Search results for: fluid intelligence
1531 Securing Healthcare IoT Devices and Enabling SIEM Integration: Addressing
Authors: Mubarak Saadu Nabunkari, Abdullahi Abdu Ibrahim, Muhammad Ilyas
Abstract:
This study looks at how Internet of Things (IoT) devices are used in healthcare to monitor and treat patients better. However, using these devices in healthcare comes with security problems. The research explores using Security Information and Event Management (SIEM) systems with healthcare IoT devices to solve these security challenges. Reviewing existing literature shows the current state of IoT security and emphasizes the need for better protection. The main worry is that healthcare IoT devices can be easily hacked, putting patient data and device functionality at risk. To address this, the research suggests a detailed security framework designed for these devices. This framework, based on literature and best practices, includes important security measures like authentication, data encryption, access controls, and anomaly detection. Adding SIEM systems to this framework helps detect threats in real time and respond quickly to incidents, making healthcare IoT devices more secure. The study highlights the importance of this integration and offers guidance for implementing healthcare IoT securely, efficiently, and effectively.Keywords: cyber security, threat intelligence, forensics, heath care
Procedia PDF Downloads 661530 Particle Jetting Induced by the Explosive Dispersal
Authors: Kun Xue, Lvlan Miu, Jiarui Li
Abstract:
Jetting structures are widely found in particle rings or shells dispersed by the central explosion. In contrast, some explosive dispersal of particles only results in a dispersed cloud without distinctive structures. Employing the coupling method of the compressible computational fluid mechanics and discrete element method (CCFD-DEM), we reveal the underlying physics governing the formation of the jetting structure, which is related to the competition between the shock compaction and gas infiltration, two major processes during the shock interaction with the granular media. If the shock compaction exceeds the gas infiltration, the discernable jetting structures are expected, precipitated by the agglomerates of fast-moving particles induced by the heterogenous network of force chains. Otherwise, particles are uniformly accelerated by the interstitial flows, and no distinguishable jetting structures are formed. We proceed to devise the phase map of the jetting formation in the space defined by two dimensionless parameters which characterize the timescales of the shock compaction and the gas infiltration, respectively.Keywords: compressible multiphase flows, DEM, granular jetting, pattern formation
Procedia PDF Downloads 771529 Model Predictive Control Using Thermal Inputs for Crystal Growth Dynamics
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Recently, crystal growth technologies have made progress by the requirement for the high quality of crystal materials. To control the crystal growth dynamics actively by external forces is useuful for reducing composition non-uniformity. In this study, a control method based on model predictive control using thermal inputs is proposed for crystal growth dynamics of semiconductor materials. The control system of crystal growth dynamics considered here is governed by the continuity, momentum, energy, and mass transport equations. To establish the control method for such thermal fluid systems, we adopt model predictive control known as a kind of optimal feedback control in which the control performance over a finite future is optimized with a performance index that has a moving initial time and terminal time. The objective of this study is to establish a model predictive control method for crystal growth dynamics of semiconductor materials.Keywords: model predictive control, optimal control, process control, crystal growth
Procedia PDF Downloads 3591528 Spherical Nonlinear Wave Propagation in Relativistic Quantum Plasma
Authors: Alireza Abdikian
Abstract:
By assuming a quantum relativistic degenerate electron-positron (e-p) plasma media, the nonlinear acoustic solitary propagation in the presence of the stationary ions for neutralizing the plasma background of bounded cylindrical geometry was investigated. By using the standard reductive perturbation technique with cooperation the quantum hydrodynamics model for the e-p fluid, the spherical Kadomtsev-Petviashvili equation was derived for small but finite amplitude waves and was given the solitary wave solution for the parameters relevant for dense astrophysical objects such as white dwarf stars. By using a suitable coordinate transformation and using improved F-expansion technique, the SKP equation can be solved analytically. The numerical results reveal that the relativistic effects lead to propagate the electrostatic bell shape structures and by increasing the relativistic effects, the amplitude and the width of the e-p acoustic solitary wave will decrease.Keywords: Electron-positron plasma, Acoustic solitary wave, Relativistic plasmas, the spherical Kadomtsev-Petviashvili equation
Procedia PDF Downloads 1421527 Smart Mobility Planning Applications in Meeting the Needs of the Urbanization Growth
Authors: Caroline Atef Shoukry Tadros
Abstract:
Massive Urbanization growth threatens the sustainability of cities and the quality of city life. This raised the need for an alternate model of sustainability, so we need to plan the future cities in a smarter way with smarter mobility. Smart Mobility planning applications are solutions that use digital technologies and infrastructure advances to improve the efficiency, sustainability, and inclusiveness of urban transportation systems. They can contribute to meeting the needs of Urbanization growth by addressing the challenges of traffic congestion, pollution, accessibility, and safety in cities. Some example of a Smart Mobility planning application are Mobility-as-a-service: This is a service that integrates different transport modes, such as public transport, shared mobility, and active mobility, into a single platform that allows users to plan, book, and pay for their trips. This can reduce the reliance on private cars, optimize the use of existing infrastructure, and provide more choices and convenience for travelers. MaaS Global is a company that offers mobility-as-a-service solutions in several cities around the world. Traffic flow optimization: This is a solution that uses data analytics, artificial intelligence, and sensors to monitor and manage traffic conditions in real-time. This can reduce congestion, emissions, and travel time, as well as improve road safety and user satisfaction. Waycare is a platform that leverages data from various sources, such as connected vehicles, mobile applications, and road cameras, to provide traffic management agencies with insights and recommendations to optimize traffic flow. Logistics optimization: This is a solution that uses smart algorithms, blockchain, and IoT to improve the efficiency and transparency of the delivery of goods and services in urban areas. This can reduce the costs, emissions, and delays associated with logistics, as well as enhance the customer experience and trust. ShipChain is a blockchain-based platform that connects shippers, carriers, and customers and provides end-to-end visibility and traceability of the shipments. Autonomous vehicles: This is a solution that uses advanced sensors, software, and communication systems to enable vehicles to operate without human intervention. This can improve the safety, accessibility, and productivity of transportation, as well as reduce the need for parking space and infrastructure maintenance. Waymo is a company that develops and operates autonomous vehicles for various purposes, such as ride-hailing, delivery, and trucking. These are some of the ways that Smart Mobility planning applications can contribute to meeting the needs of the Urbanization growth. However, there are also various opportunities and challenges related to the implementation and adoption of these solutions, such as the regulatory, ethical, social, and technical aspects. Therefore, it is important to consider the specific context and needs of each city and its stakeholders when designing and deploying Smart Mobility planning applications.Keywords: smart mobility planning, smart mobility applications, smart mobility techniques, smart mobility tools, smart transportation, smart cities, urbanization growth, future smart cities, intelligent cities, ICT information and communications technologies, IoT internet of things, sensors, lidar, digital twin, ai artificial intelligence, AR augmented reality, VR virtual reality, robotics, cps cyber physical systems, citizens design science
Procedia PDF Downloads 731526 Hydrodynamic Behaviour Study of Fast Mono-Hull and Catamaran Vessels in Calm Waters Using Free Surface Flow Analysis
Authors: Mohammad Sadeghian, Mohsen Sadeghian
Abstract:
In this paper, planning catamaran and mono-hull vessels resistance and trim in calm waters were considered. Hydrodynamic analysis of fast mono-hull planning vessel was also investigated. For hull form geometry optimization, numerical methods of different parameters were used for this type of vessels. Hull material was selected as carbon fiber composite. Exact architectural aspects were specified and stability calculations were performed, as well. Hydrodynamic calculations to extract the resistance force using semi-analytical methods and numerical modeling were carried out. Free surface numerical analysis of vessel in designed draft using finite volume method and double phase were evaluated and verified by experimental tests.Keywords: fast vessel, hydrostatic and hydrodynamic optimization, free surface flow, computational fluid dynamics
Procedia PDF Downloads 2811525 Time Varying Crustal Anisotropy at Whakaari/White Island Volcano
Authors: M. Dagim Yoseph, M. K. Savage, A. D. Jolly, C. J. Ebinger
Abstract:
Whakaari/White Island has been the most active New Zealand volcano in the 21st century, producing small phreatic and phreatomagmatic eruptions, which are hard to predict. The most recent eruption occurred in 2019, tragically claiming the lives of 22 individuals and causing numerous injuries. We employed shear-wave splitting analyses to investigate variations in anisotropy between 2018 and 2020, during quiescence, unrest, and the eruption. We examined spatial and temporal variations in 3499 shear-wave splitting and 2656 V_p/V_s ratio measurements. Comparing shear-wave splitting parameters from similar earthquake paths across different times indicates that the observed temporal changes are unlikely to result from variations in earthquake paths through media with spatial variability. Instead, these changes may stem from variations in anisotropy over time, likely caused by changes in crack alignment due to stress or varying fluid content.Keywords: background seismic waves, fast orientations, seismic anisotropy, V_p/V_s ratio
Procedia PDF Downloads 461524 Eco-Efficient Self-Compacting Concrete for Sustainable Building
Authors: Valeria Corinaldesi
Abstract:
In general, for self-compacting concrete production, a high volume of very fine materials is necessary in order to make the concrete more fluid and cohesive. For this purpose, either rubble powder (which is a powder obtained from suitable treatment of rubble from building demolition) or ash from municipal solid waste incineration was used as mineral addition in order to ensure adequate rheological properties of the self-compacting concrete in the absence of any viscosity modifying admixture. Recycled instead of natural aggregates were used by completely substituting the coarse aggregate fraction. The fresh concrete properties were evaluated through the slump flow, the V-funnel and the L-box test. Compressive strength and segregation resistance were also determined. The results obtained showed that self-compacting concrete could be successfully developed by incorporating both recycled aggregates and waste powders with an improved quality of the concrete surface finishing. This encouraging goal, beyond technical performance, matches with the more and more widely accepted sustainable development issues.Keywords: sustainable concrete, self compacting concrete, municipal solid waste, recycled aggregate, sustainable building
Procedia PDF Downloads 841523 Optimization of Urea Water Solution Injector for NH3 Uniformity Improvement in Urea-SCR System
Authors: Kyoungwoo Park, Gil Dong Kim, Seong Joon Moon, Ho Kil Lee
Abstract:
The Urea-SCR is one of the most efficient technologies to reduce NOx emissions in diesel engines. In the present work, the computational prediction of internal flow and spray characteristics in the Urea-SCR system was carried out by using 3D-CFD simulation to evaluate NH3 uniformity index (NH3 UI) and its activation time according to the official New European Driving Cycle (NEDC). The number of nozzle and its diameter, two types of injection directions, and penetration length were chosen as the design variables. The optimal solutions were obtained by coupling the CFD analysis with Taguchi method. The L16 orthogonal array and small-the-better characteristics of the Taguchi method were used, and the optimal values were confirmed to be valid with 95% confidence and 5% significance level through analysis of variance (ANOVA). The results show that the optimal solutions for the NH3 UI and activation time (NH3 UI 0.22) are obtained by 0.41 and 0,125 second, respectively, and their values are improved by 85.0% and 10.7%, respectively, compared with those of the base model.Keywords: computational fluid dynamics, NH3 uniformity index, optimization, Taguchi method, Urea-SCR system, UWS injector
Procedia PDF Downloads 2671522 Influence of Geometrical Parameters of a Wind Turbine on the Optimal Tip-Speed Ratio
Authors: Zdzislaw Piotr Kaminski, Miroslaw Wendeker, Zbigniew Czyz
Abstract:
The paper describes the geometric model, calculation algorithm and results of the CFD simulation of the airflow around a rotor in the vertical axis wind turbine (VAWT) with the ANSYS Fluent computational solver. The CFD method enables creating aerodynamic characteristics of forces acting on rotor working surfaces and determining parameters such as torque or power generated by the rotor assembly. The object of the research was a rotor whose construction is based on patent no.PL219985. The conducted tests enabled a mathematical model with a description of the generation of aerodynamic forces acting on each rotor blade. Additionally, this model was compared to the results of the wind tunnel tests. The analysis also focused on the influence of the blade angle on turbine power and the TSR. The research has shown that the turbine blade angle has a significant impact on the optimal value of the TSR.Keywords: computational fluid dynamics, numerical analysis, renewable energy, wind turbine
Procedia PDF Downloads 1531521 Implementation of a Low-Cost Instrumentation for an Open Cycle Wind Tunnel to Evaluate Pressure Coefficient
Authors: Cristian P. Topa, Esteban A. Valencia, Victor H. Hidalgo, Marco A. Martinez
Abstract:
Wind tunnel experiments for aerodynamic profiles display numerous advantages, such as: clean steady laminar flow, controlled environmental conditions, streamlines visualization, and real data acquisition. However, the experiment instrumentation usually is expensive, and hence, each test implies a incremented in design cost. The aim of this work is to select and implement a low-cost static pressure data acquisition system for a NACA 2412 airfoil in an open cycle wind tunnel. This work compares wind tunnel experiment with Computational Fluid Dynamics (CFD) simulation and parametric analysis. The experiment was evaluated at Reynolds of 1.65 e5, with increasing angles from -5° to 15°. The comparison between the approaches show good enough accuracy, between the experiment and CFD, additional parametric analysis results differ widely from the other methods, which complies with the lack of accuracy of the lateral approach due its simplicity.Keywords: wind tunnel, low cost instrumentation, experimental testing, CFD simulation
Procedia PDF Downloads 1801520 Machine Learning Based Gender Identification of Authors of Entry Programs
Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee
Abstract:
Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning
Procedia PDF Downloads 3231519 Process Modified Geopolymer Concrete: A Sustainable Material for Green Construction Technology
Authors: Dibyendu Adak, Saroj Mandal
Abstract:
The fly ash based geopolymer concrete generally requires heat activation after casting, which has been considered as an important limitation for its practical application. Such limitation can be overcome by a modification in the process at the time of mixing of ingredients (fly and activator fluid) for geopolymer concrete so that curing can be made at ambient temperature. This process modified geopolymer concrete shows an appreciable improvement in structural performance compared to conventional heat cured geopolymer concrete and control cement concrete. The improved durability performance based on water absorption, sulphate test, and RCPT is also noted. The microstructural properties analyzed through Field Emission Scanning Electron Microscope (FESEM) with Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD) techniques show the better interaction of fly ash and activator solution at early ages for the process modified geopolymer concrete. This accelerates the transformation of the amorphous phase of fly ash to the crystalline phase.Keywords: fly ash, geopolymer concrete, process modification, structural properties, durability, micro-structures
Procedia PDF Downloads 1631518 Comparison of Structure and Corrosion Properties of Titanium Oxide Films Prepared by Thermal Oxidation, DC Plasma Oxidation, and by the Sol-Gel
Authors: O. Çomaklı, M. Yazıcı, T. Yetim, A. F. Yetim, A. Çelik
Abstract:
In this work, TiO₂ films were deposited on Cp-Ti substrates by thermal oxidation, DC plasma oxidation, and by the sol-gel method. Microstructures of uncoated and TiO₂ film coated samples were examined by X-ray diffraction and SEM. Thin oxide film consisting of anatase (A) and rutile (R) TiO₂ structures was observed on the surface of CP-Ti by under three different treatments. Also, the more intense anatase and rutile peaks appeared at samples plasma oxidized at 700˚C. The thicknesses of films were about 1.8 μm at the TiO₂ film coated samples by sol-gel and about 2.7 μm at thermal oxidated samples, while it was measured as 3.9 μm at the plasma oxidated samples. Electrochemical corrosion behaviour of uncoated and coated specimens was mainly carried out by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF) solution. Results showed that at the plasma oxidated samples exhibited a better resistance property to corrosion than that of other treatments.Keywords: TiO₂, CP-Ti, corrosion properties, thermal oxidation, plasma oxidation, sol-gel
Procedia PDF Downloads 2821517 Navigating the Complexity of Guillain-Barré Syndrome and Miller Fisher Syndrome Overlap Syndrome: A Pediatric Case Report
Authors: Kamal Chafiq, Youssef Hadzine, Adel Elmekkaoui, Othmane Benlenda, Houssam Rajad, Soukaina Wakrim, Hicham Nassik
Abstract:
Guillain-Barré syndrome/Miller Fishe syndrome (GBS/MFS) overlap syndrome is an extremely rare variant of Guillain-Barré syndrome (GBS) in which Miller Fisher syndrome (MFS) coexists with other characteristics of GBS, such as limb weakness, paresthesia, and facial paralysis. We report the clinical case of a 12-year-old patient, with no pathological history, who acutely presents with ophthalmoplegia, areflexia, facial diplegia, and swallowing and phonation disorders, followed by progressive, descending, and symmetrical paresis affecting first the upper limbs and then the lower limbs. An albuminocytological dissociation was found in the cerebrospinal fluid study. Magnetic resonance imaging of the spinal cord showed enhancement and thickening of the cauda equina roots. The patient was treated with immunoglobulins with a favorable clinical outcome.Keywords: Guillain-Barré syndrome, Miller Fisher syndrome, overlap syndrome, anti-GQ1b antibodies
Procedia PDF Downloads 771516 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines
Procedia PDF Downloads 2941515 Improving the Performance of Gas Turbine Power Plant by Modified Axial Turbine
Authors: Hakim T. Kadhim, Faris A. Jabbar, Aldo Rona, Audrius Bagdanaviciu
Abstract:
Computer-based optimization techniques can be employed to improve the efficiency of energy conversions processes, including reducing the aerodynamic loss in a thermal power plant turbomachine. In this paper, towards mitigating secondary flow losses, a design optimization workflow is implemented for the casing geometry of a 1.5 stage axial flow turbine that improves the turbine isentropic efficiency. The improved turbine is used in an open thermodynamic gas cycle with regeneration and cogeneration. Performance estimates are obtained by the commercial software Cycle – Tempo. Design and off design conditions are considered as well as variations in inlet air temperature. Reductions in both the natural gas specific fuel consumption and in CO2 emissions are predicted by using the gas turbine cycle fitted with the new casing design. These gains are attractive towards enhancing the competitiveness and reducing the environmental impact of thermal power plant.Keywords: axial flow turbine, computational fluid dynamics, gas turbine power plant, optimization
Procedia PDF Downloads 1611514 Numerical Simulation of Magnetohydrodynamic (MHD) Blood Flow in a Stenosed Artery
Authors: Sreeparna Majee, G. C. Shit
Abstract:
Unsteady blood flow has been numerically investigated through stenosed arteries to achieve an idea about the physiological blood flow pattern in diseased arteries. The blood is treated as Newtonian fluid and the arterial wall is considered to be rigid having deposition of plaque in its lumen. For direct numerical simulation, vorticity-stream function formulation has been adopted to solve the problem using implicit finite difference method by developing well known Peaceman-Rachford Alternating Direction Implicit (ADI) scheme. The effects of magnetic parameter and Reynolds number on velocity and wall shear stress are being studied and presented quantitatively over the entire arterial segment. The streamlines have been plotted to understand the flow pattern in the stenosed artery, which has significant alterations in the downstream of the stenosis in the presence of magnetic field. The results show that there are nominal changes in the flow pattern when magnetic field strength is enhanced upto 8T which can have remarkable usage to MRI machines.Keywords: magnetohydrodynamics, blood flow, stenosis, energy dissipation
Procedia PDF Downloads 2741513 Exploring Tweet Geolocation: Leveraging Large Language Models for Post-Hoc Explanations
Authors: Sarra Hasni, Sami Faiz
Abstract:
In recent years, location prediction on social networks has gained significant attention, with short and unstructured texts like tweets posing additional challenges. Advanced geolocation models have been proposed, increasing the need to explain their predictions. In this paper, we provide explanations for a geolocation black-box model using LIME and SHAP, two state-of-the-art XAI (eXplainable Artificial Intelligence) methods. We extend our evaluations to Large Language Models (LLMs) as post hoc explainers for tweet geolocation. Our preliminary results show that LLMs outperform LIME and SHAP by generating more accurate explanations. Additionally, we demonstrate that prompts with examples and meta-prompts containing phonetic spelling rules improve the interpretability of these models, even with informal input data. This approach highlights the potential of advanced prompt engineering techniques to enhance the effectiveness of black-box models in geolocation tasks on social networks.Keywords: large language model, post hoc explainer, prompt engineering, local explanation, tweet geolocation
Procedia PDF Downloads 251512 Movement Optimization of Robotic Arm Movement Using Soft Computing
Authors: V. K. Banga
Abstract:
Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.Keywords: artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic
Procedia PDF Downloads 2971511 The Predictive Value of Serum Bilirubin in the Post-Transplant De Novo Malignancy: A Data Mining Approach
Authors: Nasim Nosoudi, Amir Zadeh, Hunter White, Joshua Conrad, Joon W. Shim
Abstract:
De novo Malignancy has become one of the major causes of death after transplantation, so early cancer diagnosis and detection can drastically improve survival rates post-transplantation. Most previous work focuses on using artificial intelligence (AI) to predict transplant success or failure outcomes. In this work, we focused on predicting de novo malignancy after liver transplantation using AI. We chose the patients that had malignancy after liver transplantation with no history of malignancy pre-transplant. Their donors were cancer-free as well. We analyzed 254,200 patient profiles with post-transplant malignancy from the US Organ Procurement and Transplantation Network (OPTN). Several popular data mining methods were applied to the resultant dataset to build predictive models to characterize de novo malignancy after liver transplantation. Recipient's bilirubin, creatinine, weight, gender, number of days recipient was on the transplant waiting list, Epstein Barr Virus (EBV), International normalized ratio (INR), and ascites are among the most important factors affecting de novo malignancy after liver transplantationKeywords: De novo malignancy, bilirubin, data mining, transplantation
Procedia PDF Downloads 1051510 Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion
Authors: P.-W. Tsai, C.-Y. Chen, C.-W. Chen
Abstract:
In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology.Keywords: adaptive fuzzy sliding mode control, Lyapunov direct method, swarm intelligence, evolved bat algorithm
Procedia PDF Downloads 4451509 Unsteady Numerical Analysis of Sediment Erosion Affected High Head Francis Turbine
Authors: Saroj Gautam, Ram Lama, Hari Prasad Neopane, Sailesh Chitrakar, Biraj Singh Thapa, Baoshan Zhu
Abstract:
Sediment flowing along with the water in rivers flowing in South Asia erodes the turbine components. The erosion of turbine components is influenced by the nature of fluid flow along with components of typical turbine types. This paper examines two cases of high head Francis turbines with the same speed number numerically. The numerical investigation involves both steady-state and transient analysis of the numerical model developed for both cases. Furthermore, the influence of leakage flow from the clearance gap of guide vanes is also examined and compared with no leakage flow. It presents the added pressure pulsation to rotor-stator-interaction in the turbine runner for both cases due to leakage flow. It was also found that leakage flow was a major contributor to the sediment erosion in those turbines.Keywords: sediment erosion, Francis turbine, leakage flow, rotor stator interaction
Procedia PDF Downloads 1851508 Computational Fluids Dynamics Investigation of the Effect of Geometric Parameters on the Ejector Performance
Authors: Michel Wakim, Rodrigo Rivera Tinoco
Abstract:
Supersonic ejector is an economical device that use high pressure vapor to compress a low pressure vapor without any rotating parts or external power sources. Entrainment ratio is a major characteristic of the ejector performance, so the ejector performance is highly dependent on its geometry. The aim of this paper is to design ejector geometry, based on pre-specified operating conditions, and to study the flow behavior inside the ejector by using computational fluid dynamics ‘CFD’ by using ‘ANSYS FLUENT 15.0’ software. In the first section; 1-D mathematical model is carried out to predict the ejector geometry. The second part describes the flow behavior inside the designed model. CFD is the most reliable tool to reveal the mixing process at different parts of the supersonic turbulent flow and to study the effect of the geometry on the effective ejector area. Finally, the results show the effect of the geometry on the entrainment ratio.Keywords: computational fluids dynamics, ejector, entrainment ratio, geometry optimization, performance
Procedia PDF Downloads 2741507 Numerical Analysis of the Melting of Nano-Enhanced Phase Change Material in a Rectangular Latent Heat Storage Unit
Authors: Radouane Elbahjaoui, Hamid El Qarnia
Abstract:
Melting of Paraffin Wax (P116) dispersed with Al2O3 nanoparticles in a rectangular latent heat storage unit (LHSU) is numerically investigated. The storage unit consists of a number of vertical and identical plates of nano-enhanced phase change material (NEPCM) separated by rectangular channels in which heat transfer fluid flows (HTF: Water). A two dimensional mathematical model is considered to investigate numerically the heat and flow characteristics of the LHSU. The melting problem was formulated using the enthalpy porosity method. The finite volume approach was used for solving equations. The effects of nanoparticles’ volumetric fraction and the Reynolds number on the thermal performance of the storage unit were investigated.Keywords: nano-enhanced phase change material (NEPCM), phase change material (PCM), nanoparticles, latent heat storage unit (LHSU), melting.
Procedia PDF Downloads 4071506 Hydrodynamic Behavior Study of Fast Mono Hull and Catamaran Vessels in Calm Waters Using Free Surface Flow Analysis
Authors: Mohammad Ali Badri, Pouya Molana, Amin Rezvanpour
Abstract:
In this paper, planning catamaran and mono-hull vessels resistance and trim in calm waters were considered. Hydrodynamic analysis of fast mono-hull planning vessel was also investigated. In order to hull form geometry optimization, numerical methods of different parameters were used for this type of vessels. Hull material was selected in carbon fiber composite. Exact architectural aspects were specified and stability calculations were performed as well. Hydrodynamic calculations to extract the resistance force using semi-analytical methods and numerical modeling were carried out. Free surface numerical analysis of vessel in designed draft using finite volume method and double phase were evaluated and verified by experimental tests.Keywords: fast vessel, hydrostatic and hydrodynamic optimization, free surface flow, computational fluid dynamics
Procedia PDF Downloads 5161505 Unsteady Simulation of Burning Off Carbon Deposition in a Coke Oven
Authors: Uzu-Kuei Hsu, Keh-Chin Chang, Joo-Guan Hang, Chang-Hsien Tai
Abstract:
Carbon Deposits are often occurred inside the industrial coke oven during the coking process. Accumulation of carbon deposits may cause a big issue, which seriously influences the coking operation. The carbon is burning off by injecting fresh air through pipes into coke oven which is an efficient way practically operated in industries. The burning off carbon deposition in coke oven performed by Computational Fluid Dynamics (CFD) method has provided an evaluation of the feasibility study. A three-dimensional, transient, turbulent reacting flow simulation has performed with three different injecting air flow rate and another kind of injecting configuration. The result shows that injection higher air flow rate would effectively reduce the carbon deposits. In the meantime, the opened charging holes would suck extra oxygen from the atmosphere to participate in reactions. In term of coke oven operating limits, the wall temperatures are monitored to prevent over-heating of the adiabatic walls during the burn-off process.Keywords: coke oven, burning off, carbon deposits, carbon combustion, CFD
Procedia PDF Downloads 6921504 Using AI Based Software as an Assessment Aid for University Engineering Assignments
Authors: Waleed Al-Nuaimy, Luke Anastassiou, Manjinder Kainth
Abstract:
As the process of teaching has evolved with the advent of new technologies over the ages, so has the process of learning. Educators have perpetually found themselves on the lookout for new technology-enhanced methods of teaching in order to increase learning efficiency and decrease ever expanding workloads. Shortly after the invention of the internet, web-based learning started to pick up in the late 1990s and educators quickly found that the process of providing learning material and marking assignments could change thanks to the connectivity offered by the internet. With the creation of early web-based virtual learning environments (VLEs) such as SPIDER and Blackboard, it soon became apparent that VLEs resulted in higher reported computer self-efficacy among students, but at the cost of students being less satisfied with the learning process . It may be argued that the impersonal nature of VLEs, and their limited functionality may have been the leading factors contributing to this reported dissatisfaction. To this day, often faced with the prospects of assigning colossal engineering cohorts their homework and assessments, educators may frequently choose optimally curated assessment formats, such as multiple-choice quizzes and numerical answer input boxes, so that automated grading software embedded in the VLEs can save time and mark student submissions instantaneously. A crucial skill that is meant to be learnt during most science and engineering undergraduate degrees is gaining the confidence in using, solving and deriving mathematical equations. Equations underpin a significant portion of the topics taught in many STEM subjects, and it is in homework assignments and assessments that this understanding is tested. It is not hard to see that this can become challenging if the majority of assignment formats students are engaging with are multiple-choice questions, and educators end up with a reduced perspective of their students’ ability to manipulate equations. Artificial intelligence (AI) has in recent times been shown to be an important consideration for many technologies. In our paper, we explore the use of new AI based software designed to work in conjunction with current VLEs. Using our experience with the software, we discuss its potential to solve a selection of problems ranging from impersonality to the reduction of educator workloads by speeding up the marking process. We examine the software’s potential to increase learning efficiency through its features which claim to allow more customized and higher-quality feedback. We investigate the usability of features allowing students to input equation derivations in a range of different forms, and discuss relevant observations associated with these input methods. Furthermore, we make ethical considerations and discuss potential drawbacks to the software, including the extent to which optical character recognition (OCR) could play a part in the perpetuation of errors and create disagreements between student intent and their submitted assignment answers. It is the intention of the authors that this study will be useful as an example of the implementation of AI in a practical assessment scenario insofar as serving as a springboard for further considerations and studies that utilise AI in the setting and marking of science and engineering assignments.Keywords: engineering education, assessment, artificial intelligence, optical character recognition (OCR)
Procedia PDF Downloads 1221503 Malaria Parasite Detection Using Deep Learning Methods
Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko
Abstract:
Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.Keywords: convolution neural network, deep learning, malaria, thin blood smears
Procedia PDF Downloads 1301502 An Intelligent Thermal-Aware Task Scheduler in Multiprocessor System on a Chip
Authors: Sina Saadati
Abstract:
Multiprocessors Systems-On-Chips (MPSOCs) are used widely on modern computers to execute sophisticated software and applications. These systems include different processors for distinct aims. Most of the proposed task schedulers attempt to improve energy consumption. In some schedulers, the processor's temperature is considered to increase the system's reliability and performance. In this research, we have proposed a new method for thermal-aware task scheduling which is based on an artificial neural network (ANN). This method enables us to consider a variety of factors in the scheduling process. Some factors like ambient temperature, season (which is important for some embedded systems), speed of the processor, computing type of tasks and have a complex relationship with the final temperature of the system. This Issue can be solved using a machine learning algorithm. Another point is that our solution makes the system intelligent So that It can be adaptive. We have also shown that the computational complexity of the proposed method is cheap. As a consequence, It is also suitable for battery-powered systems.Keywords: task scheduling, MOSOC, artificial neural network, machine learning, architecture of computers, artificial intelligence
Procedia PDF Downloads 103