Search results for: learning effect
19155 Biostimulation and Muscular Ergogenic Effect of Ozone Therapy on Buttock Augmentation: A Case Report and Literature Review
Authors: Ferreira R., Rocha K.
Abstract:
Ozone therapy is indicated for improving skin aesthetics, bio-stimulating and ergogenic effect. This paper aims to carry out a case report that demonstrates the positive results of ozone therapy in buttock augmentation. The application showed positive results for skin bio stimulating, neocollagenesis, adipogenesis, and ergogenic muscle effect in the reported case, demonstrating to be a viable clinical technique. Buttock augmentation with ozone therapy is a promising aesthetic therapeutic modality with fast and safe results as an aesthetic therapeutic option for buttock augmentation.Keywords: bio-stimulating effect, ozone therapy, muscular ergogenic, buttock augmentation
Procedia PDF Downloads 29419154 The Development of Integrated Real-Life Video and Animation with Addie Based on Constructive for Improving Students’ Mastery Concept in Rotational Dynamics
Authors: Silka Abyadati, Dadi Rusdiana, Enjang Akhmad Juanda
Abstract:
This study aims to investigate the students’ mastery concepts enhancement between students who are studying by using Integrated Real-Life Video and Animation (IRVA) and students who are studying without using IRVA. The development of IRVA is conducted by five stages: Analyze, Design, Development, Implementation and Evaluation (ADDIE) based on constructivist for Rotational Dynamics material in Physics learning. A constructivist model-based learning used is Interpretation Construction (ICON), which has the following phases: 1) Observation, 2) Construction interpretation, 3) Contextualization prior knowledge, 4) Conflict cognitive, 5) Learning cognitive, 6) Collaboration, 7) Multiple interpretation, 8) Multiple manifestation. The IRVA is developed for the stages of observation, cognitive conflict and cognitive learning. The sample of this study consisted of 32 students experimental group and a control group of 32 students in class XI of the school year 2015/2016 in one of Senior High Schools Bandung. The study was conducted by giving the pretest and posttest in the form of 20 items of multiple choice questions to determine the enhancement of mastery concept of Rotational Dynamics. Hypothesis testing is done by using T-test on the value of N-gain average of mastery concepts. The results showed that there is a significant difference in an enhancement of students’ mastery concepts between students who are studying by using IRVA and students who are studying without IRVA. Students in the experimental group increased by 0.468 while students in the control group increased by 0.207.Keywords: ADDIE, constructivist learning, Integrated Real-Life Video and Animation, mastery concepts, rotational dynamics
Procedia PDF Downloads 23219153 Introducing Thermodynamic Variables through Scientific Inquiry for Engineering Students
Authors: Paola Utreras, Yazmina Olmos, Loreto Sanhueza
Abstract:
This work shows how the learning of physics is enriched with scientific inquiry practices, achieving learning that results in the use of higher-level cognitive skills. The activities, which were carried out with students of the 3rd semester of the courses of the Faculty of Sciences of the Engineering of the Austral University of Chile, focused on the understanding of the nature of the thermodynamic variables and how they relate to each other. This, through the analysis of atmospheric data obtained in the meteorological station Miraflores, located on the campus. The proposed activities consisted of the elaboration of time series, linear analysis of variables, as well as the analysis of frequencies and periods. From their results, the students reached conclusions associated with the nature of the thermodynamic variables studied and the relationships between them, to finally make public their results in a report using scientific writing standards. It is observed that introducing topics that are close to them, interesting and which affect their daily lives allows a better understanding of the subjects, which is reflected in higher levels of approval and motivation for the subject.Keywords: basic sciences, inquiry-based learning, scientific inquiry, thermodynamics
Procedia PDF Downloads 25819152 Critical Activity Effect on Project Duration in Precedence Diagram Method
Authors: Salman Ali Nisar, Koshi Suzuki
Abstract:
Precedence Diagram Method (PDM) with its additional relationships i.e., start-to-start, finish-to-finish, and start-to-finish, between activities provides more flexible schedule than traditional Critical Path Method (CPM). But, changing the duration of critical activities in PDM network will have anomalous effect on critical path. Researchers have proposed some classification of critical activity effects. In this paper, we do further study on classifications of critical activity effect and provide more information in detailed. Furthermore, we determine the maximum amount of time for each class of critical activity effect by which the project managers can control the dynamic feature (shortening/lengthening) of critical activities and project duration more efficiently.Keywords: construction project management, critical path method, project scheduling, precedence diagram method
Procedia PDF Downloads 51119151 Motivational Strategies for Young Learners in Distance Education
Authors: Saziye Darendeli
Abstract:
Motivation has a significant impact on a second/foreign language learning process, so it plays a vital role while achieving the learning goal. As it is defined by Simon (1967, p. 29), motivation is “a goal terminating mechanism, permitting goals to be processed serially.”AccordingtoSimon, if a learning goal is activated and enough attention is given, the learner starts learning. In connection with this view, the more attention is given on a subject, and the more activation takes place on it, the quicker learning will occur. Moreover, today almost every teacher is familiar with the term “distance education” regardless of their student's age group. As it is stated by Visser (2002), when compared to the traditional classrooms, in distance education, the rate and success of language learningdecreasesandone of the most essential reasons is that motivating students in distance education contexts, in which interaction is lower, is much more challenging than face-to-face training especially with young learners(Lim& Kim, 2003). Besides, there are limited numbers of studies conducted on motivational strategies for young learners in distance education contexts since we have been experiencing full time the online schooling process recently, yet online teaching seems to be permanent in our lives with the new technological era. Therefore, there appears to be a need for various strategies to motivate young learners in distance education, and the current study aims to find out the strategies that young learners’ teachers use to increase their students’ motivation level in distance education. To achieve this aim, a qualitative research approach and a phenomenological method with an interpretive design will be used. The participants, who are teachers of young learners, will be interviewed using a structured interview format consisting of 7 questions. As the participants are young learners’teacherswhohavebeenexperiencingteaching online, exploring thestrategiesthattheyusetoincreasetheirstudents’ motivationlevelwillprovidesomesuggestionsaboutthemotivationalstrategiesforfuture online classes. Also, in this paper, I will move beyond the traditional classrooms that have face-to-face lessons and discuss the effective motivational strategies for young learners in distance education.Keywords: motivation, distance education, young learners, strategies
Procedia PDF Downloads 19119150 Investigations of Metals and Metal-Antibrowning Agent Effects on Polyphenol Oxidase Activity from Red Poppy Leaf
Authors: Gulnur Arabaci
Abstract:
Heavy metals are one of the major groups of contaminants in the environment and many of them are toxic even at very low concentration in plants and animals. However, some metals play important roles in the biological function of many enzymes in living organisms. Metals such as zinc, iron, and cooper are important for survival and activity of enzymes in plants, however heavy metals can inhibit enzyme which is responsible for defense system of plants. Polyphenol oxidase (PPO) is a copper-containing metalloenzyme which is responsible for enzymatic browning reaction of plants. Enzymatic browning is a major problem for the handling of vegetables and fruits in food industry. It can be increased and effected with many different futures such as metals in the nature and ground. In the present work, PPO was isolated and characterized from green leaves of red poppy plant (Papaver rhoeas). Then, the effect of some known antibrowning agents which can form complexes with metals and metals were investigated on the red poppy PPO activity. The results showed that glutathione was the most potent inhibitory effect on PPO activity. Cu(II) and Fe(II) metals increased the enzyme activities however, Sn(II) had the maximum inhibitory effect and Zn(II) and Pb(II) had no significant effect on the enzyme activity. In order to reduce the effect of heavy metals, the effects of metal-antibrowning agent complexes on the PPO activity were determined. EDTA and metal complexes had no significant effect on the enzyme. L-ascorbic acid and metal complexes decreased but L-ascorbic acid-Cu(II)-complex had no effect. Glutathione–metal complexes had the best inhibitory effect on Red poppy leaf PPO activity.Keywords: inhibition, metal, red poppy, poly phenol oxidase (PPO)
Procedia PDF Downloads 32819149 Exploring the Difficulties of Acceleration Concept from the Perspective of Historical Textual Analysis
Authors: Yun-Ju Chiu, Feng-Yi Chen
Abstract:
Kinematics is the beginning to learn mechanics in physics course. The concept of acceleration plays an important role in learning kinematics. Teachers usually instruct the conception through the formulas and graphs of kinematics and the well-known law F = ma. However, over the past few decades, a lot of researchers reveal numerous students’ difficulties in learning acceleration. One of these difficulties is that students frequently confuse acceleration with velocity and force. Why is the concept of acceleration so difficult to learn? The aim of this study is to understand the conceptual evolution of acceleration through the historical textual analysis. Text analysis and one-to-one interviews with high school students and teachers are used in this study. This study finds the history of science constructed from textbooks is usually quite different from the real evolution of history. For example, most teachers and students believe that the best-known law F = ma was written down by Newton. The expression of the second law is not F = ma in Newton’s best-known book Principia in 1687. Even after more than one hundred years, a famous Cambridge textbook titled An Elementary Treatise on Mechanics by Whewell of Trinity College did not express this law as F = ma. At that time of Whewell, the early mid-nineteenth century Britain, the concept of acceleration was not only ambiguous but also confused with the concept of force. The process of learning the concept of acceleration is analogous to its conceptual development in history. The study from the perspective of historical textual analysis will promote the understanding of the concept learning difficulties, the development of professional physics teaching, and the improvement of the context of physics textbooks.Keywords: acceleration, textbooks, mechanics, misconception, history of science
Procedia PDF Downloads 25219148 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.Keywords: control system, hydroponics, machine learning, reinforcement learning
Procedia PDF Downloads 18519147 Scale, Technique and Composition Effects of CO2 Emissions under Trade Liberalization of EGS: A CGE Evaluation for Argentina
Authors: M. Priscila Ramos, Omar O. Chisari, Juan Pablo Vila Martínez
Abstract:
Current literature about trade liberalization of environmental goods and services (EGS) raises doubts about the extent of the triple win-win situation for trade, development and the environment. However, much of this literature does not consider the possibility that this agreement carries technological transmissions, either through trade or foreign direct investment. This paper presents a computable general equilibrium model calibrated for Argentina, where there are alternative technologies (one dirty and one clean according to carbon emissions) to produce the same goods. In this context, the trade liberalization of EGS allows to increase GDP, trade, reduce unemployment and improve the households welfare. However, the capital mobility appears as the key assumption to jointly reach the environmental target, when the positive scale effect generated by the increase in trade is offset by the change in the composition of production (composition and technical effects by the use of the clean alternative technology) and of consumption (composition effect by substitution of relatively lesspolluting imported goods).Keywords: CGE modeling, CO2 emissions, composition effect, scale effect, technique effect, trade liberalization of EGS
Procedia PDF Downloads 38019146 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 12519145 Deep Q-Network for Navigation in Gazebo Simulator
Authors: Xabier Olaz Moratinos
Abstract:
Drone navigation is critical, particularly during the initial phases, such as the initial ascension, where pilots may fail due to strong external interferences that could potentially lead to a crash. In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters at speeds with external disturbances pushing it up to 24 mph, with the DQN algorithm managing external forces affecting the system. It has been demonstrated that the system can control its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is used to communicate with the agent.Keywords: machine learning, DQN, Gazebo, navigation
Procedia PDF Downloads 7719144 From the Classroom to Digital Learning Environments: An Action Research on Pedagogical Practices in Higher Education
Authors: Marie Alexandre, Jean Bernatchez
Abstract:
This paper focuses on the complexity of the face-to-face-to-distance learning transition process. Our research action aims to support the process of transition from classroom to distance learning for teachers in higher education with regard to pedagogical practices that can meet the various needs of students using digital learning environments. In Quebec and elsewhere in the world, the advent of digital education is helping to transform teaching, which is significantly changing the role of teachers. While distance education implies a dissociation of teaching and learning to a variable degree in space and time, distance education (DE) is becoming more and increasingly becoming a preferred option for maintaining the delivery of certain programs and providing access to programs and to provide access to quality activities throughout Quebec. Given the impact of teaching practices on educational success, this paper reports on the results of three research objectives: 1) To document teachers' knowledge of teaching in distance education through the design, experimentation and production of a repertoire of the determinants of pedagogical practices in response to students' needs. 2) Explain, according to a gendered logic, the adequacy between the pedagogical practices implemented in distance learning and the response to the profiles and needs expressed by students using digital learning environments; 3) Produce a model of a support approach during the process of transition from classroom to distance learning at the college level. A mixed methodology, i.e., a quantitative component (questionnaire survey) and a qualitative component (explanatory interviews and living lab) was used in cycles that were part of an ongoing validation process. The intervention includes the establishment of a professional collaboration group, webinars training webinars for the participating teachers on the didactic issue of knowledge-teaching in FAD, the didactic use of technologies, and the differentiated socialization models of educational success in college education. All of the tools developed will be used by partners in the target environment as well as by all teacher educators, students in initial teacher training, practicing teachers, and the general public. The results show that access to training leading to qualifications and commitment to educational success reflects the existing links between the people in the educational community. The relational stakes of being present in distance education take on multiple configurations and different dimensions of learning testify to needs and realities that are sometimes distinct depending on the life cycle. This project will be of interest to partners in the targeted field as well as to all teacher trainers, students in initial teacher training, practicing college teachers, and to university professors. The entire educational community will benefit from digital resources in education. The scientific knowledge resulting from this action research will benefit researchers in the fields of pedagogy, didactics, teacher training and pedagogy in higher education in a digital context.Keywords: action research, didactics, digital learning environment, distance learning, higher education, pedagogy technological, pedagogical content knowledge
Procedia PDF Downloads 8719143 Hierarchical Tree Long Short-Term Memory for Sentence Representations
Authors: Xiuying Wang, Changliang Li, Bo Xu
Abstract:
A fixed-length feature vector is required for many machine learning algorithms in NLP field. Word embeddings have been very successful at learning lexical information. However, they cannot capture the compositional meaning of sentences, which prevents them from a deeper understanding of language. In this paper, we introduce a novel hierarchical tree long short-term memory (HTLSTM) model that learns vector representations for sentences of arbitrary syntactic type and length. We propose to split one sentence into three hierarchies: short phrase, long phrase and full sentence level. The HTLSTM model gives our algorithm the potential to fully consider the hierarchical information and long-term dependencies of language. We design the experiments on both English and Chinese corpus to evaluate our model on sentiment analysis task. And the results show that our model outperforms several existing state of the art approaches significantly.Keywords: deep learning, hierarchical tree long short-term memory, sentence representation, sentiment analysis
Procedia PDF Downloads 34919142 Creative Thinking through Mindful Practices: A Business Class Case Study
Authors: Malavika Sundararajan
Abstract:
This study introduces the use of mindfulness techniques in the classroom to make individuals aware of how the creative thinking process works, resulting in more constructive learning and application. Case observation method was utilized within a classroom setting in a graduate class in the Business School. It entailed, briefing the student participants about the use of a template called the dots and depths map, and having them complete it for themselves, compare it to their team members and reflect on the outputs. Finally, they were debriefed about the use of the template and its value to their learning and creative application process. The major finding is the increase in awareness levels of the participants following the use of the template, leading to a subsequent pursuit of diverse knowledge and acquisition of relevant information and not jumping to solutions directly, which increased their overall creative outputs for the given assignment. The significant value of this study is that it can be applied to any classroom on any subject as a powerful mindfulness tool which increases creative problem solving through constructive knowledge building.Keywords: connecting dots, mindful awareness, constructive knowledge building, learning creatively
Procedia PDF Downloads 14919141 Testing Supportive Feedback Strategies in Second/Foreign Language Vocabulary Acquisition between Typically Developing Children and Children with Learning Disabilities
Authors: Panagiota A. Kotsoni, George S. Ypsilandis
Abstract:
Learning an L2 is a demanding process for all students and in particular for those with learning disabilities (LD) who demonstrate an inability to catch up with their classmates’ progress in a given period of time. This area of study, i.e. examining children with learning disabilities in L2 has not (yet) attracted the growing interest that is registered in L1 and thus remains comparatively neglected. It is this scientific field that this study wishes to contribute to. The longitudinal purpose of this study is to locate effective Supportive Feedback Strategies (SFS) and add to the quality of learning in second language vocabulary in both typically developing (TD) and LD children. Specifically, this study aims at investigating and comparing the performance of TD with LD children on two different types of SFSs related to vocabulary short and long-term retention. In this study two different SFSs have been examined to a total of ten (10) unknown vocabulary items. Both strategies provided morphosyntactic clarifications upon new contextualized vocabulary items. The traditional SFS (direct) provided the information only in one hypertext page with a selection on the relevant item. The experimental SFS (engaging) provided the exact same split information in three successive hypertext pages in the form of a hybrid dialogue asking from the subjects to move on to the next page by selecting the relevant link. It was hypothesized that this way the subjects would engage in their own learning process by actively asking for more information which would further lead to their better retention. The participants were fifty-two (52) foreign language learners (33 TD and 19 LD) aged from 9 to 12, attending an English language school at the level of A1 (CEFR). The design of the study followed a typical pre-post-post test procedure after an hour and after a week. The results indicated statistically significant group differences with TD children performing significantly better than the LD group in both short and long-term memory measurements and in both SFSs. As regards the effectiveness of one SFS over another the initial hypothesis was not supported by the evidence as the traditional SFS was more effective compared to the experimental one in both TD and LD children. This difference proved to be statistically significant only in the long-term memory measurement and only in the TD group. It may be concluded that the human brain seems to adapt to different SFS although it shows a small preference when information is provided in a direct manner.Keywords: learning disabilities, memory, second/foreign language acquisition, supportive feedback
Procedia PDF Downloads 28419140 Amharic Text News Classification Using Supervised Learning
Authors: Misrak Assefa
Abstract:
The Amharic language is the second most widely spoken Semitic language in the world. There are several new overloaded on the web. Searching some useful documents from the web on a specific topic, which is written in the Amharic language, is a challenging task. Hence, document categorization is required for managing and filtering important information. In the classification of Amharic text news, there is still a gap in the domain of information that needs to be launch. This study attempts to design an automatic Amharic news classification using a supervised learning mechanism on four un-touch classes. To achieve this research, 4,182 news articles were used. Naive Bayes (NB) and Decision tree (j48) algorithms were used to classify the given Amharic dataset. In this paper, k-fold cross-validation is used to estimate the accuracy of the classifier. As a result, it shows those algorithms can be applicable in Amharic news categorization. The best average accuracy result is achieved by j48 decision tree and naïve Bayes is 95.2345 %, and 94.6245 % respectively using three categories. This research indicated that a typical decision tree algorithm is more applicable to Amharic news categorization.Keywords: text categorization, supervised machine learning, naive Bayes, decision tree
Procedia PDF Downloads 21019139 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models
Authors: Chad Goldsworthy, B. Rajeswari Matam
Abstract:
The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.Keywords: convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation
Procedia PDF Downloads 19119138 A Readiness Framework for Digital Innovation in Education: The Context of Academics and Policymakers in Higher Institutions of Learning to Assess the Preparedness of Their Institutions to Adopt and Incorporate Digital Innovation
Authors: Lufungula Osembe
Abstract:
The field of education has witnessed advances in technology and digital transformation. The methods of teaching have undergone significant changes in recent years, resulting in effects on various areas such as pedagogies, curriculum design, personalized teaching, gamification, data analytics, cloud-based learning applications, artificial intelligence tools, advanced plug-ins in LMS, and the emergence of multimedia creation and design. The field of education has not been immune to the changes brought about by digital innovation in recent years, similar to other fields such as engineering, health, science, and technology. There is a need to look at the variables/elements that digital innovation brings to education and develop a framework for higher institutions of learning to assess their readiness to create a viable environment for digital innovation to be successfully adopted. Given the potential benefits of digital innovation in education, it is essential to develop a framework that can assist academics and policymakers in higher institutions of learning to evaluate the effectiveness of adopting and adapting to the evolving landscape of digital innovation in education. The primary research question addressed in this study is to establish the preparedness of higher institutions of learning to adopt and adapt to the evolving landscape of digital innovation. This study follows a Design Science Research (DSR) paradigm to develop a framework for academics and policymakers in higher institutions of learning to evaluate the readiness of their institutions to adopt digital innovation in education. The Design Science Research paradigm is proposed to aid in developing a readiness framework for digital innovation in education. This study intends to follow the Design Science Research (DSR) methodology, which includes problem awareness, suggestion, development, evaluation, and conclusion. One of the major contributions of this study will be the development of the framework for digital innovation in education. Given the various opportunities offered by digital innovation in recent years, the need to create a readiness framework for digital innovation will play a crucial role in guiding academics and policymakers in their quest to align with emerging technologies facilitated by digital innovation in education.Keywords: digital innovation, DSR, education, opportunities, research
Procedia PDF Downloads 6919137 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation
Procedia PDF Downloads 23519136 Modern Scotland Yard: Improving Surveillance Policies Using Adversarial Agent-Based Modelling and Reinforcement Learning
Authors: Olaf Visker, Arnout De Vries, Lambert Schomaker
Abstract:
Predictive policing refers to the usage of analytical techniques to identify potential criminal activity. It has been widely implemented by various police departments. Being a relatively new area of research, there are, to the author’s knowledge, no absolute tried, and true methods and they still exhibit a variety of potential problems. One of those problems is closely related to the lack of understanding of how acting on these prediction influence crime itself. The goal of law enforcement is ultimately crime reduction. As such, a policy needs to be established that best facilitates this goal. This research aims to find such a policy by using adversarial agent-based modeling in combination with modern reinforcement learning techniques. It is presented here that a baseline model for both law enforcement and criminal agents and compare their performance to their respective reinforcement models. The experiments show that our smart law enforcement model is capable of reducing crime by making more deliberate choices regarding the locations of potential criminal activity. Furthermore, it is shown that the smart criminal model presents behavior consistent with popular crime theories and outperforms the baseline model in terms of crimes committed and time to capture. It does, however, still suffer from the difficulties of capturing long term rewards and learning how to handle multiple opposing goals.Keywords: adversarial, agent based modelling, predictive policing, reinforcement learning
Procedia PDF Downloads 14819135 The New Propensity Score Method and Assessment of Propensity Score: A Simulation Study
Authors: Azam Najafkouchak, David Todem, Dorothy Pathak, Pramod Pathak, Joseph Gardiner
Abstract:
Propensity score (PS) methods have recently become the standard analysis tool for causal inference in observational studies where exposure is not randomly assigned. Thus, confounding can impact the estimation of treatment effect on the outcome. Due to the dangers of discretizing continuous variables, the focus of this paper will be on how the variation in cut-points or boundaries will affect the average treatment effect utilizing the stratification of the PS method. In this study, we will develop a new methodology to improve the efficiency of the PS analysis through stratification and simulation study. We will also explore the property of empirical distribution of average treatment effect theoretically, including asymptotic distribution, variance estimation and 95% confident Intervals.Keywords: propensity score, stratification, emprical distribution, average treatment effect
Procedia PDF Downloads 9719134 Educational Innovation through Coaching and Mentoring in Thailand: A Mixed Method Evaluation of the Training Outcomes
Authors: Kanu Priya Mohan
Abstract:
Innovation in education is one of the essential pathways to achieve both educational, and development goals in today’s dynamically changing world. Over the last decade, coaching and mentoring have been applied in the field of education as positive intervention techniques for fostering teaching and learning reforms in the developed countries. The context of this research was Thailand’s educational reform process, wherein a project on coaching and mentoring (C&M) was launched in 2014. The C&M project endeavored to support the professional development of the school teachers in the various provinces of Thailand, and to also enable them to apply C&M for teaching innovative instructional techniques. This research aimed to empirically investigate the learning outcomes for the master trainers, who trained for coaching and mentoring as the first step in the process to train the school teachers. A mixed method study was used for evaluating the learning outcomes of training in terms of cognitive- behavioral-affective dimensions. In the first part of the research a quantitative research design was incorporated to evaluate the effects of learner characteristics and instructional techniques, on the learning outcomes. In the second phase, a qualitative method of in-depth interviews was used to find details about the training outcomes, as well as the perceived barriers and enablers of the training process. Sample size constraints were there, yet these exploratory results, integrated from both methods indicated the significance of evaluating training outcomes from the three dimensions, and the perceived role of other factors in the training. Findings are discussed in terms of their implications for the training of C&M, and also their impact in fostering positive education through innovative educational techniques in the developing countries.Keywords: cognitive-behavioral-affective learning outcomes, mixed method research, teachers in Thailand, training evaluation
Procedia PDF Downloads 27419133 The Effect of Molybdate on Corrosion Behaviour of AISI 316Ti Stainless Steel in Chloride Environment
Authors: Viera Zatkalíková, Lenka Markovičová, Aneta Tor-Swiatek
Abstract:
The effect of molybdate addition to chloride environment on resistance of AISI 316Ti stainless steel to pitting corrosion was studied. Potentiodynamic polarisation tests were performed in 1 M and 0.1 M chloride acidified solutions with various additions of sodium molybdate at room temperature. The presented results compare the effect of molybdate anions on quality of passive film (expressed by the pitting potential) in both chloride solutions. The pitting potential increases with the increase inhibitor concentration. The inhibitive effect of molybdate ions is stronger in chloride solution of lower aggressiveness (0.1M).Keywords: AISI 316Ti steel, molybdate inhibitor, pitting corrosion, pitting potential, potentiodynamic polarisation
Procedia PDF Downloads 39119132 Review of Different Machine Learning Algorithms
Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui
Abstract:
Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.Keywords: Data Mining, Web Mining, classification, ML Algorithms
Procedia PDF Downloads 30319131 Modeling of CREB Pathway Induced Gene Induction: From Stimulation to Repression
Authors: K. Julia Rose Mary, Victor Arokia Doss
Abstract:
Electrical and chemical stimulations up-regulate phosphorylaion of CREB, a transcriptional factor that induces its target gene production for memory consolidation and Late Long-Term Potentiation (L-LTP) in CA1 region of the hippocampus. L-LTP requires complex interactions among second-messenger signaling cascade molecules such as cAMP, CAMKII, CAMKIV, MAPK, RSK, PKA, all of which converge to phosphorylate CREB which along with CBP induces the transcription of target genes involved in memory consolidation. A differential equation based model for L-LTP representing stimulus-mediated activation of downstream mediators which confirms the steep, supralinear stimulus-response effects of activation and inhibition was used. The same was extended to accommodate the inhibitory effect of the Inducible cAMP Early Repressor (ICER). ICER is the natural inducible CREB antagonist represses CRE-Mediated gene transcription involved in long-term plasticity for learning and memory. After verifying the sensitivity and robustness of the model, we had simulated it with various empirical levels of repressor concentration to analyse their effect on the gene induction. The model appears to predict the regulatory dynamics of repression on the L-LTP and agrees with the experimental values. The flux data obtained in the simulations demonstrate various aspects of equilibrium between the gene induction and repression.Keywords: CREB, L-LTP, mathematical modeling, simulation
Procedia PDF Downloads 29419130 Teaching Health in an Online 3D Virtual Learning Environment
Authors: Nik Siti Hanifah Nik Ahmad
Abstract:
This research discuss about teaching cupping therapy or hijama by using an online 3D Virtual Learning Environment. The experimental platform was using of flash and Second Life as 2D and 3D comparison. 81 samples have been used in three experiments with 21 in the first and 30 in each second and third. The design of the presentation was tested in five categories such as effectiveness, ease of use, efficacy, aesthetic and users’ satisfaction. The results from three experiments had shown promising outcome for usage of the technique to be implement in teaching Cupping Therapy as well as other alternative or conventional medicine knowledge especially for training.Keywords: medical and health, cupping therapy or hijama, second life, online 3D VLE, virtual worlds
Procedia PDF Downloads 42119129 Creative Mathematically Modelling Videos Developed by Engineering Students
Authors: Esther Cabezas-Rivas
Abstract:
Ordinary differential equations (ODE) are a fundamental part of the curriculum for most engineering degrees, and students typically have difficulties in the subsequent abstract mathematical calculations. To enhance their motivation and profit that they are digital natives, we propose a teamwork project that includes the creation of a video. It should explain how to model mathematically a real-world problem transforming it into an ODE, which should then be solved using the tools learned in the lectures. This idea was indeed implemented with first-year students of a BSc in Engineering and Management during the period of online learning caused by the outbreak of COVID-19 in Spain. Each group of 4 students was assigned a different topic: model a hot water heater, search for the shortest path, design the quickest route for delivery, cooling a computer chip, the shape of the hanging cables of the Golden Gate, detecting land mines, rocket trajectories, etc. These topics should be worked out through two complementary channels: a written report describing the problem and a 10-15 min video on the subject. The report includes the following items: description of the problem to be modeled, detailed obtention of the ODE that models the problem, its complete solution, and interpretation in the context of the original problem. We report the outcomes of this teaching in context and active learning experience, including the feedback received by the students. They highlighted the encouragement of creativity and originality, which are skills that they do not typically relate to mathematics. Additionally, the video format (unlike a common presentation) has the advantage of allowing them to critically review and self-assess the recording, repeating some parts until the result is satisfactory. As a side effect, they felt more confident about their oral abilities. In short, students agreed that they had fun preparing the video. They recognized that it was tricky to combine deep mathematical contents with entertainment since, without the latter, it is impossible to engage people to view the video till the end. Despite this difficulty, after the activity, they claimed to understand better the material, and they enjoyed showing the videos to family and friends during and after the project.Keywords: active learning, contextual teaching, models in differential equations, student-produced videos
Procedia PDF Downloads 14619128 Infusing Social Business Skills into the Curriculum of Higher Learning Institutions with Special Reference to Albukhari International University
Authors: Abdi Omar Shuriye
Abstract:
A social business is a business designed to address socio-economic problems to enhance the welfare of the communities involved. Lately, social business, with its focus on innovative ideas, is capturing the interest of educational institutions, governments, and non-governmental organizations. Social business uses a business model to achieve a social goal, and in the last few decades, the idea of imbuing social business into the education system of higher learning institutions has spurred much excitement. This is due to the belief that it will lead to job creation and increased social resilience. One of the higher learning institutions which have invested immensely in the idea is Albukhari International University; it is a private education institution, on a state-of-the-art campus, providing an advantageous learning ecosystem. The niche area of this institution is social business, and it graduates job creators, not job seekers; this Malaysian institution is unique and one of its kind. The objective of this paper is to develop a work plan, direction, and milestone as well as the focus area for the infusion of social business into higher learning institutions with special reference to Al-Bukhari International University. The purpose is to develop a prototype and model full-scale to enable higher learning education institutions to construct the desired curriculum fermented with social business. With this model, major predicaments faced by these institutions could be overcome. The paper sets forth an educational plan and will spell out the basic tenets of social business, focusing on the nature and implementational aspects of the curriculum. It will also evaluate the mechanisms applied by these educational institutions. Currently, since research in this area remains scarce, institutions adopt the process of experimenting with various methods to find the best way to reach the desired result on the matter. The author is of the opinion that social business in education is the main tool to educate holistic future leaders; hence educational institutions should inspire students in the classroom to start up their own businesses by adopting creative and proactive teaching methods. This proposed model is a contribution in that direction.Keywords: social business, curriculum, skills, university
Procedia PDF Downloads 9119127 Children’s (re)actions in the Scaffolding Process Using Digital Technologies
Authors: Davoud Masoumi, Maryam Bourbour
Abstract:
By characterizing children’s actions in the scaffolding process, which is often undermined and ignored in the studies reviewed, this study aimed to examine children’s different (re)actions in relation to the teachers’ actions in a context where digital technologies are used. Over five months, 22 children aged 4-6 with five preschool teachers were video observed. The study brought in rich details of the children’s actions in relation to the teacher’s actions in the scaffolding process. The findings of the study reveal thirteen (re)actions, including Giving short response; Explaining; Participating in the activities; Examining; Smiling and laughing; Pointing and showing; Working together; Challenging each other; Problem-solving skills; Developing vocabulary; Choosing the activity; Expressing of the emotions; and Identifying the similarities and differences. Our findings expanded and deepened the understanding of the scaffolding process, which can contribute to the notion of scaffolding and help us to gain further understanding about scaffolding of children’s learning. Characterizing the children’s (re)action in relation to teacher’s scaffolding actions further can contribute to ongoing discussions about how teachers can scaffold children’s learning using digital technologies in the learning process.Keywords: children’ (re)actions, scaffolding process, technologies, preschools
Procedia PDF Downloads 8319126 FlexPoints: Efficient Algorithm for Detection of Electrocardiogram Characteristic Points
Authors: Daniel Bulanda, Janusz A. Starzyk, Adrian Horzyk
Abstract:
The electrocardiogram (ECG) is one of the most commonly used medical tests, essential for correct diagnosis and treatment of the patient. While ECG devices generate a huge amount of data, only a small part of them carries valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the past years. However, the rapid development of new machine learning techniques poses new challenges. To address this class of problems, we created the FlexPoints algorithm that searches for characteristic points on the ECG signal and ignores all other points that do not carry relevant medical information. The conducted experiments proved that the presented algorithm can significantly reduce the number of data points which represents ECG signal without losing valuable medical information. These sparse but essential characteristic points (flex points) can be a perfect input for some modern machine learning models, which works much better using flex points as an input instead of raw data or data compressed by many popular algorithms.Keywords: characteristic points, electrocardiogram, ECG, machine learning, signal compression
Procedia PDF Downloads 162