Search results for: traffic measurement and modeling
5363 Militating Factors Against Building Information Modeling Adoption in Quantity Surveying Practice in South Africa
Authors: Kenneth O. Otasowie, Matthew Ikuabe, Clinton Aigbavboa, Ayodeji Oke
Abstract:
The quantity surveying (QS) profession is one of the professions in the construction industry, and it is saddled with the responsibility of measuring the number of materials as well as the workmanship required to get work done in the industry. This responsibility is vital to the success of a construction project as it determines if a project will be completed on time, within budget, and up to the required standard. However, the practice has been criticised severally for failure to accurately execute her responsibility. The need to reduce errors, inaccuracies and omissions has made the adoption of modern technologies such as building information modeling (BIM) inevitable in its practice. Nevertheless, there are barriers to the adoption of BIM in QS practice in South Africa (SA). Thus, this study aims to investigate these barriers. A survey design was adopted. A total number of one hundred and fifteen (115) questionnaires were administered to quantity surveyors in Guateng Province, SA, and ninety (90) were returned and found suitable for analysis. Collected data were analysed using percentage, mean item score, standard deviation, one-sample t-test, and Kruskal-Wallis. The findings show that lack of BIM expertise, lack of government enforcement, resistance to change, and no client demand for BIM are the most significant barriers to the adoption of BIM in QS practice. As a result, this study recommends that trainings on BIM technology be prioritised, and government must take the lead in BIM adoption in the country, particularly in public projects.Keywords: barriers, BIM, quantity surveying practice, South Africa
Procedia PDF Downloads 1065362 Scoping Review of Biological Age Measurement Composed of Biomarkers
Authors: Diego Alejandro Espíndola-Fernández, Ana María Posada-Cano, Dagnóvar Aristizábal-Ocampo, Jaime Alberto Gallo-Villegas
Abstract:
Background: With the increase in life expectancy, aging has been subject of frequent research, and therefore multiple strategies have been proposed to quantify the advance of the years based on the known physiology of human senescence. For several decades, attempts have been made to characterize these changes through the concept of biological age, which aims to integrate, in a measure of time, structural or functional variation through biomarkers in comparison with simple chronological age. The objective of this scoping review is to deepen the updated concept of measuring biological age composed of biomarkers in the general population and to summarize recent evidence to identify gaps and priorities for future research. Methods: A scoping review was conducted according to the five-phase methodology developed by Arksey and O'Malley through a search of five bibliographic databases to February 2021. Original articles were included with no time or language limit that described the biological age composed of at least two biomarkers in those over 18 years of age. Results: 674 articles were identified, of which 105 were evaluated for eligibility and 65 were included with information on the measurement of biological age composed of biomarkers. Articles from 1974 of 15 nationalities were found, most observational studies, in which clinical or paraclinical biomarkers were used, and 11 different methods described for the calculation of the composite biological age were informed. The outcomes reported were the relationship with the same measured biomarkers, specified risk factors, comorbidities, physical or cognitive functionality, and mortality. Conclusions: The concept of biological age composed of biomarkers has evolved since the 1970s and multiple methods of its quantification have been described through the combination of different clinical and paraclinical variables from observational studies. Future research should consider the population characteristics, and the choice of biomarkers against the proposed outcomes to improve the understanding of aging variables to direct effective strategies for a proper approach.Keywords: biological age, biological aging, aging, senescence, biomarker
Procedia PDF Downloads 1885361 Real-Time Aerial Marine Surveillance System for Safe Navigation
Authors: Vinesh Thiruchelvam, Umar Mumtaz Chowdry, Sathish Kumar Selvaperumal
Abstract:
The prime purpose of the project is to provide a sophisticated system for surveillance specialized for the Port Authorities in the Maritime Industry. The current aerial surveillance does not have a wide dimensioning view. The channels of communication is shared and not exclusive allowing for communications errors or disturbance mainly due to traffic. The scope is to analyze the various aspects as real-time aerial and marine surveillance is one of the most important methods which could ensure the domain security of the sailors. The system will improve real time data as obtained for the controller base station. The key implementation will be based on camera speed, angle and adherence to a sustainable power utilization module.Keywords: SMS, real time, GUI, maritime industry
Procedia PDF Downloads 5015360 BIM-Based Tool for Sustainability Assessment and Certification Documents Provision
Authors: Taki Eddine Seghier, Mohd Hamdan Ahmad, Yaik-Wah Lim, Samuel Opeyemi Williams
Abstract:
The assessment of building sustainability to achieve a specific green benchmark and the preparation of the required documents in order to receive a green building certification, both are considered as major challenging tasks for green building design team. However, this labor and time-consuming process can take advantage of the available Building Information Modeling (BIM) features such as material take-off and scheduling. Furthermore, the workflow can be automated in order to track potentially achievable credit points and provide rating feedback for several design options by using integrated Visual Programing (VP) to handle the stored parameters within the BIM model. Hence, this study proposes a BIM-based tool that uses Green Building Index (GBI) rating system requirements as a unique input case to evaluate the building sustainability in the design stage of the building project life cycle. The tool covers two key models for data extraction, firstly, a model for data extraction, calculation and the classification of achievable credit points in a green template, secondly, a model for the generation of the required documents for green building certification. The tool was validated on a BIM model of residential building and it serves as proof of concept that building sustainability assessment of GBI certification can be automatically evaluated and documented through BIM.Keywords: green building rating system, GBRS, building information modeling, BIM, visual programming, VP, sustainability assessment
Procedia PDF Downloads 3275359 Using Structural Equation Modeling to Analyze the Impact of Remote Work on Job Satisfaction
Authors: Florian Pfeffel, Valentin Nickolai, Christian Louis Kühner
Abstract:
Digitalization has disrupted the traditional workplace environment by allowing many employees to work from anywhere at any time. This trend of working from home was further accelerated due to the COVID-19 crisis, which forced companies to rethink their workplace models. While in many companies, this shift happened out of pure necessity; many employees were left more satisfied with their job due to the opportunity to work from home. This study focuses on employees’ job satisfaction in the service sector in dependence on the different work models, which are defined as a “work from home” model, the traditional “work in office” model, and a hybrid model. Using structural equation modeling (SEM), these three work models have been analyzed based on 13 influencing factors on job satisfaction that have been further summarized in the three groups “classic influencing factors”, “influencing factors changed by remote working”, and “new remote working influencing factors”. Based on the influencing factors on job satisfaction, a survey has been conducted with n = 684 employees in the service sector. Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). The SEM-analysis has shown that the most significant influencing factor on job satisfaction is “identification with the work” with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis shows that the identification with the work is the most significant factor in all three work models and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees who work entirely remotely or have a hybrid work model are significantly more satisfied with their job, with a job satisfaction score of 5.0 respectively on a scale from 1 (very dissatisfied) to 7 (very satisfied), than employees do not have the option to work from home with a score of 4.6. This comes as a result of the lower identification with the work in the model without any remote working. Furthermore, the responses indicate that it is important to consider the individual preferences of each employee when it comes to the work model to achieve overall higher job satisfaction. Thus, it can be argued that companies can profit off of more motivation and higher productivity by considering the individual work model preferences, therefore, increasing the identification with the respective work.Keywords: home-office, identification with work, job satisfaction, new work, remote work, structural equation modeling
Procedia PDF Downloads 835358 Optimal Geothermal Borehole Design Guided By Dynamic Modeling
Authors: Hongshan Guo
Abstract:
Ground-source heat pumps provide stable and reliable heating and cooling when designed properly. The confounding effect of the borehole depth for a GSHP system, however, is rarely taken into account for any optimization: the determination of the borehole depth usually comes prior to the selection of corresponding system components and thereafter any optimization of the GSHP system. The depth of the borehole is important to any GSHP system because the shallower the borehole, the larger the fluctuation of temperature of the near-borehole soil temperature. This could lead to fluctuations of the coefficient of performance (COP) for the GSHP system in the long term when the heating/cooling demand is large. Yet the deeper the boreholes are drilled, the more the drilling cost and the operational expenses for the circulation. A controller that reads different building load profiles, optimizing for the smallest costs and temperature fluctuation at the borehole wall, eventually providing borehole depth as the output is developed. Due to the nature of the nonlinear dynamic nature of the GSHP system, it was found that between conventional optimal controller problem and model predictive control problem, the latter was found to be more feasible due to a possible history of both the trajectory during the iteration as well as the final output could be computed and compared against. Aside from a few scenarios of different weighting factors, the resulting system costs were verified with literature and reports and were found to be relatively accurate, while the temperature fluctuation at the borehole wall was also found to be within acceptable range. It was therefore determined that the MPC is adequate to optimize for the investment as well as the system performance for various outputs.Keywords: geothermal borehole, MPC, dynamic modeling, simulation
Procedia PDF Downloads 2875357 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations
Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso
Abstract:
Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.Keywords: pipeline, leakage, detection, AI
Procedia PDF Downloads 1935356 Artificial Intelligence Approach to Water Treatment Processes: Case Study of Daspoort Treatment Plant, South Africa
Authors: Olumuyiwa Ojo, Masengo Ilunga
Abstract:
Artificial neural network (ANN) has broken the bounds of the convention programming, which is actually a function of garbage in garbage out by its ability to mimic the human brain. Its ability to adopt, adapt, adjust, evaluate, learn and recognize the relationship, behavior, and pattern of a series of data set administered to it, is tailored after the human reasoning and learning mechanism. Thus, the study aimed at modeling wastewater treatment process in order to accurately diagnose water control problems for effective treatment. For this study, a stage ANN model development and evaluation methodology were employed. The source data analysis stage involved a statistical analysis of the data used in modeling in the model development stage, candidate ANN architecture development and then evaluated using a historical data set. The model was developed using historical data obtained from Daspoort Wastewater Treatment plant South Africa. The resultant designed dimensions and model for wastewater treatment plant provided good results. Parameters considered were temperature, pH value, colour, turbidity, amount of solids and acidity. Others are total hardness, Ca hardness, Mg hardness, and chloride. This enables the ANN to handle and represent more complex problems that conventional programming is incapable of performing.Keywords: ANN, artificial neural network, wastewater treatment, model, development
Procedia PDF Downloads 1505355 The Inclusive Human Trafficking Checklist: A Dialectical Measurement Methodology
Authors: Maria C. Almario, Pam Remer, Jeff Resse, Kathy Moran, Linda Theander Adam
Abstract:
The identification of victims of human trafficking and consequential service provision is characterized by a significant disconnection between the estimated prevalence of this issue and the number of cases identified. This poses as tremendous problem for human rights advocates as it prevents data collection, information sharing, allocation of resources and opportunities for international dialogues. The current paper introduces the Inclusive Human Trafficking Checklist (IHTC) as a measurement methodology with theoretical underpinnings derived from dialectic theory. The presence of human trafficking in a person’s life is conceptualized as a dynamic and dialectic interaction between vulnerability and exploitation. The current papers explores the operationalization of exploitation and vulnerability, evaluates the metric qualities of the instrument, evaluates whether there are differences in assessment based on the participant’s profession, level of knowledge, and training, and assesses if users of the instrument perceive it as useful. A total of 201 participants were asked to rate three vignettes predetermined by experts to qualify as a either human trafficking case or not. The participants were placed in three conditions: business as usual, utilization of the IHTC with and without training. The results revealed a statistically significant level of agreement between the expert’s diagnostic and the application of the IHTC with an improvement of 40% on identification when compared with the business as usual condition While there was an improvement in identification in the group with training, the difference was found to have a small effect size. Participants who utilized the IHTC showed an increased ability to identify elements of identity-based vulnerabilities as well as elements of fraud, which according to the results, are distinctive variables in cases of human trafficking. In terms of the perceived utility, the results revealed higher mean scores for the groups utilizing the IHTC when compared to the business as usual condition. These findings suggest that the IHTC improves appropriate identification of cases and that it is perceived as a useful instrument. The application of the IHTC as a multidisciplinary instrumentation that can be utilized in legal and human services settings is discussed as a pivotal piece of helping victims restore their sense of dignity, and advocate for legal, physical and psychological reparations. It is noteworthy that this study was conducted with a sample in the United States and later re-tested in Colombia. The implications of the instrument for treatment conceptualization and intervention in human trafficking cases are discussed as opportunities for enhancement of victim well-being, restoration engagement and activism. With the idea that what is personal is also political, we believe that the careful observation and data collection in specific cases can inform new areas of human rights activism.Keywords: exploitation, human trafficking, measurement, vulnerability, screening
Procedia PDF Downloads 3315354 Data Transformations in Data Envelopment Analysis
Authors: Mansour Mohammadpour
Abstract:
Data transformation refers to the modification of any point in a data set by a mathematical function. When applying transformations, the measurement scale of the data is modified. Data transformations are commonly employed to turn data into the appropriate form, which can serve various functions in the quantitative analysis of the data. This study addresses the investigation of the use of data transformations in Data Envelopment Analysis (DEA). Although data transformations are important options for analysis, they do fundamentally alter the nature of the variable, making the interpretation of the results somewhat more complex.Keywords: data transformation, data envelopment analysis, undesirable data, negative data
Procedia PDF Downloads 245353 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 445352 Data Stream Association Rule Mining with Cloud Computing
Authors: B. Suraj Aravind, M. H. M. Krishna Prasad
Abstract:
There exist emerging applications of data streams that require association rule mining, such as network traffic monitoring, web click streams analysis, sensor data, data from satellites etc. Data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. This paper proposes to introduce an improved data stream association rule mining algorithm by eliminating the limitation of resources. For this, the concept of cloud computing is used. Inclusion of this may lead to additional unknown problems which needs further research.Keywords: data stream, association rule mining, cloud computing, frequent itemsets
Procedia PDF Downloads 5035351 Modeling the International Economic Relations Development: The Prospects for Regional and Global Economic Integration
Authors: M. G. Shilina
Abstract:
The interstate economic interaction phenomenon is complex. ‘Economic integration’, as one of its types, can be explored through the prism of international law, the theories of the world economy, politics and international relations. The most objective study of the phenomenon requires a comprehensive multifactoral approach. In new geopolitical realities, the problems of coexistence and possible interconnection of various mechanisms of interstate economic interaction are actively discussed. Currently, the Eurasian continent states support the direction to economic integration. At the same time, the existing international economic law fragmentation in Eurasia is seen as the important problem. The Eurasian space is characterized by a various types of interstate relations: international agreements (multilateral and bilateral), and a large number of cooperation formats (from discussion platforms to organizations aimed at deep integration). For their harmonization, it is necessary to have a clear vision to the phased international economic relations regulation options. In the conditions of rapid development of international economic relations, the modeling (including prognostic) can be optimally used as the main scientific method for presenting the phenomenon. On the basis of this method, it is possible to form the current situation vision and the best options for further action. In order to determine the most objective version of the integration development, the combination of several approaches were used. The normative legal approach- the descriptive method of legal modeling- was taken as the basis for the analysis. A set of legal methods was supplemented by the international relations science prognostic methods. The key elements of the model are the international economic organizations and states' associations existing in the Eurasian space (the Eurasian Economic Union (EAEU), the European Union (EU), the Shanghai Cooperation Organization (SCO), Chinese project ‘One belt-one road’ (OBOR), the Commonwealth of Independent States (CIS), BRICS, etc.). A general term for the elements of the model is proposed - the interstate interaction mechanisms (IIM). The aim of building a model of current and future Eurasian economic integration is to show optimal options for joint economic development of the states and IIMs. The long-term goal of this development is the new economic and political space, so-called the ‘Great Eurasian Community’. The process of achievement this long-term goal consists of successive steps. Modeling the integration architecture and dividing the interaction into stages led us to the following conclusion: the SCO is able to transform Eurasia into a single economic space. Gradual implementation of the complex phased model, in which the SCO+ plays a key role, will allow building an effective economic integration for all its participants, to create an economically strong community. The model can have practical value for politicians, lawyers, economists and other participants involved in the economic integration process. A clear, systematic structure can serve as a basis for further governmental action.Keywords: economic integration, The Eurasian Economic Union, The European Union, The Shanghai Cooperation Organization, The Silk Road Economic Belt
Procedia PDF Downloads 1525350 Reliability of the Estimate of Earthwork Quantity Based on 3D-BIM
Authors: Jaechoul Shin, Juhwan Hwang
Abstract:
In case of applying the BIM method to the civil engineering in the area of free formed structure, we can expect comparatively high rate of construction productivity as it is in the building engineering area. In this research, we developed quantity calculation error applying it to earthwork and bridge construction (e.g. PSC-I type segmental girder bridge amd integrated bridge of steel I-girders and inverted-Tee bent cap), NATM (New Austrian Tunneling Method) tunnel construction, retaining wall construction, culvert construction and implemented BIM based 3D modeling quantity survey. we confirmed high reliability of the BIM-based method in structure work in which errors occurred in range between -6% ~ +5%. Especially, understanding of the problem and improvement of the existing 2D-CAD based of quantity calculation through rock type quantity calculation error in range of -14% ~ +13% of earthwork quantity calculation. It is benefit and applicability of BIM method in civil engineering. In addition, routine method for quantity of earthwork has the same error tolerance negligible for that of structure work. But, rock type's quantity calculated as the error appears significantly to the reliability of 2D-based volume calculation shows that the problem could be. Through the estimating quantity of earthwork based 3D-BIM, proposed method has better reliability than routine method. BIM, as well as the design, construction, maintenance levels of information when you consider the benefits of integration, the introduction of BIM design in civil engineering and the possibility of applying for the effectiveness was confirmed.Keywords: BIM, 3D modeling, 3D-BIM, quantity of earthwork
Procedia PDF Downloads 4445349 Influence of AAR-Induced Expansion Level on Confinement Efficiency of CFRP Wrapping Applied to Damaged Circular Concrete Columns
Authors: Thamer Kubat, Riadh Al Mahiadi, Ahmad Shayan
Abstract:
The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fiber reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.Keywords: ATENA, carbon fiber reinforced polymer (CFRP), confinement efficiency, finite element (FE)
Procedia PDF Downloads 805348 The Bone Remodeling of Mandible in Bruxers
Authors: Eni Rahmi, Rasmi Rikmasari, Taufik Soemarsongko
Abstract:
Background: One of the bad habits that requires a treatment and viewed as a risk factor of the temporomandibular disorder is bruxism. Bruxism defined as an awake and/or asleep parafunctional activities include grinding, gnashing, bracing or clenching of the teeth. In particular circumstances such as an increased frequency of episode, duration and the intensity of masseter contractions, caused phenomenon with pathological consequences, i.e., mandibular remodeling. The remodeling in mandibular angle was associated with the masseter and pterygoid medial muscles attachment which in its insertion area. The aim of this study was to compare the mandibular remodeling between bruxers and non-bruxers with ramus height, gonial angle and bigonial width as parameters, and to identify correlation among those parameters in bruxers, using panoramic radiographic. Methods: This study was conducted on 35 bruxers (10 phasic bruxism patients, 6 tonic bruxism patients, and 19 mixed bruxism patients) and 20 non-bruxers as control group. The data were obtained by using questionary, clinical examination, and radiographic measurement. Panoramic radiograph measurement was done using soft CBCT EPX Impla (E-Woo Korea). The data was analyzed by using Paired T-Test to see differences between parameters in both group and Pearson Correlation Test to evaluate correlation among parameters. Result: There was significant differences between bruxers and non-bruxers in ramus heights (p=0,04), bigonial widths (p=0,001), and gonial angles(p=0,015). The bruxers showed increased ramus heights and bigonial widths, in other hand, the gonial angles decreased. This study also found that there was highly correlation among ramus height, gonial angles, and bigonial widths. Conclusion: the bone remodeling occurred on inferior and posterior border of mandibular angle in bruxism patient, indicated by the form and size differences between bruxers (phasic bruxism, tonic bruxism, and mixed bruxism) with non-bruxers, which shown by panoramic radiograph.Keywords: bruxism, ramus height, gonial angle, bigonial width
Procedia PDF Downloads 3015347 An Analysis of Relation Between Soil Radon Anomalies and Geological Environment Change
Authors: Mengdi Zhang, Xufeng Liu, Zhenji Gao, Ying Li, Zhu Rao, Yi Huang
Abstract:
As an open system, the earth is constantly undergoing the transformation and release of matter and energy. Fault zones are relatively discontinuous and fragile geological structures, and the release of material and energy inside the Earth is strongest in relatively weak fault zones. Earthquake events frequently occur in fault zones and are closely related to tectonic activity in these zones. In earthquake precursor observation, monitoring the spatiotemporal changes in the release of related gases near fault zones (such as radon gas, hydrogen, carbon dioxide, helium), and analyzing earthquake precursor anomalies, can be effective means to forecast the occurrence of earthquake events. Radon gas, as an inert radioactive gas generated during the decay of uranium and thorium, is not only a indicator for monitoring tectonic and seismic activity, but also an important topic for ecological and environmental health, playing a crucial role in uranium exploration. At present, research on soil radon gas mainly focuses on the measurement of soil gas concentration and flux in fault zone profiles, while research on the correlation between spatiotemporal concentration changes in the same region and its geological background is relatively little. In this paper, Tangshan area in north China is chosen as research area. An analysis was conducted on the seismic geological background of Tangshan area firstly. Then based on quantitative analysis and comparison of measurement radon concentrations of 2023 and 2010, combined with the study of seismic activity and environmental changes during the time period, the spatiotemporal distribution characteristics and influencing factors were explored, in order to analyze the gas emission characteristics of the Tangshan fault zone and its relationship with fault activity, which aimed to be useful for the future work in earthquake monitor of Tangshan area.Keywords: radon, Northern China, soil gas, earthquake
Procedia PDF Downloads 845346 Study and Construction on Signalling System during Reverse Motion Due to Obstacle
Authors: S. M. Yasir Arafat
Abstract:
Driving models are needed by many researchers to improve traffic safety and to advance autonomous vehicle design. To be most useful, a driving model must state specifically what information is needed and how it is processed. So we developed an “Obstacle Avoidance and Detection Autonomous Car” based on sensor application. The ever increasing technological demands of today call for very complex systems, which in turn require highly sophisticated controllers to ensure that high performance can be achieved and maintained under adverse conditions. Based on a developed model of brakes operation, the controller of braking system operation has been designed. It has a task to enable solution to the problem of the better controlling of braking system operation in a more accurate way then it was the case now a day.Keywords: automobile, obstacle, safety, sensing
Procedia PDF Downloads 3655345 Influence of Shading on a BIPV System’s Performance in an Urban Context: Case Study of BIPV Systems of the Science Center of Complexity Building of the National and Autonomous University of Mexico in Mexico City
Authors: Viridiana Edith Ardura Perea, José Luis Bermúdez Alcocer
Abstract:
The purpose of this paper is to establish the influence of shading on a Building Integrated Photovoltaic (BIPV) system´s performance in an urban context. The PV systems of the Science Center of Complexity (Centro de Ciencias de la Complejidad) Building based in the Main Campus of the National and Autonomous University of Mexico (UNAM) in Mexico City was taken as case study. The PV systems are placed on the rooftop and on the south façade of the building. The south-façade PV system, operating as sunshades, consists of two strings: one at the ground floor and the other one at the first floor. According to the building’s facility manager, the south-façade PV system generates 42% less electricity per kilowatt peak (kWp) installed than the one on the roof. The methods applied in this study were Solar Radiation Analysis (SRA) simulations performed with the Insight 360 Plug-in from Revit 2018® and an on-site measurement using specialized tools. The results of the SRA simulations showed that the shading casted by the PV system placed on the first floor on top of the PV system of the ground floor decreases its solar incident radiation over 50%. The simulation outcome was compared and validated to the measured data obtained from the on-site measurement. In conclusion, the loss factor achieved from the shading of the PVs is due to the surroundings and the PV system´s own design. The south-façade BIPV system’s deficient design generates critical losses on its performance and decreases its profitability.Keywords: building integrated photovoltaics design, energy analysis software, shading losses, solar radiation analysis
Procedia PDF Downloads 1795344 Improving the Quality of Transport Management Services with Fuzzy Signatures
Authors: Csaba I. Hencz, István Á. Harmati
Abstract:
Nowadays the significance of road transport is gradually increasing. All transport companies are working in the same external environment where the speed of transport is defined by traffic rules. The main objective is to accelerate the speed of service and it is only dependent on the individual abilities of the managing members. These operational control units make decisions quickly (in a typically experiential and/or intuitive way). For this reason, support for these decisions is an important task. Our goal is to create a decision support model based on fuzzy signatures that can assist the work of operational management automatically. If the model sets parameters properly, the management of transport could be more economical and efficient.Keywords: freight transport, decision support, information handling, fuzzy methods
Procedia PDF Downloads 2605343 A Convolution Neural Network Approach to Predict Pes-Planus Using Plantar Pressure Mapping Images
Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi, Morvarid Lalenoor
Abstract:
Background: Plantar pressure distribution measurement has been used for a long time to assess foot disorders. Plantar pressure is an important component affecting the foot and ankle function and Changes in plantar pressure distribution could indicate various foot and ankle disorders. Morphologic and mechanical properties of the foot may be important factors affecting the plantar pressure distribution. Accurate and early measurement may help to reduce the prevalence of pes planus. With recent developments in technology, new techniques such as machine learning have been used to assist clinicians in predicting patients with foot disorders. Significance of the study: This study proposes a neural network learning-based flat foot classification methodology using static foot pressure distribution. Methodologies: Data were collected from 895 patients who were referred to a foot clinic due to foot disorders. Patients with pes planus were labeled by an experienced physician based on clinical examination. Then all subjects (with and without pes planus) were evaluated for static plantar pressures distribution. Patients who were diagnosed with the flat foot in both feet were included in the study. In the next step, the leg length was normalized and the network was trained for plantar pressure mapping images. Findings: From a total of 895 image data, 581 were labeled as pes planus. A computational neural network (CNN) ran to evaluate the performance of the proposed model. The prediction accuracy of the basic CNN-based model was performed and the prediction model was derived through the proposed methodology. In the basic CNN model, the training accuracy was 79.14%, and the test accuracy was 72.09%. Conclusion: This model can be easily and simply used by patients with pes planus and doctors to predict the classification of pes planus and prescreen for possible musculoskeletal disorders related to this condition. However, more models need to be considered and compared for higher accuracy.Keywords: foot disorder, machine learning, neural network, pes planus
Procedia PDF Downloads 3645342 Measurement of CES Production Functions Considering Energy as an Input
Authors: Donglan Zha, Jiansong Si
Abstract:
Because of its flexibility, CES attracts much interest in economic growth and programming models, and the macroeconomics or micro-macro models. This paper focuses on the development, estimating methods of CES production function considering energy as an input. We leave for future research work of relaxing the assumption of constant returns to scale, the introduction of potential input factors, and the generalization method of the optimal nested form of multi-factor production functions.Keywords: bias of technical change, CES production function, elasticity of substitution, energy input
Procedia PDF Downloads 2825341 Virtual Metrology for Copper Clad Laminate Manufacturing
Authors: Misuk Kim, Seokho Kang, Jehyuk Lee, Hyunchang Cho, Sungzoon Cho
Abstract:
In semiconductor manufacturing, virtual metrology (VM) refers to methods to predict properties of a wafer based on machine parameters and sensor data of the production equipment, without performing the (costly) physical measurement of the wafer properties (Wikipedia). Additional benefits include avoidance of human bias and identification of important factors affecting the quality of the process which allow improving the process quality in the future. It is however rare to find VM applied to other areas of manufacturing. In this work, we propose to use VM to copper clad laminate (CCL) manufacturing. CCL is a core element of a printed circuit board (PCB) which is used in smartphones, tablets, digital cameras, and laptop computers. The manufacturing of CCL consists of three processes: Treating, lay-up, and pressing. Treating, the most important process among the three, puts resin on glass cloth, heat up in a drying oven, then produces prepreg for lay-up process. In this process, three important quality factors are inspected: Treated weight (T/W), Minimum Viscosity (M/V), and Gel Time (G/T). They are manually inspected, incurring heavy cost in terms of time and money, which makes it a good candidate for VM application. We developed prediction models of the three quality factors T/W, M/V, and G/T, respectively, with process variables, raw material, and environment variables. The actual process data was obtained from a CCL manufacturer. A variety of variable selection methods and learning algorithms were employed to find the best prediction model. We obtained prediction models of M/V and G/T with a high enough accuracy. They also provided us with information on “important” predictor variables, some of which the process engineers had been already aware and the rest of which they had not. They were quite excited to find new insights that the model revealed and set out to do further analysis on them to gain process control implications. T/W did not turn out to be possible to predict with a reasonable accuracy with given factors. The very fact indicates that the factors currently monitored may not affect T/W, thus an effort has to be made to find other factors which are not currently monitored in order to understand the process better and improve the quality of it. In conclusion, VM application to CCL’s treating process was quite successful. The newly built quality prediction model allowed one to reduce the cost associated with actual metrology as well as reveal some insights on the factors affecting the important quality factors and on the level of our less than perfect understanding of the treating process.Keywords: copper clad laminate, predictive modeling, quality control, virtual metrology
Procedia PDF Downloads 3515340 Structural Performance Evaluation of Segmented Wind Turbine Blade Through Finite Element Simulation
Authors: Chandrashekhar Bhat, Dilifa Jossley Noronha, Faber A. Saldana
Abstract:
Transportation of long turbine blades from one place to another is a difficult process. Hence a feasibility study of modularization of wind turbine blade was taken from structural standpoint through finite element analysis. Initially, a non-segmented blade is modeled and its structural behavior is evaluated to serve as reference. The resonant, static bending and fatigue tests are simulated in accordance with IEC61400-23 standard for comparison purpose. The non-segmented test blade is separated at suitable location based on trade off studies and the segments are joined with an innovative double strap bonded joint configuration. The adhesive joint is modeled by adopting cohesive zone modeling approach in ANSYS. The developed blade model is analyzed for its structural response through simulation. Performances of both the blades are found to be similar, which indicates that, efficient segmentation of the long blade is possible which facilitates easy transportation of the blades and on site reassembling. The location selected for segmentation and adopted joint configuration has resulted in an efficient segmented blade model which proves the methodology adopted for segmentation was quite effective. The developed segmented blade appears to be the viable alternative considering its structural response specifically in fatigue within considered assumptions.Keywords: modularization, fatigue, cohesive zone modeling, wind turbine blade
Procedia PDF Downloads 4505339 A Modularized Sensing Platform for Sensor Design Demonstration
Authors: Chun-Ming Huang, Yi-Jun Liu, Yi-Jie Hsieh, Jin-Ju Chue, Wei-Lin Lai, Chun-Yu Chen, Chih-Chyau Yang, Chien-Ming Wu
Abstract:
The market of wearable devices has been growing rapidly in two years. The integration of sensors and wearable devices has become the trend of the next technology products. Thus, the academics and industries are eager to cultivate talented persons in sensing technology. Currently, academic and industries have more and more demands on the integrations of versatile sensors and applications, especially for the teams who focus on the development of sensor circuit architectures. These teams tape-out many MEMs sensors chips through the chip fabrication service from National Chip Implementation Center (CIC). However, most of these teams are only able to focus on the circuit design of MEMs sensors; they lack the key support of further system demonstration. This paper follows the CIC’s main mission of promoting the chip/system advanced design technology and aims to establish the environments of the modularized sensing system platform and the system design flow with the measurement and calibration technology. These developed environments are used to support these research teams and help academically advanced sensor designs to perform the system demonstration. Thus, the research groups can promote and transfer their advanced sensor designs to industrial and further derive the industrial economic values. In this paper, the modularized sensing platform is proposed to enable the system demonstration for advanced sensor chip design. The environment of sensor measurement and calibration is established for academic to achieve an accurate sensor result. Two reference sensor designs cooperated with the modularized sensing platform are given to show the sensing system integration and demonstration. These developed environments and platforms are currently provided to academics in Taiwan, and so that the academics can obtain a better environment to perform the system demonstration and improve the research and teaching quality.Keywords: modularized sensing platform, sensor design and calibration, sensor system, sensor system design flow
Procedia PDF Downloads 2355338 Causes of Road Crashes Among Students Attending Schools in Huye District and Kigali City
Authors: Ami Nkumbuye
Abstract:
Background: Every year 1.3 million people die due to Road crashes, according to the Global status report. Road crashes remain the greatest killer aged between 15-29 years. Young people are paying an unacceptable price for their own safer mobility. 23,498 students attending class daily from home crossing the roads of 3 districts Kigali and Southern province is showing a similar trend with 40320 cross road daily. As most of them don't have any idea about the safety, they should have when they are crossing roads and traffic rules and signs as well. Despite the high number of mortality related to road crashes in Rwanda, we don't have any approved calendar to teach young people road safety as the most affected age group. Objective: The objective of this study was to identify the causes of road crashes and the outcome of victims after being involved in road crashes over a period of two years, from January 2020 to December 2021, in Huye district and Kigali City. Methods: A retrospective descriptive study with open questions and then data analysis, students were identified from 15 schools in Kigali City and Southern Province and through the Local Action Project supported by Global Youth Coalition for Road Safety and Youth for Road Safety (YOURS), students asked about the cause of road crashes through open and closed question and data analyzed. Result: There were 354 students from 15 schools: 198 males and 156 females. Their age ranged from 10 to 25 years. The commonest cause of road crashes among students attending schools daily was: high speed, lack of education on safe behavior on the road, drinking and driving, and poor road infrastructures, with 47%, 32%, 13% and 8 %, respectively. The hospital admission after road crashes for the victims was 32.3%. In most scenes where road crashes occur, students report that they didn't see any person who could provide post-crash care until the ambulance came, in some cases, resulted in bad outcomes for the victims after road crashes. Conclusion: This study revealed that high speed and lack of education n road safety are the major cause of road crashes among young people in Rwanda. If local Non-Governmental Organization and Decision makers work on these issues like never before, we can see a decrease in road crash among young people and adult as well. We would like to give a recommendation to two institutions: the first is the Rwanda National Police Traffic department to set 30km/m as the maximum speed limit in City and near schools. The second is for the Ministry of Education to put Road Safety and Post Crash Care curricula in both Primary and Secondary schools.Keywords: road safety, post-crash care, young people, students
Procedia PDF Downloads 915337 Comparison of Non-destructive Devices to Quantify the Moisture Content of Bio-Based Insulation Materials on Construction Sites
Authors: Léa Caban, Lucile Soudani, Julien Berger, Armelle Nouviaire, Emilio Bastidas-Arteaga
Abstract:
Improvement of the thermal performance of buildings is a high concern for the construction industry. With the increase in environmental issues, new types of construction materials are being developed. These include bio-based insulation materials. They capture carbon dioxide, can be produced locally, and have good thermal performance. However, their behavior with respect to moisture transfer is still facing some issues. With a high porosity, the mass transfer is more important in those materials than in mineral insulation ones. Therefore, they can be more sensitive to moisture disorders such as mold growth, condensation risks or decrease of the wall energy efficiency. For this reason, the initial moisture content on the construction site is a piece of crucial knowledge. Measuring moisture content in a laboratory is a mastered task. Diverse methods exist but the easiest and the reference one is gravimetric. A material is weighed dry and wet, and its moisture content is mathematically deduced. Non-destructive methods (NDT) are promising tools to determine in an easy and fast way the moisture content in a laboratory or on construction sites. However, the quality and reliability of the measures are influenced by several factors. Classical NDT portable devices usable on-site measure the capacity or the resistivity of materials. Water’s electrical properties are very different from those of construction materials, which is why the water content can be deduced from these measurements. However, most moisture meters are made to measure wooden materials, and some of them can be adapted for construction materials with calibration curves. Anyway, these devices are almost never calibrated for insulation materials. The main objective of this study is to determine the reliability of moisture meters in the measurement of biobased insulation materials. The determination of which one of the capacitive or resistive methods is the most accurate and which device gives the best result is made. Several biobased insulation materials are tested. Recycled cotton, two types of wood fibers of different densities (53 and 158 kg/m3) and a mix of linen, cotton, and hemp. It seems important to assess the behavior of a mineral material, so glass wool is also measured. An experimental campaign is performed in a laboratory. A gravimetric measurement of the materials is carried out for every level of moisture content. These levels are set using a climatic chamber and by setting the relative humidity level for a constant temperature. The mass-based moisture contents measured are considered as references values, and the results given by moisture meters are compared to them. A complete analysis of the uncertainty measurement is also done. These results are used to analyze the reliability of moisture meters depending on the materials and their water content. This makes it possible to determine whether the moisture meters are reliable, and which one is the most accurate. It will then be used for future measurements on construction sites to assess the initial hygrothermal state of insulation materials, on both new-build and renovation projects.Keywords: capacitance method, electrical resistance method, insulation materials, moisture transfer, non-destructive testing
Procedia PDF Downloads 1275336 Osteoarticular Manifestations and Abnormalities of Bone Metabolism in Celiac Disease
Authors: Soumaya Mrabet, Imen Akkari, Amira Atig, Elhem Ben Jazia
Abstract:
Introduction: Celiac disease (CD) is a chronic autoimmune inflammatory enteropathy caused by gluten. The clinical presentation is very variable. Malabsorption in the MC is responsible for an alteration of the bone metabolism. Our purpose is to study the osteoarticular manifestations related to this condition. Material and methods: It is a retrospective study of 41 cases of CD diagnosed on clinical, immunological, endoscopic and histological arguments, in the Internal Medicine and Gastroenterology Department of Farhat Hached Hospital between September 2005 and January 2016. Results: Osteoarticular manifestations were found in 9 patients (22%) among 41 patients presenting CD. These were 7 women and 2 men with an average age of 35.7 years (25 to 67 years). These manifestations were revelatory of CD in 3 cases. Abdominal pain and diarrhea were present in 6 cases. Inflammatory polyarthralgia of wrists and knees has been reported in 7 patients. Mechanical mono arthralgia was noted in 2 patients. Biological tests revealed microcytic anemia by iron deficiency in 7 cases, hypocalcemia in 5 cases, Hypophosphatemia in 3 cases and elevated alkaline phosphatases in 3 cases. Upper gastrointestinal endoscopy with duodenal biopsy found villous atrophy in all cases. In immunology, Anti-transglutaminase antibodies were positive in all patients, Anti-endomysium in 7 cases. Measurement of bone mineral density (BMD) by biphotonic X-ray absorptiometer with evaluation of the T-score and the Z-score was performed in Twenty patients (48.8%). It was normal in 7 cases (33%) and showed osteopenia in 5 patients (25%) and osteoporosis in 2 patients (10%). All patients were treated with a Gluten-free diet associated with vitamin D and calcium substitution in 5 cases. The evolution was favorable in all cases with reduction of bone pain and normalization of the phosphocalcic balance. Conclusion: The bone impact of CD is frequent but often asymptomatic. Patients with CD should be evaluated by the measurement of bone mineral density and monitored for calcium and vitamin D deficiencies.Keywords: bone mineral density, celiac disease, osteoarticular manifestations, vitamin D and calcium
Procedia PDF Downloads 3285335 Failure Analysis of Recoiler Mandrel Shaft Used for Coiling of Rolled Steel Sheet
Authors: Sachin Pawar, Suman Patra, Goutam Mukhopadhyay
Abstract:
The primary function of a shaft is to transfer power. The shaft can be cast or forged and then machined to the final shape. Manufacturing of ~5 m length and 0.6 m diameter shaft is very critical. More difficult is to maintain its straightness during heat treatment and machining operations, which involve thermal and mechanical loads, respectively. During the machining operation of a such forged mandrel shaft, a deflection of 3-4mm was observed. To remove this deflection shaft was pressed at both ends which led to the development of cracks in it. To investigate the root cause of the deflection and cracking, the sample was cut from the failed shaft. Possible causes were identified with the help of a cause and effect diagram. Chemical composition analysis, microstructural analysis, and hardness measurement were done to confirm whether the shaft meets the required specifications or not. Chemical composition analysis confirmed that the material grade was 42CrMo4. Microstructural analysis revealed the presence of untempered martensite, indicating improper heat treatment. Due to this, ductility and impact toughness values were considerably lower than the specification of the mentioned grade. Residual stress measurement of one more bent shaft manufactured by a similar route was done by portable X-ray diffraction(XRD) technique. For better understanding, measurements were done at twelve different locations along the length of the shaft. The occurrence of a high amount of undesirable tensile residual stresses close to the Ultimate Tensile Strength(UTS) of the material was observed. Untempered martensitic structure, lower ductility, lower impact strength, and presence of a high amount of residual stresses all confirmed the improper tempering heat treatment of the shaft. Tempering relieves the residual stresses. Based on the findings of this study, stress-relieving heat treatment was done to remove the residual stresses and deflection in the shaft successfully.Keywords: residual stress, mandrel shaft, untempered martensite, portable XRD
Procedia PDF Downloads 1135334 Effects of Surface Roughness on a Unimorph Piezoelectric Micro-Electro-Mechanical Systems Vibrational Energy Harvester Using Finite Element Method Modeling
Authors: Jean Marriz M. Manzano, Marc D. Rosales, Magdaleno R. Vasquez Jr., Maria Theresa G. De Leon
Abstract:
This paper discusses the effects of surface roughness on a cantilever beam vibrational energy harvester. A silicon sample was fabricated using MEMS fabrication processes. When etching silicon using deep reactive ion etching (DRIE) at large etch depths, rougher surfaces are observed as a result of increased response in process pressure, amount of coil power and increased helium backside cooling readings. To account for the effects of surface roughness on the characteristics of the cantilever beam, finite element method (FEM) modeling was performed using actual roughness data from fabricated samples. It was found that when etching about 550um of silicon, root mean square roughness parameter, Sq, varies by 1 to 3 um (at 100um thick) across a 6-inch wafer. Given this Sq variation, FEM simulations predict an 8 to148 Hz shift in the resonant frequency while having no significant effect on the output power. The significant shift in the resonant frequency implies that careful consideration of surface roughness from fabrication processes must be done when designing energy harvesters.Keywords: deep reactive ion etching, finite element method, microelectromechanical systems, multiphysics analysis, surface roughness, vibrational energy harvester
Procedia PDF Downloads 121