Search results for: statistical data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27065

Search results for: statistical data

24905 Early Childhood Education: Teachers Ability to Assess

Authors: Ade Dwi Utami

Abstract:

Pedagogic competence is the basic competence of teachers to perform their tasks as educators. The ability to assess has become one of the demands in teachers pedagogic competence. Teachers ability to assess is related to curriculum instructions and applications. This research is aimed at obtaining data concerning teachers ability to assess that comprises of understanding assessment, determining assessment type, tools and procedure, conducting assessment process, and using assessment result information. It uses mixed method of explanatory technique in which qualitative data is used to verify the quantitative data obtained through a survey. The technique of quantitative data collection is by test whereas the qualitative data collection is by observation, interview and documentation. Then, the analyzed data is processed through a proportion study technique to be categorized into high, medium and low. The result of the research shows that teachers ability to assess can be grouped into 3 namely, 2% of high, 4% of medium and 94% of low. The data shows that teachers ability to assess is still relatively low. Teachers are lack of knowledge and comprehension in assessment application. The statement is verified by the qualitative data showing that teachers did not state which aspect was assessed in learning, record children’s behavior, and use the data result as a consideration to design a program. Teachers have assessment documents yet they only serve as means of completing teachers administration for the certification program. Thus, assessment documents were not used with the basis of acquired knowledge. The condition should become a consideration of the education institution of educators and the government to improve teachers pedagogic competence, including the ability to assess.

Keywords: assessment, early childhood education, pedagogic competence, teachers

Procedia PDF Downloads 248
24904 A Descriptive Study on Syrian Entrepreneurs in Turkey

Authors: Rudainah Alkhazam, Özlem Yaşar Uğurlu

Abstract:

Immigrant entrepreneurship arises from the start of entrepreneurial activity by immigrants in the country they relocate to. The future prosperity and stability of the refugee-hosting countries depends on the mutual social and economic benefits between the residents and the refugees. Syrian refugees and workers in host countries necessitate efforts to assist their residents and refugees in meeting their daily needs, contributing lawfully to local and possibly regional economies through trade, and instilling hope in their future. This study investigates the effects of Syrian refugee entrepreneurs on host communities' business sectors, focusing on Turkey. Specifically, we examine entrepreneurship in general and its role in the country's economy. Because Turkey is the most popular resettlement destination for Syrian refugees, this study will shed light on the challenges of successful migrant entrepreneurship in Turkey and their role in the business sector. The research relies on a mixed-method approach which helps identify recurring themes, favorable results, and conflicting results across methods, allowing us to draw accurate conclusions. The study will adopt a quantitative method in collecting numerical data from Syrian refugees in Turkey. The self-administered survey would be translated into Arabic to ensure that the respondents understood the questions and possible replies. The research will use survey questionnaires to gather the majority of the data. These surveys would have closed-ended questions with nominal ratio and Likert scales. The data will be analyzed using linear regression and the Statistical Package for Social Sciences (SPSS) to ascertain the role of Syrian entrepreneurs in the business sectors of Turkey. The research will use the findings to make future recommendations. Syrian entrepreneurs, among the migrant entrepreneurs, contribute to the labor market, the majority of whom are young people. This research noted the significant participation of Syrian immigrant women in the entrepreneurship sector. The previous experience of Syrians in the field of trade and running their own business plays a vital role in the success of their business in the host countries. The study shows that Syrian entrepreneurs could integrate effectively into the various Turkish business sectors and could rely on themselves, open and manage their projects, and market them in the Turkish market. Syrian entrepreneurs consider that the investment and labor laws, commercial arrangements, and facilities for obtaining financial resources in Turkey need to be more flexible and available to immigrant entrepreneurs.

Keywords: entrepreneurship, immigration, Syrian, Turkey, refugees, investors, socio-economic benefits, unemployment

Procedia PDF Downloads 69
24903 A Kernel-Based Method for MicroRNA Precursor Identification

Authors: Bin Liu

Abstract:

MicroRNAs (miRNAs) are small non-coding RNA molecules, functioning in transcriptional and post-transcriptional regulation of gene expression. The discrimination of the real pre-miRNAs from the false ones (such as hairpin sequences with similar stem-loops) is necessary for the understanding of miRNAs’ role in the control of cell life and death. Since both their small size and sequence specificity, it cannot be based on sequence information alone but requires structure information about the miRNA precursor to get satisfactory performance. Kmers are convenient and widely used features for modeling the properties of miRNAs and other biological sequences. However, Kmers suffer from the inherent limitation that if the parameter K is increased to incorporate long range effects, some certain Kmer will appear rarely or even not appear, as a consequence, most Kmers absent and a few present once. Thus, the statistical learning approaches using Kmers as features become susceptible to noisy data once K becomes large. In this study, we proposed a Gapped k-mer approach to overcome the disadvantages of Kmers, and applied this method to the field of miRNA prediction. Combined with the structure status composition, a classifier called imiRNA-GSSC was proposed. We show that compared to the original imiRNA-kmer and alternative approaches. Trained on human miRNA precursors, this predictor can achieve an accuracy of 82.34 for predicting 4022 pre-miRNA precursors from eleven species.

Keywords: gapped k-mer, imiRNA-GSSC, microRNA precursor, support vector machine

Procedia PDF Downloads 165
24902 Monotone Rational Trigonometric Interpolation

Authors: Uzma Bashir, Jamaludin Md. Ali

Abstract:

This study is concerned with the visualization of monotone data using a piece-wise C1 rational trigonometric interpolating scheme. Four positive shape parameters are incorporated in the structure of rational trigonometric spline. Conditions on two of these parameters are derived to attain the monotonicity of monotone data and other two are left-free. Figures are used widely to exhibit that the proposed scheme produces graphically smooth monotone curves.

Keywords: trigonometric splines, monotone data, shape preserving, C1 monotone interpolant

Procedia PDF Downloads 274
24901 GPU-Based Back-Projection of Synthetic Aperture Radar (SAR) Data onto 3D Reference Voxels

Authors: Joshua Buli, David Pietrowski, Samuel Britton

Abstract:

Processing SAR data usually requires constraints in extent in the Fourier domain as well as approximations and interpolations onto a planar surface to form an exploitable image. This results in a potential loss of data requires several interpolative techniques, and restricts visualization to two-dimensional plane imagery. The data can be interpolated into a ground plane projection, with or without terrain as a component, all to better view SAR data in an image domain comparable to what a human would view, to ease interpretation. An alternate but computationally heavy method to make use of more of the data is the basis of this research. Pre-processing of the SAR data is completed first (matched-filtering, motion compensation, etc.), the data is then range compressed, and lastly, the contribution from each pulse is determined for each specific point in space by searching the time history data for the reflectivity values for each pulse summed over the entire collection. This results in a per-3D-point reflectivity using the entire collection domain. New advances in GPU processing have finally allowed this rapid projection of acquired SAR data onto any desired reference surface (called backprojection). Mathematically, the computations are fast and easy to implement, despite limitations in SAR phase history data size and 3D-point cloud size. Backprojection processing algorithms are embarrassingly parallel since each 3D point in the scene has the same reflectivity calculation applied for all pulses, independent of all other 3D points and pulse data under consideration. Therefore, given the simplicity of the single backprojection calculation, the work can be spread across thousands of GPU threads allowing for accurate reflectivity representation of a scene. Furthermore, because reflectivity values are associated with individual three-dimensional points, a plane is no longer the sole permissible mapping base; a digital elevation model or even a cloud of points (collected from any sensor capable of measuring ground topography) can be used as a basis for the backprojection technique. This technique minimizes any interpolations and modifications of the raw data, maintaining maximum data integrity. This innovative processing will allow for SAR data to be rapidly brought into a common reference frame for immediate exploitation and data fusion with other three-dimensional data and representations.

Keywords: backprojection, data fusion, exploitation, three-dimensional, visualization

Procedia PDF Downloads 90
24900 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features

Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh

Abstract:

In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.

Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve

Procedia PDF Downloads 266
24899 Decomposition of Factors Affecting Farmers Net Income Variation of Potato Crop Production in Bangladesh

Authors: M. Shah Alamgir, Jun Furuya, Shintaro Kobayashi, M. Abdus Salam

Abstract:

Farmers’ environmental and economic situations are very diverse. In order to develop effective policies and technologies to improve farmers’ life standard, it is important to understand which factors induce the diversity of agricultural income. Analyze both primary and secondary data, this study applied descriptive, inferential statistical tools, and econometric techniques. From the study, farmers of Sylhet Division produce potato as one of the main cash crop with other seasonal crops. The total costs of potato production per hectare varied in different districts of Sylhet division in addition seed and hired labor cost has the biggest share of the full cost. To grasp the diversity of income, the study decomposes the variance of net income into different factors of potato production. Through this decomposition, seed cost is the important factors of income variability and it is the most important sector to induce total cost disparity for potato production. The result shows that 73% of net income variation is explained by gross income. It implies that potato yield or potato price (quality) or both vary widely among farmers. This finding is important of policymaking and technology development of agricultural farming in Bangladesh.

Keywords: agricultural income, seed, hired labor, technology development

Procedia PDF Downloads 428
24898 The Effect of Size and Tumor Depth on Histological Clearance Margins of Basal Cell Carcinomas

Authors: Martin Van, Mohammed Javed, Sarah Hemington-Gorse

Abstract:

Aim: Our aim was to determine the effect of size and tumor depth of basal cell carcinomas (BCCs) on surgical margin clearance. Methods: A retrospective study was conducted at the Welsh Centre for Burns and Plastic Surgery (WCBPS), Morriston Hospital between 1 Jan 2016 – 31 July 2016. Only patients with confirmed BCC on histopathological analysis were included. Patient data including anatomical region treated, lesion size, histopathological clearance margins and histological sub-types were recorded. An independent T-test was performed determine statistical significance. Results: A total of 228 BCCs were excised in 160 patients. Eleven lesions (4.8%) were incompletely excised. The nose area had the highest rate of incomplete excision. The mean diameter of incompletely excised lesions was 11.4mm vs 11.5mm in completely excised lesions (p=0.959) and the mean histological depth of incompletely excised lesions was 4.1mm vs. 2.5mm for completely excised BCCs (p < 0.05). Conclusions: BCC tumor depth of > 4.1 mm was associated with high rate of incomplete margin clearance. Hence, in prospective patients, a BCC tumor depth (>4 mm) on tissue biopsy should alert the surgeon of potentially higher risk of incomplete excision of lesion.

Keywords: basal cell carcinoma, excision margins, plastic surgery, treatment

Procedia PDF Downloads 242
24897 Integration of Knowledge and Metadata for Complex Data Warehouses and Big Data

Authors: Jean Christian Ralaivao, Fabrice Razafindraibe, Hasina Rakotonirainy

Abstract:

This document constitutes a resumption of work carried out in the field of complex data warehouses (DW) relating to the management and formalization of knowledge and metadata. It offers a methodological approach for integrating two concepts, knowledge and metadata, within the framework of a complex DW architecture. The objective of the work considers the use of the technique of knowledge representation by description logics and the extension of Common Warehouse Metamodel (CWM) specifications. This will lead to a fallout in terms of the performance of a complex DW. Three essential aspects of this work are expected, including the representation of knowledge in description logics and the declination of this knowledge into consistent UML diagrams while respecting or extending the CWM specifications and using XML as pivot. The field of application is large but will be adapted to systems with heteroge-neous, complex and unstructured content and moreover requiring a great (re)use of knowledge such as medical data warehouses.

Keywords: data warehouse, description logics, integration, knowledge, metadata

Procedia PDF Downloads 144
24896 Management of Postoperative Pain, Intercultural Differences Among Registered Nurses: Czech Republic and Kingdom of Saudi Arabia

Authors: Denisa Mackova, Andrea Pokorna

Abstract:

The management of postoperative pain is a meaningful part of quality care. The experience and knowledge of registered nurses in postoperative pain management can be influenced by local know-how. Therefore, the research helps to understand the cultural differences between two countries with the aim of evaluating the management of postoperative pain management among the nurses from the Czech Republic and the Kingdom of Saudi Arabia. Both countries have different procedures on managing postoperative pain and the research will provide an understanding of both the advantages and disadvantages of the procedures and also highlight the knowledge and experience of registered nurses in both countries. Between the Czech Republic and the Kingdom of Saudi Arabia, the expectation is for differing results in the usage of opioid analgesia for the patients postoperatively and in the experience of registered nurses with Patient Controlled Analgesia. The aim is to evaluate the knowledge and awareness of registered nurses and to merge the data with the postoperative pain management in the early postoperative period in the Czech Republic and the Kingdom of Saudi Arabia. Also, the aim is to assess the knowledge and experience of registered nurses by using Patient Controlled Analgesia and epidural analgesia treatment in the early postoperative period. The criteria for those providing input into the study, are registered nurses, working in surgical settings (standard departments, post-anesthesia care unit, day care surgery or ICU’s) caring for patients in the postoperative period. Method: Research is being conducted by questionnaires. It is a quantitative research, a comparative study of registered nurses in the Czech Republic and the Kingdom of Saudi Arabia. Questionnaire surveys were distributed through an electronic Bristol online survey. Results: The collection of the data in the Kingdom of Saudi Arabia has been completed successfully, with 550 respondents, 77 were excluded and 473 respondents were included for statistical data analysis. The outcome of the research is expected to highlight the differences in treatment through Patient Controlled Analgesia, with more frequent use in the Kingdom of Saudi Arabia. A similar assumption is expected for treatment conducted by analgesia. We predict that opioids will be used more regularly in the Kingdom of Saudi Arabia, whilst therapy through NSAID’s being the most common approach in the Czech Republic. Discussion/Conclusion: The majority of respondents from the Kingdom of Saudi Arabia were female registered nurses from a multitude of nations. We are expecting a similar split in gender between the Czech Republic respondents; however, there will be a smaller number of nationalities. Relevance for research and practice: Output from the research will assess the knowledge, experience and practice of patient controlled analgesia and epidural analgesia treatment. Acknowledgement: This research was accepted and affiliated to the project: Postoperative pain management, knowledge and experience registered nurses (Czech Republic and Kingdom of Saudi Arabia) – SGS05/2019-2020.

Keywords: acute postoperative pain, epidural analgesia, nursing care, patient controlled analgesia

Procedia PDF Downloads 183
24895 Determination of Anti-Fungal Activity of Cedrus deodara Oil against Oligoporus placentus, Trametes versicolor and Xylaria acuminata on Populus deltoids

Authors: Sauradipta Ganguly, Akhato Sumi, Sanjeet Kumar Hom, Ajan T. Lotha

Abstract:

Populus deltoides is a hardwood used predominantly for the manufacturing of plywood, matchsticks, and paper in India and hence has a higher economical significance. Wood-decaying fungi cause serious damage to Populus deltoides products, as the wood itself is perishable and vulnerable to decaying agents, decreasing their aesthetical value which in return results in significant monetary loss for the wood industries concerned. The aim of the study was to determine the antifungal activity of Cedrus deodara oil against three primary wood-decaying fungi namely white-rot fungi (Trametes versicolor), brown-rot fungi (Oligoporus placentus) and soft-rot fungi (Xylaria acuminata) on Populus deltoides samples under optimum laboratory conditions. The susceptibility of Populus deltoides samples on the fungal attack and the ability of deodar oil to control colonization of the wood rotting fungi on the samples were assessed. Three concentrations of deodar oil were considered for the study as treating solutions, i.e., 4%, 5%, and 6%. The Populus deltoides samples were treated with treating solutions, and the ability of the same to prevent a fungal attack on the samples were assessed using accelerated test in the laboratory at Biochemical Oxygen Demand incubator at temperature (25 ± 2°C) and relative humidity 70 ± 4%. Efficacy test and statistical analysis of deodar oil against Trametes versicolor, Oligoporus placentus, and Xylariaacuminataon P. deltoides samples exhibited light, minor and negligible mycelia growth at 4 %, 5% and 6% concentrations of deodar oil, respectively. Whereas, moderate to heavy attack was observed on the surface of the control samples. Statistical analysis further established that the treatments were statistically significant and had significantly inhibited fungal growth of all the three fungus spp by almost 3 to 5 times.

Keywords: populus deltoides, Trametes versicolor, Oligoporus placentus, Xylaria acuminata, Deodar oil, treatment

Procedia PDF Downloads 128
24894 Data Analytics in Energy Management

Authors: Sanjivrao Katakam, Thanumoorthi I., Antony Gerald, Ratan Kulkarni, Shaju Nair

Abstract:

With increasing energy costs and its impact on the business, sustainability today has evolved from a social expectation to an economic imperative. Therefore, finding methods to reduce cost has become a critical directive for Industry leaders. Effective energy management is the only way to cut costs. However, Energy Management has been a challenge because it requires a change in old habits and legacy systems followed for decades. Today exorbitant levels of energy and operational data is being captured and stored by Industries, but they are unable to convert these structured and unstructured data sets into meaningful business intelligence. It must be noted that for quick decisions, organizations must learn to cope with large volumes of operational data in different formats. Energy analytics not only helps in extracting inferences from these data sets, but also is instrumental in transformation from old approaches of energy management to new. This in turn assists in effective decision making for implementation. It is the requirement of organizations to have an established corporate strategy for reducing operational costs through visibility and optimization of energy usage. Energy analytics play a key role in optimization of operations. The paper describes how today energy data analytics is extensively used in different scenarios like reducing operational costs, predicting energy demands, optimizing network efficiency, asset maintenance, improving customer insights and device data insights. The paper also highlights how analytics helps transform insights obtained from energy data into sustainable solutions. The paper utilizes data from an array of segments such as retail, transportation, and water sectors.

Keywords: energy analytics, energy management, operational data, business intelligence, optimization

Procedia PDF Downloads 367
24893 Efficient Frequent Itemset Mining Methods over Real-Time Spatial Big Data

Authors: Hamdi Sana, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, there is a huge increase in the use of spatio-temporal applications where data and queries are continuously moving. As a result, the need to process real-time spatio-temporal data seems clear and real-time stream data management becomes a hot topic. Sliding window model and frequent itemset mining over dynamic data are the most important problems in the context of data mining. Thus, sliding window model for frequent itemset mining is a widely used model for data stream mining due to its emphasis on recent data and its bounded memory requirement. These methods use the traditional transaction-based sliding window model where the window size is based on a fixed number of transactions. Actually, this model supposes that all transactions have a constant rate which is not suited for real-time applications. And the use of this model in such applications endangers their performance. Based on these observations, this paper relaxes the notion of window size and proposes the use of a timestamp-based sliding window model. In our proposed frequent itemset mining algorithm, support conditions are used to differentiate frequents and infrequent patterns. Thereafter, a tree is developed to incrementally maintain the essential information. We evaluate our contribution. The preliminary results are quite promising.

Keywords: real-time spatial big data, frequent itemset, transaction-based sliding window model, timestamp-based sliding window model, weighted frequent patterns, tree, stream query

Procedia PDF Downloads 168
24892 The Extent of Big Data Analysis by the External Auditors

Authors: Iyad Ismail, Fathilatul Abdul Hamid

Abstract:

This research was mainly investigated to recognize the extent of big data analysis by external auditors. This paper adopts grounded theory as a framework for conducting a series of semi-structured interviews with eighteen external auditors. The research findings comprised the availability extent of big data and big data analysis usage by the external auditors in Palestine, Gaza Strip. Considering the study's outcomes leads to a series of auditing procedures in order to improve the external auditing techniques, which leads to high-quality audit process. Also, this research is crucial for auditing firms by giving an insight into the mechanisms of auditing firms to identify the most important strategies that help in achieving competitive audit quality. These results are aims to instruct the auditing academic and professional institutions in developing techniques for external auditors in order to the big data analysis. This paper provides appropriate information for the decision-making process and a source of future information which affects technological auditing.

Keywords: big data analysis, external auditors, audit reliance, internal audit function

Procedia PDF Downloads 78
24891 Comparison of Whole-Body Vibration and Plyometric Exercises on Explosive Power in Non-Athlete Girl Students

Authors: Fereshteh Zarei, Mahdi Kohandel

Abstract:

The aim of this study was investigate and compare plyometric and vibration exercises on muscle explosive power in non-athlete female students. For this purpose, 45 female students from non-athletes selected target then divided in to the three groups, two experimental and one control groups. From all groups were getting pre-tested. Experimental A did whole-body vibration exercises involved standing on one of machine vibration with frequency 30 Hz, amplitude 10 mm and in 5 different postures. Training for each position was 40 seconds with 60 seconds rest between it, and each season 5 seconds was added to duration of each body condition, until time up to 2 minutes for each postures. Exercises were done three times a week for 2 month. Experimental group B did plyometric exercises that include jumping, such as horizontal, vertical, and skipping .They included 10 times repeat for 5 set in each season. Intensity with increasing repetitions and sets were added. At this time, asked from control group that keep a daily activity and avoided strength training, explosive power and. after do exercises by groups we measured factors again. One-way analysis of variance and paired t statistical methods were used to analyze the data. There was significant difference in the amount of explosive power between the control and vibration groups (p=0/048) there was significant difference between the control and plyometric groups (019/0 = p). But between vibration and plyometric groups didn't observe significant difference in the amount of explosive power.

Keywords: vibration, plyometric, exercises, explosive power, non-athlete

Procedia PDF Downloads 457
24890 Solar Power Forecasting for the Bidding Zones of the Italian Electricity Market with an Analog Ensemble Approach

Authors: Elena Collino, Dario A. Ronzio, Goffredo Decimi, Maurizio Riva

Abstract:

The rapid increase of renewable energy in Italy is led by wind and solar installations. The 2017 Italian energy strategy foresees a further development of these sustainable technologies, especially solar. This fact has resulted in new opportunities, challenges, and different problems to deal with. The growth of renewables allows to meet the European requirements regarding energy and environmental policy, but these types of sources are difficult to manage because they are intermittent and non-programmable. Operationally, these characteristics can lead to instability on the voltage profile and increasing uncertainty on energy reserve scheduling. The increasing renewable production must be considered with more and more attention especially by the Transmission System Operator (TSO). The TSO, in fact, every day provides orders on energy dispatch, once the market outcome has been determined, on extended areas, defined mainly on the basis of power transmission limitations. In Italy, six market zone are defined: Northern-Italy, Central-Northern Italy, Central-Southern Italy, Southern Italy, Sardinia, and Sicily. An accurate hourly renewable power forecasting for the day-ahead on these extended areas brings an improvement both in terms of dispatching and reserve management. In this study, an operational forecasting tool of the hourly solar output for the six Italian market zones is presented, and the performance is analysed. The implementation is carried out by means of a numerical weather prediction model, coupled with a statistical post-processing in order to derive the power forecast on the basis of the meteorological projection. The weather forecast is obtained from the limited area model RAMS on the Italian territory, initialized with IFS-ECMWF boundary conditions. The post-processing calculates the solar power production with the Analog Ensemble technique (AN). This statistical approach forecasts the production using a probability distribution of the measured production registered in the past when the weather scenario looked very similar to the forecasted one. The similarity is evaluated for the components of the solar radiation: global (GHI), diffuse (DIF) and direct normal (DNI) irradiation, together with the corresponding azimuth and zenith solar angles. These are, in fact, the main factors that affect the solar production. Considering that the AN performance is strictly related to the length and quality of the historical data a training period of more than one year has been used. The training set is made by historical Numerical Weather Prediction (NWP) forecasts at 12 UTC for the GHI, DIF and DNI variables over the Italian territory together with corresponding hourly measured production for each of the six zones. The AN technique makes it possible to estimate the aggregate solar production in the area, without information about the technologic characteristics of the all solar parks present in each area. Besides, this information is often only partially available. Every day, the hourly solar power forecast for the six Italian market zones is made publicly available through a website.

Keywords: analog ensemble, electricity market, PV forecast, solar energy

Procedia PDF Downloads 162
24889 The Use of Artificial Intelligence to Identify Ore-Prospective Territories in East Kazakhstan

Authors: O. D. Gavrilenko, N. M Temirbekov, Z. A. Mustafina

Abstract:

This article discusses the possibility of using machine learning algorithms to analyze and synthesize historical geological data with mathematical geophysics and geochemistry data, as well as Earth remote sensing (ERS) results. Creating geoinformation systems for such Big Data with their subsequent processing using artificial intelligence methods provides unique opportunities for more accurate minerogenic zoning of territories, which significantly increases the efficiency of geological exploration. This will improve the accuracy of geological exploration and forecast zones with potential mineral resources.

Keywords: methods of remote sensing of the earth, geographic information systems, artificial intelligence, geological geophysical geochemical and minerogenic data, minerogenic model

Procedia PDF Downloads 5
24888 A Model of Teacher Leadership in History Instruction

Authors: Poramatdha Chutimant

Abstract:

The objective of the research was to propose a model of teacher leadership in history instruction for utilization. Everett M. Rogers’ Diffusion of Innovations Theory is applied as theoretical framework. Qualitative method is to be used in the study, and the interview protocol used as an instrument to collect primary data from best practices who awarded by Office of National Education Commission (ONEC). Open-end questions will be used in interview protocol in order to gather the various data. Then, information according to international context of history instruction is the secondary data used to support in the summarizing process (Content Analysis). Dendrogram is a key to interpret and synthesize the primary data. Thus, secondary data comes as the supportive issue in explanation and elaboration. In-depth interview is to be used to collected information from seven experts in educational field. The focal point is to validate a draft model in term of future utilization finally.

Keywords: history study, nationalism, patriotism, responsible citizenship, teacher leadership

Procedia PDF Downloads 283
24887 The Effect of Institutions on Economic Growth: An Analysis Based on Bayesian Panel Data Estimation

Authors: Mohammad Anwar, Shah Waliullah

Abstract:

This study investigated panel data regression models. This paper used Bayesian and classical methods to study the impact of institutions on economic growth from data (1990-2014), especially in developing countries. Under the classical and Bayesian methodology, the two-panel data models were estimated, which are common effects and fixed effects. For the Bayesian approach, the prior information is used in this paper, and normal gamma prior is used for the panel data models. The analysis was done through WinBUGS14 software. The estimated results of the study showed that panel data models are valid models in Bayesian methodology. In the Bayesian approach, the effects of all independent variables were positively and significantly affected by the dependent variables. Based on the standard errors of all models, we must say that the fixed effect model is the best model in the Bayesian estimation of panel data models. Also, it was proved that the fixed effect model has the lowest value of standard error, as compared to other models.

Keywords: Bayesian approach, common effect, fixed effect, random effect, Dynamic Random Effect Model

Procedia PDF Downloads 73
24886 The Persistence of Abnormal Return on Assets: An Exploratory Analysis of the Differences between Industries and Differences between Firms by Country and Sector

Authors: José Luis Gallizo, Pilar Gargallo, Ramon Saladrigues, Manuel Salvador

Abstract:

This study offers an exploratory statistical analysis of the persistence of annual profits across a sample of firms from different European Union (EU) countries. To this end, a hierarchical Bayesian dynamic model has been used which enables the annual behaviour of those profits to be broken down into a permanent structural and a transitory component, while also distinguishing between general effects affecting the industry as a whole to which each firm belongs and specific effects affecting each firm in particular. This breakdown enables the relative importance of those fundamental components to be more accurately evaluated by country and sector. Furthermore, Bayesian approach allows for testing different hypotheses about the homogeneity of the behaviour of the above components with respect to the sector and the country where the firm develops its activity. The data analysed come from a sample of 23,293 firms in EU countries selected from the AMADEUS data-base. The period analysed ran from 1999 to 2007 and 21 sectors were analysed, chosen in such a way that there was a sufficiently large number of firms in each country sector combination for the industry effects to be estimated accurately enough for meaningful comparisons to be made by sector and country. The analysis has been conducted by sector and by country from a Bayesian perspective, thus making the study more flexible and realistic since the estimates obtained do not depend on asymptotic results. In general terms, the study finds that, although the industry effects are significant, more important are the firm specific effects. That importance varies depending on the sector or the country in which the firm carries out its activity. The influence of firm effects accounts for around 81% of total variation and display a significantly lower degree of persistence, with adjustment speeds oscillating around 34%. However, this pattern is not homogeneous but depends on the sector and country analysed. Industry effects depends also on sector and country analysed have a more marginal importance, being significantly more persistent, with adjustment speeds oscillating around 7-8% with this degree of persistence being very similar for most of sectors and countries analysed.

Keywords: dynamic models, Bayesian inference, MCMC, abnormal returns, persistence of profits, return on assets

Procedia PDF Downloads 404
24885 Strategies for Student Recruitment in Civil Engineering

Authors: Diogo Ribeiro, Teresa Neto, Ricardo Santos, Maria Portela, Alexandra Trincão

Abstract:

This article describes a set of innovating student recruitment strategies in a 1st cycle course of Civil Engineering, in particular the Civil Engineering Degree from the School of Engineering - Polytechnic of Porto (ISEP-PP). The strategies described were two-fold, targeting, for one, the increment on the number of admissions for the degree’s first year and two, promoting the re-entry of students who, for whatever reason, interrupted their studies. For the first objective, teacher-student binomials were set, whilst for the second, personalized contacts and assistance were provided. The main initiatives were promoted by the team of degree directors and were upheld with the participation and in consonance with the School’s external relations office. These initiatives were put forward as an attempt to minimize the impact of a national and international crisis on the AEC industry when the sustainability of the course was at risk. The implementation of these strategies was assessed on basis of a statistical analysis of the data collected from official sources and by surveys promoted. The results showed that the re-entry boost of former students, attending classes scattered on the three curricular years, secured registrations on some Curricular Units (UC’s) which more than doubled their numbers. Accompanied by a still incipient but regained interest on Civil Engineering it was possible in the short span of three years to reset the number of new students from less than 10 to the currently maximum allowed of 75, and so invert the tendency of an abrupt decline on the total number of students enrolled on the degree.

Keywords: civil engineering, monitoring, performance indicators, strategies, student recruitment

Procedia PDF Downloads 222
24884 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers

Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen

Abstract:

In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other. As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.

Keywords: AIS, ANN, ECG, hybrid classifiers, PSO

Procedia PDF Downloads 451
24883 National Assessment for Schools in Saudi Arabia: Score Reliability and Plausible Values

Authors: Dimiter M. Dimitrov, Abdullah Sadaawi

Abstract:

The National Assessment for Schools (NAFS) in Saudi Arabia consists of standardized tests in Mathematics, Reading, and Science for school grade levels 3, 6, and 9. One main goal is to classify students into four categories of NAFS performance (minimal, basic, proficient, and advanced) by schools and the entire national sample. The NAFS scoring and equating is performed on a bounded scale (D-scale: ranging from 0 to 1) in the framework of the recently developed “D-scoring method of measurement.” The specificity of the NAFS measurement framework and data complexity presented both challenges and opportunities to (a) the estimation of score reliability for schools, (b) setting cut-scores for the classification of students into categories of performance, and (c) generating plausible values for distributions of student performance on the D-scale. The estimation of score reliability at the school level was performed in the framework of generalizability theory (GT), with students “nested” within schools and test items “nested” within test forms. The GT design was executed via a multilevel modeling syntax code in R. Cut-scores (on the D-scale) for the classification of students into performance categories was derived via a recently developed method of standard setting, referred to as “Response Vector for Mastery” (RVM) method. For each school, the classification of students into categories of NAFS performance was based on distributions of plausible values for the students’ scores on NAFS tests by grade level (3, 6, and 9) and subject (Mathematics, Reading, and Science). Plausible values (on the D-scale) for each individual student were generated via random selection from a statistical logit-normal distribution with parameters derived from the student’s D-score and its conditional standard error, SE(D). All procedures related to D-scoring, equating, generating plausible values, and classification of students into performance levels were executed via a computer program in R developed for the purpose of NAFS data analysis.

Keywords: large-scale assessment, reliability, generalizability theory, plausible values

Procedia PDF Downloads 23
24882 The Effect of the Marketing Culture on Improving the E-service Quality: A Comparative Study of Foreign and Domestic Information Technology Companies in the Arab Republic of Egypt

Authors: E. Elgohary, R. Abdelazyz

Abstract:

The research aims to clarify the effect of the marketing culture on improving the e-service quality for foreign and domestic information technology companies in the Arab Republic of Egypt. So the researcher sought to include the dimensions of the marketing culture, which are (customer service, management style, sales mission, internal communications, technology, wages and rewards, innovation) as measures of marketing culture for its effect on improving the e-service quality in this research. The research population consists of employees and customers of the companies under study. The research problem was the following question: What is the effect of the actual application of marketing culture on improving the e-service quality? To answer that, three main hypotheses were adopted, and they were tested by statistical means for the data collected through a questionnaire prepared and distributed for this purpose. Accordingly, the research presented a set of results, the most important of which are: the need to pay attention to the dimensions of the marketing culture to improve the e-service quality, foreign companies were the most popular companies in applying the marketing culture compared to local companies. The research also recommends designing a system to continuously measure the performance of electronic service providers and work on spreading the culture of innovation among employees, linking reward programs to the extent of commitment to applying the elements of marketing culture while doing business.

Keywords: marketing culture, e-service quality, measurement models, quality measurements

Procedia PDF Downloads 234
24881 Distribution of HLA-DQA1 and HLA-DQB1 Alleles in Thais: Genetics Database Insight for COVID-19 Severity

Authors: Jinu Phonamontham

Abstract:

Coronavirus, also referred to as COVID-19, is a virus caused by the SARS-Cov-2 virus. The pandemic has caused over 10 million cases and 500,000 deaths worldwide through the end of June 2020. In a previous study, HLA-DQA1*01:02 allele was associated with COVID-19 disease (p-value = 0.0121). Furthermore, there was a statistical significance between HLA- DQB1*06:02 and COVID-19 in the Italian population by Bonferroni’s correction (p-value = 0.0016). Nevertheless, there is no data describing the distribution of HLA alleles as a valid marker for prediction of COVID-19 in the Thai population. We want to investigate the prevalence of HLA-DQA1*01:02 and HLA-DQB1*06:02 alleles that are associated with severe COVID-19 in the Thai population. In this study, we recruited 200 healthy Thai individuals. Genomic DNA samples were isolated from EDTA blood using Genomic DNA Mini Kit. HLA genotyping was conducted using the Lifecodes HLA SSO typing kits (Immucor, West Avenue, Stamford, USA). The frequency of HLA-DQA1 alleles in Thai population, consisting of HLA-DQA1*01:01 (27.75%), HLA-DQA1*01:02 (24.50%), HLA-DQA1*03:03 (13.00%), HLA-DQA1*06:01 (10.25%) and HLA-DQA1*02:01 (6.75%). Furthermore, the distributions of HLA-DQB1 alleles were HLA-DQB1*05:02 (21.50%), HLA-DQB1*03:01 (15.75%), HLA-DQB1*05:01 (14.50%), HLA-DQB1*03:03 (11.00%) and HLA-DQB1*02:02 (8.25%). Particularly, HLA- DQA1*01:02 (29.00%) allele was the highest frequency in the NorthEast group, but there was not significant difference when compared with the other regions in Thais (p-value = 0.4202). HLA-DQB1*06:02 allele was similarly distributed in Thai population and there was no significant difference between Thais and China (3.8%) and South Korea (6.4%) and Japan (8.2%) with p-value > 0.05. Whereas, South Africa (15.7%) has a significance with Thais by p-value of 0.0013. This study supports the specific genotyping of the HLA-DQA1*01:02 and HLA-DQB1*06:02 alleles to screen severe COVID-19 in Thai and many populations.

Keywords: HLA-DQA1*01:02, HLA-DQB1*06:02, Asian, Thai population

Procedia PDF Downloads 102
24880 Topic Modelling Using Latent Dirichlet Allocation and Latent Semantic Indexing on SA Telco Twitter Data

Authors: Phumelele Kubheka, Pius Owolawi, Gbolahan Aiyetoro

Abstract:

Twitter is one of the most popular social media platforms where users can share their opinions on different subjects. As of 2010, The Twitter platform generates more than 12 Terabytes of data daily, ~ 4.3 petabytes in a single year. For this reason, Twitter is a great source for big mining data. Many industries such as Telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model represented in Table 1. A higher topic coherence score indicates better performance of the model.

Keywords: big data, latent Dirichlet allocation, latent semantic indexing, telco, topic modeling, twitter

Procedia PDF Downloads 156
24879 Enhance the Power of Sentiment Analysis

Authors: Yu Zhang, Pedro Desouza

Abstract:

Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modelling and testing work was done in R and Greenplum in-database analytic tools.

Keywords: sentiment analysis, social media, Twitter, Amazon, data mining, machine learning, text mining

Procedia PDF Downloads 359
24878 Prescription of Lubricating Eye Drops in the Emergency Eye Department: A Quality Improvement Project

Authors: Noorulain Khalid, Unsaar Hayat, Muhammad Chaudhary, Christos Iosifidis, Felipe Dhawahir-Scala, Fiona Carley

Abstract:

Dry eye disease (DED) is a common condition seen in the emergency eye department (EED) at Manchester Royal Eye Hospital (MREH). However, there is variability in the prescription of lubricating eye drops among different healthcare providers. The aim of this study was to develop an up-to-date, standardized algorithm for the prescription of lubricating eye drops in the EED at MREH based on international and national guidelines. The study also aimed to assess the impact of implementing the guideline on the rate of inappropriate lubricant prescriptions. Primarily, the impact was to be assessed in the form of the appropriateness of prescriptions for patients’ DED. The impact was secondary to be assessed through analysis of the cost to the hospital. Data from 845 patients who attended the EED over a 3-month period were analyzed, and 157 patients met the inclusion and exclusion criteria. After conducting a review of the literature and collaborating with the corneal team, an algorithm for the prescription of lubricants in the EED was developed. Three plan-do-study-act (PDSA) cycles were conducted, with interventions such as emails, posters, in-person reminders, and education for incoming trainees. The appropriateness of prescriptions was evaluated against the guidelines. Data were collected from patient records and analyzed using statistical methods. The appropriateness of prescriptions was assessed by comparing them to the guidelines and by clinical correlation with a specialized registrar. The study found a substantial improvement in the number of appropriate prescriptions, with an increase from 55% to 93% over the three PDSA cycles. There was additionally a 51% reduction in expenditure on lubricant prescriptions, resulting in cost savings for the hospital (approximate saving of £50/week). Theoretical importance: Appropriate prescription of lubricating eye drops improves disease management for patients and reduces costs for the hospital. The development and implementation of a standardized guideline facilitate the achievement of these goals. Conclusion: This study highlights the inconsistent management of DED in the EED and the potential lack of training in this area for healthcare providers. The implementation of a standardized, easy-to-follow guideline for lubricating eye drops can help to improve disease management while also resulting in cost savings for the hospital.

Keywords: lubrication, dry eye disease, guideline, prescription

Procedia PDF Downloads 78
24877 Half Dose Tissue Plasminogen Activator for Intermediate-Risk Pulmonary Embolism

Authors: Macie Matta, Ahmad Jabri, Stephanie Jackson

Abstract:

Introduction: In the absence of hypotension, pulmonary embolism (PE) causing right ventricular dysfunction or strain, whether confirmed by imaging or cardiac biomarkers, is deemed to be an intermediate-risk category. Urgent treatment of intermediate-risk PE can prevent progression to hemodynamic instability and death. Management options include thrombolysis, thrombectomy, or systemic anticoagulation. We aim to evaluate the short-term outcomes of a half-dose tissue plasminogen activator (tPA) for the management of intermediate-risk PE. Methods: We retrospectively identified adult patients diagnosed with intermediate-risk PE between the years 2000 and 2021. Demographic data, lab values, imaging, treatment choice, and outcomes were all obtained through chart review. Primary outcomes measured include major bleeding events and in-hospital mortality. Patients on standard systemic anticoagulation without receiving thrombolysis or thrombectomy served as controls. Patient data were analyzed using SAS®️ Software (version 9.4; Cary, NC) to compare individuals that received half-dose tPA with controls, and statistical significance was set at a p-value of 0.05. Results: We included 57 patients in our final analysis, with 19 receiving tPA. Patient characteristics and comorbidities were comparable between both groups. There was a significant difference between PE location, presence of acute deep vein thrombosis, and peak troponin level between both groups. The thrombolytic cohort was more likely to demonstrate a 60/60 sign and thrombus in transit finding on echocardiography than controls. The thrombolytic group was more likely to have major bleeding (17% vs 7.9%, p= 0.4) and in-hospital mortality (5.3% vs 0%, p=0.3); however, this was not statistically significant. Patients who received half-dose tPA had non-significantly higher rates of major bleeding and in-hospital mortality. Larger scale, randomized control trials are needed to establish the benefit and safety of thrombolytics in patients with intermediate-risk PE.

Keywords: pulmonary embolism, half dose thrombolysis, tissue plasminogen activator, cardiac biomarkers, echocardiographic findings, major bleeding event

Procedia PDF Downloads 78
24876 Analysis of NMDA Receptor 2B Subunit Gene (GRIN2B) mRNA Expression in the Peripheral Blood Mononuclear Cells of Alzheimer's Disease Patients

Authors: Ali̇ Bayram, Semih Dalkilic, Remzi Yigiter

Abstract:

N-methyl-D-aspartate (NMDA) receptor is a subtype of glutamate receptor and plays a pivotal role in learning, memory, neuronal plasticity, neurotoxicity and synaptic mechanisms. Animal experiments were suggested that glutamate-induced excitotoxic injuriy and NMDA receptor blockage lead to amnesia and other neurodegenerative diseases including Alzheimer’s disease (AD), Huntington’s disease, amyotrophic lateral sclerosis. Aim of this study is to investigate association between NMDA receptor coding gene GRIN2B expression level and Alzheimer disease. The study was approved by the local ethics committees, and it was conducted according to the principles of the Declaration of Helsinki and guidelines for the Good Clinical Practice. Peripheral blood was collected 50 patients who diagnosed AD and 49 healthy control individuals. Total RNA was isolated with RNeasy midi kit (Qiagen) according to manufacturer’s instructions. After checked RNA quality and quantity with spectrophotometer, GRIN2B expression levels were detected by quantitative real time PCR (QRT-PCR). Statistical analyses were performed, variance between two groups were compared with Mann Whitney U test in GraphpadInstat algorithm with 95 % confidence interval and p < 0.05. After statistical analyses, we have determined that GRIN2B expression levels were down regulated in AD patients group with respect to control group. But expression level of this gene in each group was showed high variability. İn this study, we have determined that NMDA receptor coding gene GRIN2B expression level was down regulated in AD patients when compared with healthy control individuals. According to our results, we have speculated that GRIN2B expression level was associated with AD. But it is necessary to validate these results with bigger sample size.

Keywords: Alzheimer’s disease, N-methyl-d-aspartate receptor, NR2B, GRIN2B, mRNA expression, RT-PCR

Procedia PDF Downloads 395