Search results for: government data
25325 Application of Logistics Regression Model to Ascertain the Determinants of Food Security among Households in Maiduguri, Metropolis, Borno State, Nigeria
Authors: Abdullahi Yahaya Musa, Harun Rann Bakari
Abstract:
The study examined the determinants of food security among households in Maiduguri, Metropolis, Borno State, Nigeria. The objectives of the study are to: examine the determinants of food security among households; identify the coping strategies employed by food-insecure households in Maiduguri, Metropolis, Borno State, Nigeria. The population of the study is 843,964 respondents out of which 400 respondents were sampled. The study used a self-developed questionnaire to collect data from four hundred (400) respondents. Four hundred (400) copies of questionnaires were administered and all were retrieved, making 100% return rate. The study employed descriptive and inferential statistics for data analysis. Descriptive statistics (frequency counts and percentages) was used to analyze the socio-economic characteristics of the respondents and objective four, while inferential statistics (logit regression analysis) was used to analyze one. Four hundred (400) copies of questionnaires were administered and all the four hundred (400) were retrieved, making a 100% return rate. The results were presented in tables and discussed according to the research objectives. The study revealed that HHA, HHE, HHSZ, HHSX, HHAS, HHI, HHFS, HHFE, HHAC and HHCDR were the determinants of food security in Maiduguri Metropolis. Relying on less preferred foods, purchasing food on credit, limiting food intake to ensure children get enough, borrowing money to buy foodstuffs, relying on help from relatives or friends outside the household, adult family members skipping or reducing a meal because of insufficient finances and ration money to household members to buy street food were the coping strategies employed by food-insecure households in Maiduguri metropolis. The study recommended that Nigeria Government should intensify the fight against the Boko haram insurgency. This will put an end to Boko Haram Insurgency and enable farmers to return to farming in Borno state.Keywords: internally displaced persons, food security, coping strategies, descriptive statistics, logistics regression model, odd ratio
Procedia PDF Downloads 14725324 Minimum Data of a Speech Signal as Special Indicators of Identification in Phonoscopy
Authors: Nazaket Gazieva
Abstract:
Voice biometric data associated with physiological, psychological and other factors are widely used in forensic phonoscopy. There are various methods for identifying and verifying a person by voice. This article explores the minimum speech signal data as individual parameters of a speech signal. Monozygotic twins are believed to be genetically identical. Using the minimum data of the speech signal, we came to the conclusion that the voice imprint of monozygotic twins is individual. According to the conclusion of the experiment, we can conclude that the minimum indicators of the speech signal are more stable and reliable for phonoscopic examinations.Keywords: phonogram, speech signal, temporal characteristics, fundamental frequency, biometric fingerprints
Procedia PDF Downloads 14425323 The Role of Hemoglobin in Psychological Well Being and Academic Achievement of College Female Students
Authors: Ramesh Adsul, Vikas Minchekar
Abstract:
The present study attempts to explore the differences in academic achievement and psychological well being and its components – satisfaction, efficiency, sociability, mental health, interpersonal relations in low and moderate level of hemoglobin of college female students. It also tries to find out how hemoglobin, psychological well –being and academic achievement correlate to each other. For this study 200 (100 low hemoglobin level and 100 moderate hemoglobin level) college female students were selected by random sampling method. This sample is collected from the project ‘Health awareness and hemoglobin improvement programme’, which is being collaboratively conducted by ‘Akshyabhasha, MESA, U.S.A. and Smt. M.G. Kanya Mahavidyalaya, Sangli, Maharashtra, India. Psychological Well-Being Scale was used to collect the data. Students’ academic achievement was collected through college record, and hemoglobin level of female students was collected from project record. Data was analyzed by using independent ‘t’ test and Pearson’s correlation coefficient. The finding of the study revealed significant differences between low hemoglobin and moderate hemoglobin groups regarding efficiency and mental health. No significant difference was observed on satisfaction, sociability and interpersonal relations. It is also found that there is significant difference between low hemoglobin and moderate hemoglobin groups on academic achievement. The study revealed positive correlation between hemoglobin and academic achievement and psychological well-being and academic achievement. Moderate hemoglobin level create more efficiency, better mental health and good academic achievement in female students. One could say that there is significant role hemoglobin plays in psychological well being and academic achievement of college female students. Anemia is widely prevalent in all the states if India among all age groups. In India, college girls contribute major portion of population. It has been reported that 80% female population has hemoglobin deficiency, due to illiteracy of female, family structure, status of women, diet habits, gender discrimination and various superstitions. The deficiency of hemoglobin affects physical and mental health, general behavior and academic performance of students. This study is useful to educational managements, counselors, parents, students and Government also. In the development of personality physical as well as psychological health is essential. This research findings will create awareness about physical and mental health among people and society.Keywords: academic achievement, college female students, hemoglobin, psychological well-being
Procedia PDF Downloads 29325322 A Non-parametric Clustering Approach for Multivariate Geostatistical Data
Authors: Francky Fouedjio
Abstract:
Multivariate geostatistical data have become omnipresent in the geosciences and pose substantial analysis challenges. One of them is the grouping of data locations into spatially contiguous clusters so that data locations within the same cluster are more similar while clusters are different from each other, in some sense. Spatially contiguous clusters can significantly improve the interpretation that turns the resulting clusters into meaningful geographical subregions. In this paper, we develop an agglomerative hierarchical clustering approach that takes into account the spatial dependency between observations. It relies on a dissimilarity matrix built from a non-parametric kernel estimator of the spatial dependence structure of data. It integrates existing methods to find the optimal cluster number and to evaluate the contribution of variables to the clustering. The capability of the proposed approach to provide spatially compact, connected and meaningful clusters is assessed using bivariate synthetic dataset and multivariate geochemical dataset. The proposed clustering method gives satisfactory results compared to other similar geostatistical clustering methods.Keywords: clustering, geostatistics, multivariate data, non-parametric
Procedia PDF Downloads 47725321 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records
Authors: Sara ElElimy, Samir Moustafa
Abstract:
Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).Keywords: big data analytics, machine learning, CDRs, 5G
Procedia PDF Downloads 13925320 A Data Mining Approach for Analysing and Predicting the Bank's Asset Liability Management Based on Basel III Norms
Authors: Nidhin Dani Abraham, T. K. Sri Shilpa
Abstract:
Asset liability management is an important aspect in banking business. Moreover, the today’s banking is based on BASEL III which strictly regulates on the counterparty default. This paper focuses on prediction and analysis of counter party default risk, which is a type of risk occurs when the customers fail to repay the amount back to the lender (bank or any financial institutions). This paper proposes an approach to reduce the counterparty risk occurring in the financial institutions using an appropriate data mining technique and thus predicts the occurrence of NPA. It also helps in asset building and restructuring quality. Liability management is very important to carry out banking business. To know and analyze the depth of liability of bank, a suitable technique is required. For that a data mining technique is being used to predict the dormant behaviour of various deposit bank customers. Various models are implemented and the results are analyzed of saving bank deposit customers. All these data are cleaned using data cleansing approach from the bank data warehouse.Keywords: data mining, asset liability management, BASEL III, banking
Procedia PDF Downloads 55325319 Parallel Coordinates on a Spiral Surface for Visualizing High-Dimensional Data
Authors: Chris Suma, Yingcai Xiao
Abstract:
This paper presents Parallel Coordinates on a Spiral Surface (PCoSS), a parallel coordinate based interactive visualization method for high-dimensional data, and a test implementation of the method. Plots generated by the test system are compared with those generated by XDAT, a software implementing traditional parallel coordinates. Traditional parallel coordinate plots can be cluttered when the number of data points is large or when the dimensionality of the data is high. PCoSS plots display multivariate data on a 3D spiral surface and allow users to see the whole picture of high-dimensional data with less cluttering. Taking advantage of the 3D display environment in PCoSS, users can further reduce cluttering by zooming into an axis of interest for a closer view or by moving vantage points and by reorienting the viewing angle to obtain a desired view of the plots.Keywords: human computer interaction, parallel coordinates, spiral surface, visualization
Procedia PDF Downloads 1225318 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters
Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu
Abstract:
Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning
Procedia PDF Downloads 20125317 School Based Assessment Issues in Selected Malaysian Primary Schools
Authors: Nur Amalina Dayana Abd Aziz
Abstract:
Assessment is an integral part of teaching and learning in any syllabus in the world. Recently, a new assessment system, School-Based Assessment (SBA) was introduced and implemented in the Malaysian education system to promote a more holistic, integrated and balanced assessment system. This effort is part of the reformation made in the Government Transformation Plan (GTP) to produce a world-class human capital as we are reaching and achieving the Vision 2020 in the near future. However, this new change has raised awareness and concerns from teachers, students, parents and non-profit organizations on how the new assessment is to be implemented and how it is affecting the students and teachers particularly. Therefore, this paper aims to investigate the issues that teachers face in implementing SBA in primary schools, the measures taken to address the issues and to propose ways of managing school-based assessment. Five national primary schools focusing in the urban areas in the Selangor state are chosen for this study to carry out. Data for the study will be gathered from interviews with teachers from each school, surveys and classrooms observation will be conducted in each school, and relevant documents are collected from the selected schools. The findings of this study will present the current issues that teachers from various types of national primary schools are facing and what actions they took to overcome the problems in carrying out SBA. Suggestions on how to better manage school-based assessment for teachers are also provided in this paper.Keywords: community of practice, curriculum, managing change, school-based assessment
Procedia PDF Downloads 42625316 Unsupervised Text Mining Approach to Early Warning System
Authors: Ichihan Tai, Bill Olson, Paul Blessner
Abstract:
Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.Keywords: early warning system, knowledge management, market prediction, topic modeling.
Procedia PDF Downloads 33825315 The Role of Synthetic Data in Aerial Object Detection
Authors: Ava Dodd, Jonathan Adams
Abstract:
The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.Keywords: computer vision, machine learning, synthetic data, YOLOv4
Procedia PDF Downloads 22525314 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks
Authors: K. Indra Gandhi
Abstract:
Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.Keywords: data acquisition, model-driven development, separation of concern, wireless sensor networks
Procedia PDF Downloads 43425313 Comparative Analysis of Data Gathering Protocols with Multiple Mobile Elements for Wireless Sensor Network
Authors: Bhat Geetalaxmi Jairam, D. V. Ashoka
Abstract:
Wireless Sensor Networks are used in many applications to collect sensed data from different sources. Sensed data has to be delivered through sensors wireless interface using multi-hop communication towards the sink. The data collection in wireless sensor networks consumes energy. Energy consumption is the major constraints in WSN .Reducing the energy consumption while increasing the amount of generated data is a great challenge. In this paper, we have implemented two data gathering protocols with multiple mobile sinks/elements to collect data from sensor nodes. First, is Energy-Efficient Data Gathering with Tour Length-Constrained Mobile Elements in Wireless Sensor Networks (EEDG), in which mobile sinks uses vehicle routing protocol to collect data. Second is An Intelligent Agent-based Routing Structure for Mobile Sinks in WSNs (IAR), in which mobile sinks uses prim’s algorithm to collect data. Authors have implemented concepts which are common to both protocols like deployment of mobile sinks, generating visiting schedule, collecting data from the cluster member. Authors have compared the performance of both protocols by taking statistics based on performance parameters like Delay, Packet Drop, Packet Delivery Ratio, Energy Available, Control Overhead. Authors have concluded this paper by proving EEDG is more efficient than IAR protocol but with few limitations which include unaddressed issues likes Redundancy removal, Idle listening, Mobile Sink’s pause/wait state at the node. In future work, we plan to concentrate more on these limitations to avail a new energy efficient protocol which will help in improving the life time of the WSN.Keywords: aggregation, consumption, data gathering, efficiency
Procedia PDF Downloads 49725312 The Ethical Imperative of Corporate Social Responsibility Practice and Disclosure by Firms in Nigeria Delta Swamplands: A Qualitative Analysis
Authors: Augustar Omoze Ehighalua, Itotenaan Henry Ogiri
Abstract:
As a mono-product economy, Nigeria relies largely on oil revenues for its foreign exchange earnings and the exploration activities of firms operating in the Niger Delta region have left in its wake tales of environmental degradation, poverty and misery. This, no doubt, have created corporate social responsibility issues in the region. The focus of this research is the critical evaluation of the ethical response to Corporate Social Responsibility (CSR) practice by firms operating in Nigeria Delta Swamplands. While CSR is becoming more popular in developed society with effective practice guidelines and reporting benchmark, there is a relatively low level of awareness and selective applicability of existing international guidelines to effectively support CSR practice in Nigeria. This study, haven identified the lack of CSR institutional framework attempts to develop an ethically-driven CSR transparency benchmark laced within a regulatory framework based on international best practices. The research adopts a qualitative methodology and makes use of primary data collected through semi-structured interviews conducted across the six core states of the Niger Delta Region. More importantly, the study adopts an inductive, interpretivist philosophical paradigm that reveal deep phenomenological insights into what local communities, civil society and government officials consider as good ethical benchmark for responsible CSR practice by organizations. The institutional theory provides for the main theoretical foundation, complemented by the stakeholder and legitimacy theories. The Nvivo software was used to analyze the data collected. This study shows that ethical responsibility is lacking in CSR practice by firms in the Niger Delta Region of Nigeria. Furthermore, findings of the study indicate key issues of environmental, health and safety, human rights, and labour as fundamental in developing an effective CSR practice guideline for Nigeria. The study has implications for public policy formulation as well as managerial perspective.Keywords: corporate social responsibility, CSR, ethics, firms, Niger-Delta Swampland, Nigeria
Procedia PDF Downloads 10625311 Killing for the Great Peace: An Internal Perspective on the Anti-Manchu Theme in the Taiping Movement
Authors: Zihao He
Abstract:
The majority of existing studies on the Taiping Movement (1851-1864) viewed their anti-Manchu attitudes as nationalist agendas: Taiping was aimed at revolting against the Manchu government and establishing a new political regime. To explain these aggressive and violent attitudes towards Manchu, these studies mainly found socio-economic factors and stressed the status of “being deprived”. Even the ‘demon-slaying’ narrative of the Taiping to dehumanize the Manchu tends to be viewed as a “religious tool” to achieve their political, nationalist aim. This paper argues that these studies on Taiping’s anti-Manchu attitudes and behaviors are analyzed from an external angle and have two major problems. Firstly, they distinguished “religion” from “nationalist” or “political”, focusing on the “political” nature of the movement. “Religion” and the religious experience within Taiping were largely ignored. This paper argues that there was no separable and independent “religion” in the Taiping Movement, as opposed to secular, nationalist politics. Secondly, these analyses held an external perspective on Taiping’s anti-Manchu agenda. Demonizing and killing Manchu were viewed as purely political actions. On the contrary, this paper focuses on the internal perspective of anti-Manchu narratives in the Taiping Movement. The method of this paper is mainly textual analysis, focusing on the official documents, edicts, and proclamations of the Taiping movement. It views the writing of the Taiping as a coherent narrative and rhetoric, which was attractive and convincing for its followers. In terms of the main findings, firstly, internal and external perspectives on anti-Manchu violence are different. Externally, violence was viewed as a tool and necessary process to achieve the political goal. However, internally speaking, in Taiping’s writing, violence was a result of Godlessness, which would be solved as far as the faith in God is restored in China. Having a framework of universal love among human beings as sons and daughters of the Heavenly Father and killing was forbidden, the Taiping excluded Manchus from the family of human beings and demonized them. “Demon-slaying” was not violence. It was constructed as a necessary process to achieve the Great Peace. Moreover, Taiping’s anti-Manchu violence was not merely “political.” Rather, the category “religion” and its binary opposition, “secular,” is not suitable for Taiping. A key point related to this argument is the revolutionary violence against the Manchu government, which inherited the traditional “Heavenly Mandate” model. From an internal, theological perspective, anti-Manchu was ordained and commanded by the Heavenly Father. Manchu, as a regime, was standing as a hindrance in the path toward God. Besides, Manchu was not only viewed as a regime, but they were also “demons.” Therefore, the paper examines how Manchus were dehumanized in Taiping’s writings and were situated outside of the consideration of nonviolent and love. Manchu as a regime and Manchu as demons are in a dynamic relationship. As a regime, the Manchu government was preventing Chinese people from worshipping the Heavenly Father, so they were demonized. As they were demons, killing Manchus during the revolt was justified and not viewed as being contradicted the universal love among human beings.Keywords: anti-manchu, demon-slaying, heavenly mandate, religion and violence, the taiping movement.
Procedia PDF Downloads 7125310 Status and Results from EXO-200
Authors: Ryan Maclellan
Abstract:
EXO-200 has provided one of the most sensitive searches for neutrinoless double-beta decay utilizing 175 kg of enriched liquid xenon in an ultra-low background time projection chamber. This detector has demonstrated excellent energy resolution and background rejection capabilities. Using the first two years of data, EXO-200 has set a limit of 1.1x10^25 years at 90% C.L. on the neutrinoless double-beta decay half-life of Xe-136. The experiment has experienced a brief hiatus in data taking during a temporary shutdown of its host facility: the Waste Isolation Pilot Plant. EXO-200 expects to resume data taking in earnest this fall with upgraded detector electronics. Results from the analysis of EXO-200 data and an update on the current status of EXO-200 will be presented.Keywords: double-beta, Majorana, neutrino, neutrinoless
Procedia PDF Downloads 41425309 Variation Theory and Mixed Instructional Approaches: Advancing Conceptual Understanding in Geometry
Authors: Belete Abebaw, Mulugeta Atinafu, Awoke Shishigu
Abstract:
The study aimed to examine students’ problem-solving skills through mixed instruction (variation theory based Geogerba assisted problem-solving instructional approaches). A total of 125 students divided into 4 intact groups participated in the study. The study employed a quasi-experimental research design. Three intact groups were randomly assigned as a treatment group, while one group was taken as a comparison group. Each of the groups took a specific instructional approach, while the comparison group proceeded as usual without any changes to the instructional process for all sessions. Both pre and post problem-solving tests were administered to all groups. To analyze the data and examine the differences (if any) in each group, ANCOVA and Paired samples t-tests were employed. There was a significant mean difference between students pre-test and post-test in their conceptual understanding of each treatment group. Furthermore, the mixed treatment had a large mean difference. It was recommended that teachers give attention to using variation theory-based geometry problem-solving approaches for students’ better understanding. Administrators should emphasize launching Geogebra software through IT labs in schools, and government officials should appreciate the implementation of technology in schools.Keywords: conceptual understanding, Geogebra, learning geometry, problem solving approaches, variation theory
Procedia PDF Downloads 2625308 Factors Affecting Customer Loyalty in the Independent Surveyor Service Industry in Indonesia
Authors: Sufrin Hannan, Budi Suharjo, Rita Nurmalina, Kirbrandoko
Abstract:
The challenge for independent surveyor service companies now is growing with increasing uncertainty in business. Protection from the government for domestic independent surveyor industry from competitor attack, such as entering the global surveyors to Indonesia also no longer exists. Therefore, building customer loyalty becomes very important to create a long-term relationship between an independent surveyor with its customers. This study aims to develop a model that can be used to build customer loyalty by looking at various factors that determine customer loyalty, especially on independent surveyors for coal inspection in Indonesia. The development of this model uses the relationship marketing approach. Testing of the hypothesis is done by testing the variables that determine customer loyalty, either directly or indirectly, which amounted to 10 variables. The data were collected from 200 questionnaires filled by independent surveyor company decision makers from 51 exporting companies and coal trading companies in Indonesia and analyzed using Structural Equation Model (SEM). The results show that customer loyalty of independent surveyors is influenced by customer satisfaction, trust, switching-barrier, and relationship-bond. Research on customer satisfaction shows that customer satisfaction is influenced by the perceived quality and perceived value, while perceived quality is influenced by reliability, assurance, responsiveness, and empathy.Keywords: relationship marketing, customer loyalty, customer satisfaction, switching barriers, relationship bonds
Procedia PDF Downloads 16925307 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model
Authors: Amit R. Bhende, G. K. Awari
Abstract:
Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis
Procedia PDF Downloads 43625306 Spatio-Temporal Data Mining with Association Rules for Lake Van
Authors: Tolga Aydin, M. Fatih Alaeddinoğlu
Abstract:
People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.Keywords: apriori algorithm, association rules, data mining, spatio-temporal data
Procedia PDF Downloads 37425305 Building Data Infrastructure for Public Use and Informed Decision Making in Developing Countries-Nigeria
Authors: Busayo Fashoto, Abdulhakeem Shaibu, Justice Agbadu, Samuel Aiyeoribe
Abstract:
Data has gone from just rows and columns to being an infrastructure itself. The traditional medium of data infrastructure has been managed by individuals in different industries and saved on personal work tools; one of such is the laptop. This hinders data sharing and Sustainable Development Goal (SDG) 9 for infrastructure sustainability across all countries and regions. However, there has been a constant demand for data across different agencies and ministries by investors and decision-makers. The rapid development and adoption of open-source technologies that promote the collection and processing of data in new ways and in ever-increasing volumes are creating new data infrastructure in sectors such as lands and health, among others. This paper examines the process of developing data infrastructure and, by extension, a data portal to provide baseline data for sustainable development and decision making in Nigeria. This paper employs the FAIR principle (Findable, Accessible, Interoperable, and Reusable) of data management using open-source technology tools to develop data portals for public use. eHealth Africa, an organization that uses technology to drive public health interventions in Nigeria, developed a data portal which is a typical data infrastructure that serves as a repository for various datasets on administrative boundaries, points of interest, settlements, social infrastructure, amenities, and others. This portal makes it possible for users to have access to datasets of interest at any point in time at no cost. A skeletal infrastructure of this data portal encompasses the use of open-source technology such as Postgres database, GeoServer, GeoNetwork, and CKan. These tools made the infrastructure sustainable, thus promoting the achievement of SDG 9 (Industries, Innovation, and Infrastructure). As of 6th August 2021, a wider cross-section of 8192 users had been created, 2262 datasets had been downloaded, and 817 maps had been created from the platform. This paper shows the use of rapid development and adoption of technologies that facilitates data collection, processing, and publishing in new ways and in ever-increasing volumes. In addition, the paper is explicit on new data infrastructure in sectors such as health, social amenities, and agriculture. Furthermore, this paper reveals the importance of cross-sectional data infrastructures for planning and decision making, which in turn can form a central data repository for sustainable development across developing countries.Keywords: data portal, data infrastructure, open source, sustainability
Procedia PDF Downloads 9825304 Ascribing Identities and Othering: A Multimodal Discourse Analysis of a BBC Documentary on YouTube
Authors: Shomaila Sadaf, Margarethe Olbertz-Siitonen
Abstract:
This study looks at identity and othering in discourses around sensitive issues in social media. More specifically, the study explores the multimodal resources and narratives through which the other is formed, and identities are ascribed in online spaces. As an integral part of social life, media spaces have become an important site for negotiating and ascribing identities. In line with recent research, identity is seen hereas constructions of belonging which go hand in hand with processes of in- and out-group formations that in some cases may lead to othering. Previous findings underline that identities are neither fixed nor limited but rather contextual, intersectional, and interactively achieved. The goal of this study is to explore and develop an understanding of how people co-construct the ‘other’ and ascribe certain identities in social media using multiple modes. In the beginning of the year 2018, the British government decided to include relationships, sexual orientation, and sex education into the curriculum of state funded primary schools. However, the addition of information related to LGBTQ+in the curriculum has been met with resistance, particularly from religious parents.For example, the British Muslim community has voiced their concerns and protested against the actions taken by the British government. YouTube has been used by news companies to air video stories covering the protest and narratives of the protestors along with the position ofschool officials. The analysis centers on a YouTube video dealing with the protest ofa local group of parents against the addition of information about LGBTQ+ in the curriculum in the UK. The video was posted in 2019. By the time of this study, the videos had approximately 169,000 views andaround 6000 comments. In deference to multimodal nature of YouTube videos, this study utilizes multimodal discourse analysis as a method of choice. The study is still ongoing and therefore has not yet yielded any final results. However, the initial analysis indicates a hierarchy of ascribing identities in the data. Drawing on multimodal resources, the media works with social categorizations throughout the documentary, presenting and classifying involved conflicting parties in the light of their own visible and audible identifications. The protesters can be seen to construct a strong group identity as Muslim parents (e.g., clothing and reference to shared values). While the video appears to be designed as a documentary that puts forward facts, the media does not seem to succeed in taking a neutral position consistently throughout the video. At times, the use of images, soundsand language contributes to the formation of “us” vs. “them”, where the audience is implicitly encouraged to pick a side. Only towards the end of the documentary this problematic opposition is addressed and critically reflected through an expert interview that is – interestingly – visually located outside the previously presented ‘battlefield’. This study contributes to the growing understanding of the discursive construction of the ‘other’ in social media. Videos available online are a rich source for examining how the different social actors ascribe multiple identities and form the other.Keywords: identity, multimodal discourse analysis, othering, youtube
Procedia PDF Downloads 11425303 Migration, Food Security, Rapid Urbanization and Population Rise in Nigeria: A Wake-Up Call to Policy-Makers
Authors: A. E. Obayelu, S. O. Olubiyo
Abstract:
Food is different from other commodities because everybody needs food for survival. This has led to a shift in focus to food security in the global policy arena. However, there is paucity of studies on the interactions between food security, migration, urbanization and population rise. This paper therefore look at the linkages between migration and food security in the context of rapid urbanization and population rise of Nigeria. The study obtained data and information from both secondary sources and primary method through the voice of some selected Nigerians through telephone interview. The findings revealed that, the primary factor for the rapid urbanization in Nigeria is migration; most foods are still produced by peasant farmers who are scattered all over the rural areas and not multinational companies who produce on large scale. The country is still characterized with inadequate infrastructural facilities and services to cater for growing population. There are no protective policies enforced by the Nigeria government. In most cases, the migrants are left entirely on mercy of what they can find to due for survival. The most common coping mechanisms by migrants from rural to urban areas are changing food intake in terms of quantity, quality, diversity and frequency and prioritizing children. Policies that address urban food security need to consider the complex relationship between rapid population rise and migration and appropriate transformations that will be able to manage urbanization. With increasing rate of urbanization, the focus of food security should no longer be that of rural onlyKeywords: agricultural commercialization, agricultural transformation, food security, urban, urbanization
Procedia PDF Downloads 42925302 A History of Taiwan’s Secret Nuclear Program
Authors: Hsiao-ting Lin
Abstract:
This paper analyzes the history of Taiwan’s secret program to develop its nuclear weapons during the Cold War. In July 1971, US President Richard Nixon shocked the world when he announced that his national security adviser Henry Kissinger had made a secret trip to China and that he himself had accepted an invitation to travel to Beijing. This huge breakthrough in the US-PRC relationship was followed by Taipei’s loss of political legitimacy and international credibility as a result of its UN debacle in the fall that year. Confronted with the Nixon White House’s opening to the PRC, leaders in Taiwan felt being betrayed and abandoned, and they were obliged to take countermeasures for the sake of national interest and regime survival. Taipei’s endeavor to create an effective nuclear program, including the possible development of nuclear weapons capabilities, fully demonstrates the government’s resolution to pursue its own national policy, even if such a policy was guaranteed to undermine its relations with the United States. With hindsight, Taiwan’s attempt to develop its own nuclear weapons did not succeed in sabotaging the warming of US-PRC relations. Worse, it was forced to come to a full stop when, in early 1988, the US government pressured Taipei to close related facilities and programs on the island. However, Taiwan’s abortive attempt to develop its nuclear capability did influence Washington’s and Beijing’s handling of their new relationship. There did develop recognition of a common American and PRC interest in avoiding a nuclearized Taiwan. From this perspective, Beijing’s interests would best be served by allowing the island to remain under loose and relatively benign American influence. As for the top leaders on Taiwan, such a policy choice demonstrated how they perceived the shifting dynamics of international politics in the 1960s and 1970s and how they struggled to break free and pursue their own independent national policy within the rigid framework of the US-Taiwan alliance during the Cold War.Keywords: taiwan, richard nixon, nuclear program, chiang Kai-shek, chiang ching-kuo
Procedia PDF Downloads 13125301 Bronchoscopy and Genexpert in the Diagnosis of Pulmonary Tuberculosis in the Indian Private Health Sector: A Short Case Series
Authors: J. J. Mathew
Abstract:
Pulmonary tuberculosis is highly prevalent in the Indian subcontinent. Most cases of pulmonary tuberculosis are diagnosed with sputum examinations and the vast majority of these are undertaken by the government run establishments. However, mycobacterial cultures are not routinely done, unless drug resistance is detected based on clinical response. Modern diagnostic tests like bronchoscopy and Genexpert are not routinely employed in the government institutions for the diagnosis of pulmonary tuberculosis, but have been accepted widely by good private institutions. The utility of these investigations in the private sector is not yet well recognized. This retrospective study aims to assess the usefulness of bronchoscopy and Genexpert in the diagnosis of pulmonary tuberculosis in quaternary care private hospital in India. 30 patients with respiratory symptoms raising the possibility of tuberculosis based on clinical and radiological features, but without any significant sputum production, were subject to bronchoscopy and BAL samples taken for microbiological studies, including Genexpert. 6 out of the 30 patients were found to be Genexpert positive and none of them showed Rifampicin resistance. All the 6 cases had upper zone predominant disease. One of the 6 cases of tuberculosis had another co-existent bacterial infection according to the routine culture studies. 6 other cases were proven to be due to other bacterial infections alone, 2 had a malignant diagnosis and the remaining cases were thought to be non-infective pathologies. The Genexpert results were made available within 48 hours in the 6 positive cases. All of them were commenced on standard anti-tuberculous regimen with excellent clinical response. The other infective cases were also managed successfully based on the drug susceptibilities. The study has shown the usefulness of these investigations as early intervention enabled diagnosis facilitating treatment and prevention of any clinical deterioration. The study lends support to early bronchoscopy and Genexpert testing in suspected cases of pulmonary tuberculosis without significant sputum production, in a high prevalence country which normally relies on sputum examination for the diagnosis of pulmonary tuberculosis.Keywords: pulmonary, tuberculosis, bronchoscopy, genexpert
Procedia PDF Downloads 24525300 Process Data-Driven Representation of Abnormalities for Efficient Process Control
Authors: Hyun-Woo Cho
Abstract:
Unexpected operational events or abnormalities of industrial processes have a serious impact on the quality of final product of interest. In terms of statistical process control, fault detection and diagnosis of processes is one of the essential tasks needed to run the process safely. In this work, nonlinear representation of process measurement data is presented and evaluated using a simulation process. The effect of using different representation methods on the diagnosis performance is tested in terms of computational efficiency and data handling. The results have shown that the nonlinear representation technique produced more reliable diagnosis results and outperforms linear methods. The use of data filtering step improved computational speed and diagnosis performance for test data sets. The presented scheme is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. Thus this scheme helps to reduce the sensitivity of empirical models to noise.Keywords: fault diagnosis, nonlinear technique, process data, reduced spaces
Procedia PDF Downloads 24725299 Indigenous Children Doing Better through Mother Tongue Based Early Childhood Care and Development Center in Chittagong Hill Tracts, Bangladesh
Authors: Meherun Nahar
Abstract:
Background:The Chittagong Hill Tracts (CHT) is one of the most diverse regions in Bangladesh in terms of geography, ethnicity, culture and traditions of the people and home of thirteen indigenous ethnic people. In Bangladesh indigenous children aged 6-10 years remain out of school, and the majority of those who do enroll drop out before completing primary school. According to different study that the dropout rate of indigenous children is much higher than the estimated national rate, children dropping out especially in the early years of primary school. One of the most critical barriers for these children is that they do not understand the national language in the government pre-primary school. And also their school readiness and development become slower. In this situation, indigenous children excluded from the mainstream quality education. To address this issue Save the children in Bangladesh and other organizations are implementing community-based Mother Tongue-Based Multilingual Education program (MTBMLE) in the Chittagong Hill Tracts (CHT) for improving the enrolment rate in Government Primary Schools (GPS) reducing dropout rate as well as quality education. In connection with that Save the children conducted comparative research in Chittagong hill tracts on children readiness through Mother tongue-based and Non-mother tongue ECCD center. Objectives of the Study To assess Mother Language based ECCD centers and Non-Mother language based ECCD centers children’s school readiness and development. To assess the community perception over Mother Language based and Non-Mother Language based ECCD center. Methodology: The methodology of the study was FGD, KII, In-depth Interview and observation. Both qualitative and quantitative research methods were followed. The quantitative part has three components, School Readiness, Classroom observation and Headteacher interview and qualitative part followed FGD technique. Findings: The interviews with children under school readiness component showed that in general, Mother Language (ML) based ECCD children doing noticeably better in all four areas (Knowledge, numeracy, fine motor skill and communication) than their peers from Non-mother language based children. ML students seem to be far better skilled in concepts about print as most of them could identify cover and title of the book that was shown to them. They could also know from where to begin to read the book or could correctly point the letter that was read. A big difference was found in the area of identifying letters as 89.3% ML students of could identify letters correctly whereas for Non mother language 30% could do the same. The class room observation data shows that ML children are more active and remained engaged in the classroom than NML students. Also, teachers of ML appeared to have more engaged in explaining issues relating to general knowledge or leading children in rhyming/singing other than telling something from text books. The participants of FGDs were very enthusiastic on using mother language as medium of teaching in pre-schools. They opined that this initiative elates children to attend school and enables them to continue primary schooling without facing any language barrier.Keywords: Chittagong hill tracts, early childhood care and development (ECCD), indigenous, mother language
Procedia PDF Downloads 11825298 Linking Sustainable Public Procurement and the Sustainable Development Goals Targets in Zambia: A Preliminary Investigation
Authors: Charles P. Mukumba, Kahilu K. Shakantu
Abstract:
Achieving the Sustainable Development Goals [SDGs] is a key to achieving transformational results that support Zambia’s development. Public procurement is an integral to the government’s mission to deliver goods and services, in a timely and economic manner beyond the value of money spent. This study explores the link between sustainable public procurement and the SDG targets in Zambia. And to validate the established links with the public sector procurement in Zambia. The study employed qualitative research using semi-structured interviews with 18 public procurement officials. The collected data was analysed using thematic analysis. The findings indicate that public procurement plays a fundamental role in achieving the sustainable development goals [SDGs] by helping to deliver core public services that support SDGs and also by systematising and co-delivering added value along the way. The study further established the importance of sustainable public procurement within the context of development. The interviews were limited to mainstream public sector procurement entities in Lusaka, Zambia. Sustainable public procurement actions have the potential to impact SDG goals. Promoting sustainable public procurement will enhance sustainable development and significantly improve supply chain that would benefit the economy, society and environment. Findings will inform policy-makers how to strategically design sustainable public procurement policy by attuning it to procuring entities objectives and priorities in order to contribute to the attainment of SDGs.Keywords: sustainable public procurement, sustainable development goals, target, Zambia
Procedia PDF Downloads 14925297 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment
Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova
Abstract:
Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper
Procedia PDF Downloads 4525296 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data
Authors: Ruchika Malhotra, Megha Khanna
Abstract:
The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics
Procedia PDF Downloads 418