justify the need and benefits of integrating instructional media into the courses and make recommendations.Keywords: instructional delivery, instructional media, ODL, media integration, Nigeria, self-instructional materials
Procedia PDF Downloads 39218994 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm
Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell
Abstract:
The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks
Procedia PDF Downloads 34018993 Socio-Emotional Skills of Children with Learning Disability, Their Perceived Self-Efficacy and Academic Achievement
Authors: P. Maheshwari, M. Brindavan
Abstract:
The present research aimed to study the level of socio-emotional skills and perceived self-efficacy of children with learning disability. The study further investigated the relationship between the levels of socio-emotional skills, perceived self-efficacy and academic achievement of children with learning disability. The sample comprised of 40 children with learning disability as their primary condition, belonging to middle or upper middle class, living with both the parents, residing in Mumbai. Purposive or Judgmental and snowball sampling technique was used to select the sample for the study. Proformas in the form of questionnaires were used to obtain the background information of the children with learning disability. A self-constructed Child’s Perceived Self-Efficacy Assessment Scale and Child’s Social and Emotional Skills Assessment Scale was used to measure the level of child’s perceived self-efficacy and their level of social and emotional skill respectively. Academic scores of the child were collected from the child’s parents or teachers and were converted into a percentage. The data was analyzed quantitatively using SPSS. Spearman rho or Pearson Product Moment correlation was used to ascertain the multiple relationships between child’s perceived self-efficacy, child’s social and emotional skills and child’s academic achievement. The findings revealed majority (27) of the children with learning disability perceived themselves having above average level of social and emotional skills while 13 out of 40 perceived their level of social and emotional skills at an average level. Domain wise analyses revealed that, in the domain of self- management (26) and relationship skills (22) more number of the children perceived themselves as having average or below average level of social and emotional skills indicating that they perceived themselves as having average or below average skills in regulating their emotions, thoughts, and behaviors effectively in different situations, establishing and maintaining healthy and rewarding relationships with diverse groups and individuals. With regard to perceived self-efficacy, the majority of the children with learning disability perceived themselves as having above average level of self-efficacy. Looking at the data domain wise it was found that, in the domains of self-regulated learning and emotional self-efficacy, 50% of the children perceived themselves at average or below average level, indicating that they perceived themselves as average on competencies like organizing academic activities, structuring environment to make it conducive for learning, expressing emotions in a socially acceptable manner. Further, the correlations were computed, and significant positive correlations were found between children’s social and emotional skills and academic achievement (r=.378, p < .01), and between children’s social and emotional skills and child’s perceived self-efficacy (r = .724, p < .01) and a positive significant correlation was also found between children’s perceived self-efficacy and academic achievement (r=.332, p < .05). Results of the study emphasize on planning intervention for children with learning disability focusing on improving self-management and relationship skills, self-regulated learning and emotional self-efficacy.Keywords: learning disability, social and emotional skills, perceived self-efficacy, academic achievement
Procedia PDF Downloads 24518992 A Predictive Machine Learning Model of the Survival of Female-led and Co-Led Small and Medium Enterprises in the UK
Authors: Mais Khader, Xingjie Wei
Abstract:
This research sheds light on female entrepreneurs by providing new insights on the survival predictions of companies led by females in the UK. This study aims to build a predictive machine learning model of the survival of female-led & co-led small & medium enterprises (SMEs) in the UK over the period 2000-2020. The predictive model built utilised a combination of financial and non-financial features related to both companies and their directors to predict SMEs' survival. These features were studied in terms of their contribution to the resultant predictive model. Five machine learning models are used in the modelling: Decision tree, AdaBoost, Naïve Bayes, Logistic regression and SVM. The AdaBoost model had the highest performance of the five models, with an accuracy of 73% and an AUC of 80%. The results show high feature importance in predicting companies' survival for company size, management experience, financial performance, industry, region, and females' percentage in management.Keywords: company survival, entrepreneurship, females, machine learning, SMEs
Procedia PDF Downloads 10718991 The Changing Role of Technology-Enhanced University Library Reform in Improving College Student Learning Experience and Career Readiness – A Qualitative Comparative Analysis (QCA)
Authors: Xiaohong Li, Wenfan Yan
Abstract:
Background: While it is widely considered that the university library plays a critical role in fulfilling the institution's mission and providing students’ learning experience beyond the classrooms, how the technology-enhanced library reform changed college students’ learning experience hasn’t been thoroughly investigated. The purpose of this study is to explore how technology-enhanced library reform affects students’ learning experience and career readiness and further identify the factors and effective conditions that enable the quality learning outcome of Chinese college students. Methodologies: This study selected the qualitative comparative analysis (QCA) method to explore the effects of technology-enhanced university library reform on college students’ learning experience and career readiness. QCA is unique in explaining the complex relationship between multiple factors from a holistic perspective. Compared with the traditional quantitative and qualitative analysis, QCA not only adds some quantitative logic but also inherits the characteristics of qualitative research focusing on the heterogeneity and complexity of samples. Shenyang Normal University (SNU) selected a sample of the typical comprehensive university in China that focuses on students’ learning and application of professional knowledge and trains professionals to different levels of expertise. A total of 22 current university students and 30 graduates who joined the Library Readers Association of SNU from 2011 to 2019 were selected for semi-structured interviews. Based on the data collected from these participating students, qualitative comparative analysis (QCA), including univariate necessity analysis and the multi-configuration analysis, was conducted. Findings and Discussion: QCA analysis results indicated that the influence of technology-enhanced university library restructures and reorganization on student learning experience and career readiness is the result of multiple factors. Technology-enhanced library equipment and other hardware restructured to meet the college students learning needs and have played an important role in improving the student learning experience and learning persistence. More importantly, the soft characteristics of technology-enhanced library reform, such as library service innovation space and culture space, have a positive impact on student’s career readiness and development. Technology-enhanced university library reform is not only the change in the building's appearance and facilities but also in library service quality and capability. The study also provides suggestions for policy, practice, and future research.Keywords: career readiness, college student learning experience, qualitative comparative analysis (QCA), technology-enhanced library reform
Procedia PDF Downloads 8418990 Factors Affecting English Language Acquisition and Learning for Primary Schools in Nigeria
Authors: Chibuzor Dalmeida
Abstract:
This paper shall discuss the factors affecting English Language Acquisition and Learning for Primary School in Nigeria. Learning English language is a difficult task mostly those at the primary school level. Pupils find it more difficult on vocabulary, grammar and sentence structure, idioms, pronunciation etc. Researchers have discovered the reasons behind these discrepancies and have formulated theories that could be of utmost assistance to English language teachers and students. This paper further looked at the following factors that include Learner Characteristics and Personal Traits, Situational and Environmental Factors, Prior Language Development and Competence and Age and Brain Development. It further recommended that pupils must learn new vocabulary, rules for grammar and sentence structure, idioms, pronunciation. Pupils whose families and communities set high standards for language acquisition learn more quickly than those who do not. Exposure to high-quality programs also essential. Pupils do best when they are allowed to speak their native language.Keywords: acquisition, affecting, factors, learning
Procedia PDF Downloads 636