Search results for: microbial electrolysis cells
1999 Immune Modulation and Cytomegalovirus Reactivation in Sepsis-Induced Immunosuppression
Authors: G. Lambe, D. Mansukhani, A. Shetty, S. Khodaiji, C. Rodrigues, F. Kapadia
Abstract:
Introduction: Sepsis is known to cause impairment of both innate and adaptive immunity and involves an early uncontrolled inflammatory response, followed by a protracting immunosuppression phase, which includes decreased expression of cell receptors, T cell anergy and exhaustion, impaired cytokine production, which may cause high risk for secondary infections due to reduced response to antigens. Although human cytomegalovirus (CMV) is widely recognized as a serious viral pathogen in sepsis and immunocompromised patients, the incidence of CMV reactivation in patients with sepsis lacking strong evidence of immunosuppression is not well defined. Therefore, it is important to determine an association between CMV reactivation and sepsis-induced immunosuppression. Aim: To determine the association between incidence of CMV reactivation and immune modulation in sepsis-induced immunosuppression with time. Material and Methods: Ten CMV-seropositive adult patients with severe sepsis were included in this study. Blood samples were collected on Day 0, and further weekly up to 21 days. CMV load was quantified by real-time PCR using plasma. The expression of immunosuppression markers, namely, HLA-DR, PD-1, and regulatory T cells, were determined by flow cytometry using whole blood. Results: At Day 0, no CMV reactivation was observed in 6/10 patients. In these patients, the median length for reactivation was 14 days (range, 7-14 days). The remaining four patients, at Day 0, had a mean viral load of 1802+2599 copies/ml, which increased with time. At Day 21, the mean viral load for all 10 patients was 60949+179700 copies/ml, indicating that viremia increased with the length of stay in the hospital. HLA-DR expression on monocytes significantly increased from Day 0 to Day 7 (p = 0.001), following which no significant change was observed until Day 21, for all patients except 3. In these three patients, HLA-DR expression on monocytes showed a decrease at elevated viral load (>5000 copies/ml), indicating immune suppression. However, the other markers, PD-1 and regulatory T cells, did not show any significant changes. Conclusion: These preliminary findings suggest that CMV reactivation can occur in patients with severe sepsis. In fact, the viral load continued to increase with the length of stay in the hospital. Immune suppression, indicated by decreased expression of HLA-DR alone, was observed in three patients with elevated viral load.Keywords: CMV reactivation, immune suppression, sepsis immune modulation, CMV viral load
Procedia PDF Downloads 1501998 Colorimetric Detection of Ceftazdime through Azo Dye Formation on Polyethylenimine-Melamine Foam
Authors: Pajaree Donkhampa, Fuangfa Unob
Abstract:
Ceftazidime is an antibiotic drug commonly used to treat several human and veterinary infections. However, the presence of ceftazidime residues in the environment may induce microbial resistance and cause side effects to humans. Therefore, monitoring the level of ceftazidime in environmental resources is important. In this work, a melamine foam platform was proposed for simultaneous extraction and colorimetric detection of ceftazidime based on the azo dye formation on the surface. The melamine foam was chemically modified with polyethyleneimine (PEI) and characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Ceftazidime is a sample that was extracted on the PEI-modified melamine foam and further reacted with nitrite in an acidic medium to form an intermediate diazonium ion. The diazotized molecule underwent an azo coupling reaction with chromotropic acid to generate a red-colored compound. The material color changed from pale yellow to pink depending on the ceftazidime concentration. The photo of the obtained material was taken by a smartphone camera and the color intensity was determined by Image J software. The material fabrication and ceftazidime extraction and detection procedures were optimized. The detection of a sub-ppm level of ceftazidime was achieved without using a complex analytical instrument.Keywords: colorimetric detection, ceftazidime, melamine foam, extraction, azo dye
Procedia PDF Downloads 1701997 Pt Decorated Functionalized Acetylene Black as Efficient Cathode Material for Li Air Battery and Fuel Cell Applications
Authors: Rajashekar Badam, Vedarajan Raman, Noriyoshi Matsumi
Abstract:
Efficiency of energy converting and storage systems like fuel cells and Li-Air battery principally depended on oxygen reduction reaction (ORR) which occurs at cathode. As the kinetics of the ORR is very slow, it becomes the rate determining step. Exploring carbon substrates for enhancing the dispersion and activity of the metal catalyst and commercially viable simple preparation method is a very crucial area of research in the field of energy materials. Hence, many researchers made large number of carbon-based ORR materials today. But, there are hardly few studies on the effect of interaction between Pt-carbon and carbon-electrolyte on activity. In this work, we have prepared functionalized carbon-based Pt catalyst (Pt-FAB) with enhanced interfacial properties that lead to efficient ORR catalysis. The present work deals with a single-pot method to exfoliate and functionalized acetylene black with enhanced interaction with Pt as well as electrolyte. Acetylene black was functionalized and exfoliated using a facile single pot acid treatment method. The resulted FAB was further decorated with Pt-nano particles (Pt-np). The TEM images of Pt-FAB with uniformly decorated Pt-np of ~3 nm. Further, XPS studies of Pt 4f peak revealed that Pt0 peak was shifted by 0.4 eV in Pt-FAB compared to binding energy of typical Pt⁰ found in Pt/C. The shift can be ascribed to the modulation of electronic state and strong electronic interaction of Pt with carbon. Modulated electronic structure of Pt and strong electronic interaction of Pt with FAB enhances the catalytic activity and durability respectively. To understand the electrode electrolyte interface, electrochemical impedance spectroscopy was carried out. These measurements revealed that the charge transfer resistance of electrode to electrolyte for Pt-FAB is 10 times smaller than that of conventional Pt/C. The interaction with electrolyte helps reduce the interface boundaries, which in turn affects the overall catalytic performance of the electrode. Cyclic voltammetric measurements in 0.1M HClO₄ aq. at a potential scan rate of 50 mVs-1 was employed to evaluate electrochemical surface area (ECSA) of Pt. ECSA of Pt-FAB was found to be as high as 67.2 m²g⁻¹. The three-electrode system showed very high ORR catalytic activity. Mass activity at 0.9 V vs. RHE showed 460 A/g which is much higher than the DOE target values for the year 2020. Further, it showed enhanced performance by showing 723 mW/cm² of highest power density and 1006 mA/cm² of current density at 0.6 V in fuel cell single cell type configuration and 1030 mAhg⁻¹ of rechargeable capacity in Li air battery application. The higher catalytic activity can be ascribed to the improved interaction of FAB with Pt and electrolyte. The aforementioned results evince that Pt-FAB will be a promising cathode material for efficient ORR with significant cyclability for its application in fuel cells and Li-Air batteries. In conclusion, a disordered material was prepared from AB and was systematically characterized. The extremely high ORR activity and ease of preparation make it competent for replacing commercially available ORR materials.Keywords: functionalized acetylene black, oxygen reduction reaction, fuel cells, Functionalized battery
Procedia PDF Downloads 1091996 Size and Content of the Doped Silver Affected the Pulmonary Toxicity of Silver-Doped Nano-Titanium Dioxide Photocatalysts and the Optimization of These Two Parameters
Authors: Xiaoquan Huang, Congcong Li, Tingting Wei, Changcun Bai, Na Liu, Meng Tang
Abstract:
Silver is often doped on nano-titanium dioxide photocatalysts (Ag-TiO₂) by photodeposition method to improve their utilization of visible-light while increasing the toxicity of TiO₂。 However, it is not known what factors influence this toxicity and how to reduce toxicity while maintaining the maximum catalytic activity. In this study, Ag-TiO₂ photocatalysts were synthesized by the photodeposition method with different silver content (AgC) and photodeposition time (PDT). Characterization and catalytic experiments demonstrated that silver was well assembled on TiO₂ with excellent visible-light catalytic activity, and the size of silver increased with PDT. In vitro, the cell viability of lung epithelial cells A549 and BEAS-2B showed that the higher content and smaller size of silver doping caused higher toxicity. In vivo, Ag-TiO₂ catalysts with lower AgC or larger silver particle size obviously caused less pulmonary pro-inflammatory and pro-fibrosis responses. However, the visible light catalytic activity decreased with the increase in silver size. Therefore, in order to optimize the Ag-TiO₂ photocatalyst with the lowest pulmonary toxicity and highest catalytic performance, response surface methodology (RSM) was further performed to optimize the two independent variables of AgC and PDT. Visible-light catalytic activity was evaluated by the degradation rate of Rhodamine B, the antibacterial property was evaluated by killing log value for Escherichia coli, and cytotoxicity was evaluated by IC50 to BEAS-2B cells. As a result, the RSM model showed that AgC and PDT exhibited an interaction effect on catalytic activity in the quadratic model. AgC was positively correlated with antibacterial activity. Cytotoxicity was proportional to AgC while inversely proportional to PDT. Finally, the optimization values were AgC 3.08 w/w% and PDT 28 min. Under this optimal condition, the relatively high silver proportion ensured the visible-light catalytic and antibacterial activity, while the longer PDT effectively reduced the cytotoxicity. This study is of significance for the safe and efficient application of silver-doped TiO₂ photocatalysts.Keywords: Ag-doped TiO₂, cytotoxicity, inflammtion, fibrosis, response surface methodology
Procedia PDF Downloads 691995 Synthesis and Characterization of Sulfonated Aromatic Hydrocarbon Polymers Containing Trifluoromethylphenyl Side Chain for Proton Exchange Membrane Fuel Cell
Authors: Yi-Chiang Huang, Hsu-Feng Lee, Yu-Chao Tseng, Wen-Yao Huang
Abstract:
Proton exchange membranes as a key component in fuel cells have been widely studying over the past few decades. As proton exchange, membranes should have some main characteristics, such as good mechanical properties, low oxidative stability and high proton conductivity. In this work, trifluoromethyl groups had been introduced on polymer backbone and phenyl side chain which can provide densely located sulfonic acid group substitution and also promotes solubility, thermal and oxidative stability. Herein, a series of novel sulfonated aromatic hydrocarbon polyelectrolytes was synthesized by polycondensation of 4,4''''-difluoro-3,3''''- bis(trifluoromethyl)-2'',3''-bis(3-(trifluoromethyl)phenyl)-1,1':4',1'':4'',1''':4''',1''''-quinquephenyl with 2'',3''',5'',6''-tetraphenyl-[1,1':4',1'': 4'',1''':4''',1''''-quinquephenyl]-4,4''''-diol and post-sulfonated was through chlorosulfonic acid to given sulfonated polymers (SFC3-X) possessing ion exchange capacities ranging from 1.93, 1.91 and 2.53 mmol/g. ¹H NMR and FT-IR spectroscopy were applied to confirm the structure and composition of sulfonated polymers. The membranes exhibited considerably dimension stability (10-27.8% in length change; 24-56.5% in thickness change) and excellent oxidative stability (weight remain higher than 97%). The mechanical properties of membranes demonstrated good tensile strength on account of the high rigidity multi-phenylated backbone. Young's modulus were ranged 0.65-0.77GPa which is much larger than that of Nafion 211 (0.10GPa). Proton conductivities of membranes ranged from 130 to 240 mS/cm at 80 °C under fully humidified which were comparable or higher than that of Nafion 211 (150 mS/cm). The morphology of membranes was investigated by transmission electron microscopy which demonstrated a clear hydrophilic/hydrophobic phase separation with spherical ionic clusters in the size range of 5-20 nm. The SFC3-1.97 single fuel cell performance demonstrates the maximum power density at 1.08W/cm², and Nafion 211 was 1.24W/cm² as a reference in this work. The result indicated that SFC3-X are good candidates for proton exchange membranes in fuel cell applications. Fuel cell of other membranes is under testing.Keywords: fuel cells, polyelectrolyte, proton exchange membrane, sulfonated polymers
Procedia PDF Downloads 4561994 PTOP Expression Correlates with Telomerase Activity and Grades of Malignancy in Human Glioma Tissues
Authors: F. Polito, M. Cucinotta, A. Conti, C. Lo Giudice, C. Tomasello, F. Angileri, D. La Torre, M. Aguennouz
Abstract:
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumors, with an extremely poor prognosis. Telomeres lenght is associated with tumor progression in several type of human cancers and telomere elongation is a common molecular feature of advanced malignancies. Among the telomeric shelterin proteins PTOP is required for telomeric protein complex assembly, telomerase recruitment and activity, and telomere length regulation through a PTOP-telomerase interaction. Previous studies suggest that PTOP upregulation is involved in radioresistance and telomere lengthening in colorectal cancer cells. Moreover, in human osteosarcoma cells PTOP deletion led to telomere shortening, increased apoptosis and radiation sensitivity enhancement. However, to date, little is known about the role of PTOP in progression of glioma cancers. In light of this background aim of the study is to investigate the expression of PTOP in different grades of human glioma and its correlation with the pathological grade of gliomas, grades of malignancy, proliferative activity and apoptosis. Fifteen Low Grade Astrocytomas (LGA), 18 Anaplastic Astrocytomas (AA) and 26 Glioblastoma Multiforme (GBM) samples were analyzed. Three samples of normal brain tissue (NBT) were used as controls. The expression levels of PTOP, h-TERT, BIRC1 and cyclin D1 were determined by real time PCR and/or western blot. Results obtained shows that PTOP expression in glioma tissues is tightly correlated with clinical grade ( p < 0.01 ). No correlation was found between PTOP expression and other clinicopathologic parameters. The expression of PTOP was positively correlated with the expression of hTERT and TERF1. Furthermore PTOP positively correlates with cyclin D1 and negatively correlates with the expression of BIRC1. Our findings indicate that PTOP might play key role in the progression of glioma regulating telomerase activity and likely through regulation of cell cycle and apoptosis. In conclusion results obtained prompted us to speculate that PTOP might represents a potential molecular bio marker and a therapeutic target for the treatment of glioblastoma tumors.Keywords: glioblastoma, PTOP, telomere, brain tumors
Procedia PDF Downloads 3471993 Optimization of Heterojunction Solar Cell Using AMPS-1D
Authors: Benmoussa Dennai, H. Benslimane, A. Helmaoui
Abstract:
Photo voltaic conversion is the direct conversion of electromagnetic energy into electrical energy continuously. This electromagnetic energy is the most solar radiation. In this work we performed a computer modelling using AMPS 1D optimization of hetero-junction solar cells GaInP/GaAs configuration for p/ n. We studied the influence of the thickness the base layer in the cell offers on the open circuit voltage, the short circuit current and efficiency.Keywords: optimization, photovoltaic cell, GaInP / GaAs AMPS-1D, hetetro-junction
Procedia PDF Downloads 4201992 Polysaccharide Polyelectrolyte Complexation: An Engineering Strategy for the Development of Commercially Viable Sustainable Materials
Authors: Jeffrey M. Catchmark, Parisa Nazema, Caini Chen, Wei-Shu Lin
Abstract:
Sustainable and environmentally compatible materials are needed for a wide variety of volume commercial applications. Current synthetic materials such as plastics, fluorochemicals (such as PFAS), adhesives and resins in form of sheets, laminates, coatings, foams, fibers, molded parts and composites are used for countless products such as packaging, food handling, textiles, biomedical, construction, automotive and general consumer devices. Synthetic materials offer distinct performance advantages including stability, durability and low cost. These attributes are associated with the physical and chemical properties of these materials that, once formed, can be resistant to water, oils, solvents, harsh chemicals, salt, temperature, impact, wear and microbial degradation. These advantages become disadvantages when considering the end of life of these products which generate significant land and water pollution when disposed of and few are recycled. Agriculturally and biologically derived polymers offer the potential of remediating these environmental and life-cycle difficulties, but face numerous challenges including feedstock supply, scalability, performance and cost. Such polymers include microbial biopolymers like polyhydroxyalkanoates and polyhydroxbutirate; polymers produced using biomonomer chemical synthesis like polylactic acid; proteins like soy, collagen and casein; lipids like waxes; and polysaccharides like cellulose and starch. Although these materials, and combinations thereof, exhibit the potential for meeting some of the performance needs of various commercial applications, only cellulose and starch have both the production feedstock volume and cost to compete with petroleum derived materials. Over 430 million tons of plastic is produced each year and plastics like low density polyethylene cost ~$1500 to $1800 per ton. Over 400 million tons of cellulose and over 100 million tons of starch are produced each year at a volume cost as low as ~$500 to $1000 per ton with the capability of increased production. Cellulose and starches, however, are hydroscopic materials that do not exhibit the needed performance in most applications. Celluloses and starches can be chemically modified to contain positive and negative surface charges and such modified versions of these are used in papermaking, foods and cosmetics. Although these modified polysaccharides exhibit the same performance limitations, recent research has shown that composite materials comprised of cationic and anionic polysaccharides in polyelectrolyte complexation exhibit significantly improved performance including stability in diverse environments. Moreover, starches with added plasticizers can exhibit thermoplasticity, presenting the possibility of improved thermoplastic starches when comprised of starches in polyelectrolyte complexation. In this work, the potential for numerous volume commercial products based on polysaccharide polyelectrolyte complexes (PPCs) will be discussed, including the engineering design strategy used to develop them. Research results will be detailed including the development and demonstration of starch PPC compositions for paper coatings to replace PFAS; adhesives; foams for packaging, insulation and biomedical applications; and thermoplastic starches. In addition, efforts to demonstrate the potential for volume manufacturing with industrial partners will be discussed.Keywords: biomaterials engineering, commercial materials, polysaccharides, sustainable materials
Procedia PDF Downloads 181991 Rice Mycotoxins Fate During In vitro Digestion and Intestinal Absorption: the Effect of Individual and Combination Exposures
Authors: Carolina S. Monteiro, Eugénia Pinto, Miguel A. Faria, Sara C. Cunha
Abstract:
About half of the world's population eats rice daily, making it the primary food source for billions of people. Besides its nutrition potential, rice can be a significant route of exposure to many contaminants. Mycotoxins are an example of such contaminants that can be present in rice. Among them, ochratoxin (OTA), citrinin (CIT), and zearalenone (ZEN) are frequently reported in rice. During digestion, only a fraction of mycotoxins from food can be absorbed (bioaccessible fraction), influencing their ability to cause toxic effects. Insufficient knowledge of the bioavailability of mycotoxins, alone and in combination, may hinder an accurate risk assessment of contaminants ingested by humans. In this context, two different rice (Oryza sativa) varieties, Carolino white and Carolino brown, both with and without turmeric, were boiled and individually spiked with OTA, CIT, and ZEN plus with its combination. Subsequently, samples were submitted to the INFOGEST harmonized in vitro digestion protocol to evaluate the bioaccessibility of mycotoxins. Afterward, the in vitro intestinal transport of the mycotoxins, both alone and in combination, was evaluated in digests of Carolino white rice with and without turmeric. Assays were performed with a monolayers of of Caco-2 and HT-29 cells. Bioaccessibility of OTA and ZEN, alone and in combination, were similar in Carolino white and brown rice with or without turmeric. For CIT, when Carolino white rice was used, the bioaccessibility was higher alone than in combination (62.00% vs. 25.00%, without turmeric; 87.56% vs. 53.87%, with turmeric); however, with Carolino brown rice was the opposite (66.38% vs. 75.20%, without turmeric; 43.89% vs. 59.44%, with turmeric). All the mycotoxins, isolated, reached the higher bioaccessibility in the Carolino white rice with turmeric (CIT: 87.56%; OTA: 59.24%; ZEN: 58.05%). When mycotoxins are co-present, the higher bioaccessibility of each one varies with the type of rice. In general, when turmeric is present, bioaccessibility increases, except for CIT, using Carolino brown rice. Concerning the intestinal absorption in vitro, after 3 hours of transport, all mycotoxins were detected in the basolateral compartment being thus transported through the cells monolayer. ZEN presented the highest fraction absorbed isolated and combined, followed by CIT and OTA. These findings highlight that the presence of other components in the complex dietary matrix, like turmeric, and the co-presence of mycotoxins can affect its final bioavailability with obvious implications for health risk. This work provides new insights to qualitatively and quantitatively describe mycotoxin in rice fate during human digestion and intestinal absorption and further contribute to better risk assessment.Keywords: bioaccessibility, digestion, intestinal absorption, mycotoxins
Procedia PDF Downloads 661990 Comparison with Two Clinical Cases of Plasma Cell Neoplasm by Using the Method of Capillary Electrophoresis
Authors: Kai Pai Huang
Abstract:
Background: There are several types of plasma cell neoplasms including multiple myeloma, plasmacytoma, lymphoplasmacytic lymphoma, and monoclonal gammopathy of undetermined significance (MGUS) are found in our lab. Today, we want to compare with two cases using the method of capillary electrophoresis. Method: Serum is prepared and electrophoresis is performed at alkaline PH in a capillary using the Sebia® Capillary 2. Albumin and globulins are detected by the detector which is located in the cathode of the capillary and the signals are transformed to peaks. Serum was treated with beta-mercaptoethanol which reducing the polymerized immunoglobulin to monomer immunoglobulin to clarify two M-protein are secreted from the same plasma cell clone in bone marrow. Result: Case 1: A 78-year-old female presenting dysuria, oliguria and leg edema for several months. Laboratory data showed proteinuria, leukocytosis, results of high serum IgA and lambda light chain. A renal biopsy found amyloid fibrils in the glomerular mesangial area. Serum protein electrophoresis shows a major monoclonal peak in the β region and minor small peak in gamma region, and the immunotyping studies for serum showed two IgA/λ type. Case 2: A 55-year-old male presenting abdominal distension and low back pain for more than one month. Laboratory data showed T12 T8 compression fracture, results of high serum IgM and kappa light chain. Bone marrow aspiration showed the cells from the bone marrow are B cells with monotypic kappa chain expression. Bone marrow biopsy found this is lymphoplasmacytic lymphoma (Waldenstrom macroglobulin). Serum protein electrophoresis shows a monoclonal peak in the β region and the immunotyping studies for serum showed IgM/κ type. Conclusion: Plasma cell neoplasm can be diagnosed by many examinations. Among them, using capillary electrophoresis by a lab can separate several types of gammopathy and the quantification of a monoclonal peak can be used to evaluate the patients’ prognosis or treatment.Keywords: plasma cell neoplasm, capillary electrophoresis, serum protein electrophoresis, immunotyping
Procedia PDF Downloads 1471989 Study of Nitrogen Species Fate and Transport in Subsurface: To Assess the Impact of Wastewater Irrigation
Authors: C. Mekala, Indumathi M. Nambi
Abstract:
Nitrogen pollution in groundwater arising from wastewater and fertilizer application through vadose zone is a major problem and it causes a prime risk to groundwater based drinking water supplies. Nitrogenous compounds namely ammonium, nitrate and nitrite fate and transport in soil subsurface were studied experimentally. The major process like sorption, leaching, biotransformation involving microbial growth kinetics, and biological clogging due to biomass growth were assessed and modeled with advection-dispersion reaction equations for ammonium, nitrate and acetate in a saturated, heterogeneous soil medium. The transport process was coupled with freundlich sorption and monod inhibition kinetics for immobile bacteria and permeability reduction due to biomass growth will be verified and validated with the numerical model. This proposed mathematical model will be very helpful in the development of a management model for a sustainable and safe wastewater reuse strategies such as irrigation and groundwater recharge.Keywords: nitrogen species transport, transformation, biological clogging, biokinetic parameters, contaminant transport model, saturated soil
Procedia PDF Downloads 4011988 Application of Topical Imiquimod for Treatment Cervical Intraepithelial Neoplasia in Young Women: A Preliminary Result of a Pilot Study
Authors: Phill-Seung Jung, Dae-Yeon Kim
Abstract:
Objectives: In young, especially nulliparous women, it is not easy to decide on excisional therapy for cervical intraepithelial neoplasia (CIN). We aimed to evaluate how effective topical imiquimod is in the treatment of high-grade CIN so that excisional therapy can be avoided in young women. Methods: Patients with CIN were allocated to this pilot study. They did not want excisional therapy and agreed with topical imiquimod therapy, which required once-a-week hospital visit for 8 weeks for the application of imiquimod to the cervix by a gynecologic oncologist. If the lesion got worse during treatment, it was decided to convert imiquimod therapy to excisional therapy. Results: A total of 36 patients with a median age of 29 years (range, 22–41 years) agreed to receive topical imiquimod therapy. Of these, 32 patients (88.9%) were positive for high-risk human papillomavirus (HR HPV). Twenty-five patients (69.4%) had low-grade squamous intraepithelial lesion (LSIL), and 11 (30.6%) had high-grade squamous intraepithelial lesion (HSIL) on their initial LBC. Twenty-eight patients underwent punch biopsy, which showed CIN 1 in 7 (19.4%), CIN 2 in 11 (30.6%), and CIN 3 in 10 (27.8%) patients. Twenty patients finished the 8-week imiquimod therapy. Among them, 14 patients had CIN 2 or 3, and 6 patients had CIN 1. HR HPV was positive in 12 patients. On the last examination, 14 patients (70.0%) had negative intraepithelial lesions, 3 (15.0%) had atypical squamous cells of undetermined significance, and 1 (5.0%) had LSIL. Two patients had persistent HSIL: 1 patient underwent loop electrosurgical excision procedure, resulting in CIN 3 with positive resection margin, and the other patient underwent punch biopsy, resulting in intermediate cells and restarted imiquimod therapy. Only 7 patients were negative for HR HPV. Conclusions: This study showed that topical imiquimod therapy was effective for the treatment of high-grade CIN, with a histologic regression rate of 85.7% (14/20) and HPV eradication rate of 25.0% (8/32). Based on our findings, topical imiquimod therapy might have a successful therapeutic effect in young women with CIN 2-3 so that they can avoid excisional therapy. In addition, it could be a more reassuring treatment option for CIN 1 than just follow-up after few months. To confirm its efficacy, a phase II study with larger cohort would be needed.Keywords: Imiquimod, Cervical Intraepthelial Neoplasia, Cervical Dysplasia, Human Papillomavirus
Procedia PDF Downloads 2521987 Production of Poly-β-Hydroxybutyrate (PHB) by a Thermophilic Strain of Bacillus and Pseudomonas Species
Authors: Patience Orobosa Olajide
Abstract:
Five hydrocarbon degrading bacterial strains isolated from contaminated environment were investigated with respect to polyhydroxybutyrate (PHB) biosynthesis. Screening for bioplastic production was done on assay mineral salts agar medium containing 0.2% poly (3-hydroxybutyrate) as the sole carbon source. Two of the test bacteria were positive for PHB biosynthesis and were identified based on gram staining, biochemical tests, 16S rRNA gene sequence analysis as Pseudomonas aeruginosa and Bacillus licheniformis which grew at 37 and up to 65 °C respectively, thus suggesting the later to be thermotolerant. In this study, the effects of different carbon and nitrogen sources on PHB production in these strains were investigated. Maximum PHB production was obtained in 48 hr for the two strains and amounted to yields of 72.86 and 62.22 percentages for Bacillus licheniformis and Pseudomonas aeruginosa respectively. In these strains, glycine was the most efficient carbon sources for the production of PHB compared with other carbon (glucose, lactose, sucrose, Arabinose) and nitrogen (L- glycine, L-cysteine, DL-Tryptophan, and Potassium Nitrate) sources. The screening of microbial strains for industrial PHB production should be based on several factors including the cell’s capability to mineralize an inexpensive substrate, rate of growth and the extent of polymer accumulation.Keywords: bacteria, poly-3-hydroxybutyrate (PHB), hydrocarbon, thermotolerant
Procedia PDF Downloads 1981986 Harnessing Nature's Fury: Hyptis Suaveolens Loaded Bioactive Liposome for Photothermal Therapy of Lung Cancer
Authors: Sajmina Khatun, Monika Pebam, Aravind Kumar Rengan
Abstract:
Photothermal therapy, a subset of nanomedicine, takes advantage of light-absorbing agents to generate localized heat, selectively eradicating cancer cells. This innovative approach minimizes damage to healthy tissues and offers a promising avenue for targeted cancer treatment. Unlike conventional therapies, photothermal therapy harnesses the power of light to combat malignancies precisely and effectively, showcasing its potential to revolutionize cancer treatment paradigms. The combined strengths of nanomedicine and photothermal therapy signify a transformative shift toward more effective, targeted, and tolerable cancer treatments in the medical landscape. Utilizing natural products becomes instrumental in formulating diverse bioactive medications owing to their various pharmacological properties attributed to the existence of phenolic structures, triterpenoids, and similar compounds. Hyptis suaveolens, commonly known as pignut, stands as an aromatic herb within the Lamiaceae family and represents a valuable therapeutic plant. Flourishing in swamps and alongside tropical and subtropical roadsides, these noxious weeds impede the development of adjacent plants. Hyptis suaveolens ranks among the most globally distributed alien invasive species. The present investigation revealed that a versatile, biodegradable liposome nanosystem (HIL NPs), incorporating bioactive molecules from Hyptis suaveolens, exhibits effective bioavailability to cancer cells, enabling tumor ablation upon near-infrared (NIR) laser exposure. The components within the nanosystem, specifically the bioactive molecules from Hyptis, function as anticancer agents, aiding in the photothermal ablation of highly metastatic lung cancer cells. Despite being a prolific weed impeding neighboring plant growth, Hyptis suaveolens showcases therapeutic benefits through its bioactive compounds. The obtained HIL NPs, characterized as a photothermally active liposome nanosystem, demonstrate a pronounced fluorescence absorption peak in the NIR range and achieve a high photothermal conversion efficiency under NIR laser irradiation. Transmission electron microscopy (TEM) and particle size analysis reveal that HIL NPs possess a spherical shape with a size of 141 ± 30 nm. Moreover, in vitro assessments of HIL NPs against lung cancer cell lines (A549) indicate effective anticancer activity through a combined cytotoxic effect and hyperthermia. Tumor ablation is facilitated by apoptosis induced by the overexpression of ɣ-H2AX, arresting cancer cell proliferation. Consequently, the multifunctional and biodegradable nanosystem (HIL NPs), incorporating bioactive compounds from Hyptis, provides valuable perspectives for developing an innovative therapeutic strategy originating from a challenging weed. This approach holds promise for potential applications in both bioimaging and the combined use of phyto-photothermal therapy for cancer treatment.Keywords: bioactive liposome, hyptis suaveolens, photothermal therapy, lung cancer
Procedia PDF Downloads 961985 Immunoliposome-Mediated Drug Delivery to Plasmodium-Infected and Non-Infected Red Blood Cells as a Dual Therapeutic/Prophylactic Antimalarial Strategy
Authors: Ernest Moles, Patricia Urbán, María Belén Jiménez-Díaz, Sara Viera-Morilla, Iñigo Angulo-Barturen, Maria Antònia Busquets, Xavier Fernàndez-Busquets
Abstract:
Bearing in mind the absence of an effective vaccine against malaria and its severe clinical manifestations causing nearly half a million deaths every year, this disease represents nowadays a major threat to life. Besides, the basic rationale followed by currently marketed antimalarial approaches is based on the administration of drugs on their own, promoting the emergence of drug-resistant parasites owing to the limitation in delivering drug payloads into the parasitized erythrocyte high enough to kill the intracellular pathogen while minimizing the risk of causing toxic side effects to the patient. Such dichotomy has been successfully addressed through the specific delivery of immunoliposome (iLP)-encapsulated antimalarials to Plasmodium falciparum-infected red blood cells (pRBCs). Unfortunately, this strategy has not progressed towards clinical applications, whereas in vitro assays rarely reach drug efficacy improvements above 10-fold. Here, we show that encapsulation efficiencies reaching >96% can be achieved for the weakly basic drugs chloroquine (CQ) and primaquine using the pH gradient active loading method in liposomes composed of neutrally charged, saturated phospholipids. Targeting antibodies are best conjugated through their primary amino groups, adjusting chemical crosslinker concentration to retain significant antigen recognition. Antigens from non-parasitized RBCs have also been considered as targets for the intracellular delivery of drugs not affecting the erythrocytic metabolism. Using this strategy, we have obtained unprecedented nanocarrier targeting to early intraerythrocytic stages of the malaria parasite for which there is a lack of specific extracellular molecular tags. Polyethylene glycol-coated liposomes conjugated with monoclonal antibodies specific for the erythrocyte surface protein glycophorin A (anti-GPA iLP) were capable of targeting 100% RBCs and pRBCs at the low concentration of 0.5 μM total lipid in the culture, with >95% of added iLPs retained into the cells. When exposed for only 15 min to P. falciparum in vitro cultures synchronized at early stages, free CQ had no significant effect over parasite viability up to 200 nM drug, whereas iLP-encapsulated 50 nM CQ completely arrested its growth. Furthermore, when assayed in vivo in P. falciparum-infected humanized mice, anti-GPA iLPs cleared the pathogen below detectable levels at a CQ dose of 0.5 mg/kg. In comparison, free CQ administered at 1.75 mg/kg was, at most, 40-fold less efficient. Our data suggest that this significant improvement in drug antimalarial efficacy is in part due to a prophylactic effect of CQ found by the pathogen in its host cell right at the very moment of invasion.Keywords: immunoliposomal nanoparticles, malaria, prophylactic-therapeutic polyvalent activity, targeted drug delivery
Procedia PDF Downloads 3781984 Colorful Textiles with Antimicrobial Property Using Natural Dyes as Effective Green Finishing Agents
Authors: Shahid-ul-Islam, Faqeer Mohammad
Abstract:
The present study was conducted to investigate the effect of annatto, teak and flame of the forest natural dyes on color, fastness, and antimicrobial property of protein based textile substrate. The color strength (K/S) of wool samples at various concentrations of dyes were analysed using a Reflective Spectrophotometer. The antimicrobial activity of natural dyes before and after application on wool was tested against common human pathogens Escherichia coli, Staphylococcus aureus, and Candida albicans, by using micro-broth dilution method, disc diffusion assay and growth curve studies. The structural morphology of natural protein fibre (wool) was investigated by Scanning Electron Microscopy (SEM). Annatto and teak natural dyes proved very effective in inhibiting the microbial growth in solution phase and after application on wool and resulted in a broad beautiful spectrum of colors with exceptional fastness properties. The results encourage the search and exploitation of new plant species as source of dyes to replace toxic synthetic antimicrobial agents currently used in textile industry.Keywords: annatto, antimicrobial agents, natural dyes, green textiles
Procedia PDF Downloads 3181983 The Potential of Rhizospheric Bacteria for Mycotoxigenic Fungi Suppression
Authors: Vanja Vlajkov, Ivana PajčIn, Mila Grahovac, Marta Loc, Dragana Budakov, Jovana Grahovac
Abstract:
The rhizosphere soil refers to the plant roots' dynamic environment characterized by their inhabitants' high biological activity. Rhizospheric bacteria are recognized as effective biocontrol agents and considered cardinal in alternative strategies for securing ecological plant diseases management. The need to suppress fungal pathogens is an urgent task, not only because of the direct economic losses caused by infection but also due to their ability to produce mycotoxins with harmful effects on human health. Aspergillus and Fusarium species are well-known producers of toxigenic metabolites with a high capacity to colonize crops and enter the food chain. The bacteria belonging to the Bacillus genus has been conceded as a plant beneficial species in agricultural practice and identified as plant growth-promoting rhizobacteria (PGPR). Besides incontestable potential, the full commercialization of microbial biopesticides is in the preliminary phase. Thus, there is a constant need for estimating the suitability of novel strains to be used as a central point of viable bioprocess leading to market-ready product development. In the present study, 76 potential producing strains were isolated from the rhizosphere soil, sampled from different localities in the Autonomous Province of Vojvodina, Republic of Serbia. The selective isolation process of strains started by resuspending 1 g of soil samples in 9 ml of saline and incubating at 28° C for 15 minutes at 150 rpm. After homogenization, thermal treatment at 100° C for 7 minutes was performed. Dilution series (10-1-10-3) were prepared, and 500 µl of each was inoculated on nutrient agar plates and incubated at 28° C for 48 h. The pure cultures of morphologically different strains indicating belonging to the Bacillus genus were obtained by the spread-plate technique. The cultivation of the isolated strains was carried out in an Erlenmeyer flask for 96 h, at 28 °C, 170 rpm. The antagonistic activity screening included two phytopathogenic fungi as test microorganisms: Aspergillus sp. and Fusarium sp. The mycelial growth inhibition was estimated based on the antimicrobial activity testing of cultivation broth by the diffusion method. For the Aspergillus sp., the highest antifungal activity was recorded for the isolates Kro-4a and Mah-1a. In contrast, for the Fusarium sp., following 15 isolates exhibited the highest antagonistic effect Par-1, Par-2, Par-3, Par-4, Kup-4, Paš-1b, Pap-3, Kro-2, Kro-3a, Kro-3b, Kra-1a, Kra-1b, Šar-1, Šar-2b and Šar-4. One-way ANOVA was performed to determine the antagonists' effect statistical significance on inhibition zone diameter. Duncan's multiple range test was conducted to define homogenous groups of antagonists with the same level of statistical significance regarding their effect on antimicrobial activity of the tested cultivation broth against tested pathogens. The study results have pointed out the significant in vitro potential of the isolated strains to be used as biocontrol agents for the suppression of the tested mycotoxigenic fungi. Further research should include the identification and detailed characterization of the most promising isolates and mode of action of the selected strains as biocontrol agents. The following research should also involve bioprocess optimization steps to fully reach the selected strains' potential as microbial biopesticides and design cost-effective biotechnological production.Keywords: Bacillus, biocontrol, bioprocess, mycotoxigenic fungi
Procedia PDF Downloads 1981982 Low- and High-Temperature Methods of CNTs Synthesis for Medicine
Authors: Grzegorz Raniszewski, Zbigniew Kolacinski, Lukasz Szymanski, Slawomir Wiak, Lukasz Pietrzak, Dariusz Koza
Abstract:
One of the most promising area for carbon nanotubes (CNTs) application is medicine. One of the most devastating diseases is cancer. Carbon nanotubes may be used as carriers of a slowly released drug. It is possible to use of electromagnetic waves to destroy cancer cells by the carbon nanotubes (CNTs). In our research we focused on thermal ablation by ferromagnetic carbon nanotubes (Fe-CNTs). In the cancer cell hyperthermia functionalized carbon nanotubes are exposed to radio frequency electromagnetic field. Properly functionalized Fe-CNTs join the cancer cells. Heat generated in nanoparticles connected to nanotubes warm up nanotubes and then the target tissue. When the temperature in tumor tissue exceeds 316 K the necrosis of cancer cells may be observed. Several techniques can be used for Fe-CNTs synthesis. In our work, we use high-temperature methods where arc-discharge is applied. Low-temperature systems are microwave plasma with assisted chemical vapor deposition (MPCVD) and hybrid physical-chemical vapor deposition (HPCVD). In the arc discharge system, the plasma reactor works with a pressure of He up to 0,5 atm. The electric arc burns between two graphite rods. Vapors of carbon move from the anode, through a short arc column and forms CNTs which can be collected either from the reactor walls or cathode deposit. This method is suitable for the production of multi-wall and single-wall CNTs. A disadvantage of high-temperature methods is a low purification, short length, random size and multi-directional distribution. In MPCVD system plasma is generated in waveguide connected to the microwave generator. Then containing carbon and ferromagnetic elements plasma flux go to the quartz tube. The additional resistance heating can be applied to increase the reaction effectiveness and efficiency. CNTs nucleation occurs on the quartz tube walls. It is also possible to use substrates to improve carbon nanotubes growth. HPCVD system involves both chemical decomposition of carbon containing gases and vaporization of a solid or liquid source of catalyst. In this system, a tube furnace is applied. A mixture of working and carbon-containing gases go through the quartz tube placed inside the furnace. As a catalyst ferrocene vapors can be used. Fe-CNTs may be collected then either from the quartz tube walls or on the substrates. Low-temperature methods are characterized by higher purity product. Moreover, carbon nanotubes from tested CVD systems were partially filled with the iron. Regardless of the method of Fe-CNTs synthesis the final product always needs to be purified for applications in medicine. The simplest method of purification is an oxidation of the amorphous carbon. Carbon nanotubes dedicated for cancer cell thermal ablation need to be additionally treated by acids for defects amplification on the CNTs surface what facilitates biofunctionalization. Application of ferromagnetic nanotubes for cancer treatment is a promising method of fighting with cancer for the next decade. Acknowledgment: The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013Keywords: arc discharge, cancer, carbon nanotubes, CVD, thermal ablation
Procedia PDF Downloads 4501981 Top-Down and Bottom-up Effects in Rhizosphere-Plant-Aphid Interactions
Authors: Anas Cherqui, Audrey Pecourt, Manuella Catterou, Candice Mazoyon, Hervé Demailly, Vivien Sarazin, Frédéric Dubois, Jérôme Duclercq
Abstract:
Aphids are pests that can cause severe yield losses in field crops. Chemical control is currently widely used to control aphids, but this method is increasingly controversial. The pea is able to recruit bacteria that are beneficial to its development, growth and health. However, the effects of this microbial recruitment on plant-insect interactions have generally been underestimated. This study investigated the interactions between Pisum sativum, key bacteria of pea rhizosphere (Rhizobium and Sphingomonas species) and the pea aphid, Acyrthosiphon pisum. We assessed the bottom-up effects of single and combined bacterial inoculations on pea plant health and subsequent aphid performance, as well as the top-down effects of aphid infestation on soil functionality. The presence of S. sediminicola or S. daechungensis limited the fecundity of the pea aphid without strongly affecting its feeding behaviour. Nevertheless, these bacteria limited the effect of A. pisum on the plant phenotype. In addition, the aphid infestation decreased the soil functionality, suggesting a potential strategy to hinder the recruitment of beneficial microorganisms.Keywords: Acyrthosiphon pisum, Pisum sativum, Sphingomonas, rhizobium, EPG, productivity
Procedia PDF Downloads 251980 Optimization of Heterojunction Solar Cell Using AMPS-1D
Authors: Benmoussa Dennai, H. Benslimane, A. Helmaoui
Abstract:
Photovoltaic conversion is the direct conversion of electromagnetic energy into electrical energy continuously. This electromagnetic energy is the most solar radiation. In this work we performed a computer modelling using AMPS 1D optimization of hetero-junction solar cells GaInP / GaAs configuration for p / n. We studied the influence of the thickness the base layer in the cell offers on the open circuit voltage, the short circuit current and efficiency.Keywords: optimization, photovoltaic cell, GaInP / GaAs AMPS-1D, hetetro-junction
Procedia PDF Downloads 5211979 Carbonate Microfacies and Diagenesis of Klapanunggal Formation in Cileungsi District, Bogor Regency, West Java Province, Indonesia
Authors: Reghina Karyadi, Abdurrokhim, Lili Fauzielly
Abstract:
Administratively, the research area is located in Cileungsi District, Bogor Regency, West Java Province, Indonesia. Geographically, it located at 106° 56’ 1,9392” - 107° 1’ 27,8112” East Longitude and 6° 32’ 29,3712” - 6° 27’ 5,6124” South Latitude. This research is being held as a purpose to observe microfacies and limestone diagenesis that happened in the study area. Dominantly, the area fulfills of various hills that formed by carbonate and sediment stones which folded and faulted. The method that using in this research is analysis the outcrop data and petrography by using red alizarin for differentiating of minerals type. Microfacies type and diagenesis processes can be known from petrography analysis results like rock texture, rock structure, porosity, type of grain and fossils. The result of research shows that carbonate rocks in the study area can be divided into 3 types microfasies, which is Reef Microfacies (SMF 7), Shallow Water Microfacies (SMF 9), and Textural Inversion Microfacies (SMF 10). Whereas diagenesis process that happened is microbial micritization, compaction, neomorphism, cementation and dissolution process.Keywords: carbonate, limestone, microfacies, diagenesis
Procedia PDF Downloads 3911978 How Obesity Sparks the Immune System and Lessons from the COVID-19 Pandemic
Authors: Husham Bayazed
Abstract:
Purpose of Presentation: Obesity and overweight are among the biggest health challenges of the 21st century, according to the WHO. Obviously, obese individuals suffer different courses of disease – from infections and allergies to cancer- and even respond differently to some treatment options. Of note, obesity often seems to predispose and triggers several secondary diseases such as diabetes, arteriosclerosis, or heart attacks. Since decades it seems that immunological signals gear inflammatory processes among obese individuals with the aforementioned conditions. This review aims to shed light how obesity sparks or rewire the immune system and predisposes to such unpleasant health outcomes. Moreover, lessons from the Covid-19 pandemic ascertain that people living with pre-existing conditions such as obesity can develop severe acute respiratory syndrome (SARS), which needs to be elucidated how obesity and its adjuvant inflammatory process distortion contribute to enhancing severe COVID-19 consequences. Recent Findings: In recent clinical studies, obesity was linked to alter and sparks the immune system in different ways. Adipose tissue (AT) is considered as a secondary immune organ, which is a reservoir of tissue-resident of different immune cells with mediator release, making it a secondary immune organ. Adipocytes per se secrete several pro-inflammatory cytokines (IL-6, IL-4, MCP-1, and TNF-α ) involved in activation of macrophages resulting in chronic low-grade inflammation. The correlation between obesity and T cells dysregulation is pivotal in rewiring the immune system. Of note, autophagy occurrence in adipose tissues further rewire the immune system due to flush and outburst of leptin and adiponectin, which are cytokines and influencing pro-inflammatory immune functions. These immune alterations among obese individuals are collectively incriminated in triggering several metabolic disorders and playing role in increasing cancers incidence and susceptibility to different infections. During COVID-19 pandemic, it was verified that patients with pre-existing obesity being at greater risk of suffering severe and fatal clinical outcomes. Beside obese people suffer from increased airway resistance and reduced lung volume, ACE2 expression in adipose tissue seems to be high and even higher than that in lungs, which spike infection incidence. In essence, obesity with pre-existence of pro-inflammatory cytokines such as LI-6 is a risk factor for cytokine storm and coagulopathy among COVID-19 patients. Summary: It is well documented that obesity is associated with chronic systemic low-grade inflammation, which sparks and alter different pillars of the immune system and triggers different metabolic disorders, and increases susceptibility of infections and cancer incidence. The pre-existing chronic inflammation in obese patients with the augmented inflammatory response against the viral infection seems to increase the susceptibility of these patients to developing severe COVID-19. Although the new weight loss drugs and bariatric surgery are considered as breakthrough news for obesity treatment, but preventing is easier than treating it once it has taken hold. However, obesity and immune system link new insights dispute the role of immunotherapy and regulating immune cells treating diet-induced obesity.Keywords: immunity, metabolic disorders, cancer, COVID-19
Procedia PDF Downloads 751977 Renewable Energy Trends Analysis: A Patents Study
Authors: Sepulveda Juan
Abstract:
This article explains the elements and considerations taken into account when implementing and applying patent evaluation and scientometric study in the identifications of technology trends, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.Keywords: patents, scientometric, renewable energy, technology maps
Procedia PDF Downloads 3091976 Factors Affecting the Results of in vitro Gas Production Technique
Authors: O. Kahraman, M. S. Alatas, O. B. Citil
Abstract:
In determination of values of feeds which, are used in ruminant nutrition, different methods are used like in vivo, in vitro, in situ or in sacco. Generally, the most reliable results are taken from the in vivo studies. But because of the disadvantages like being hard, laborious and expensive, time consuming, being hard to keep the experiment conditions under control and too much samples are needed, the in vitro techniques are more preferred. The most widely used in vitro techniques are two-staged digestion technique and gas production technique. In vitro gas production technique is based on the measurement of the CO2 which is released as a result of microbial fermentation of the feeds. In this review, the factors affecting the results obtained from in vitro gas production technique (Hohenheim Feed Test) were discussed. Some factors must be taken into consideration when interpreting the findings obtained in these studies and also comparing the findings reported by different researchers for the same feeds. These factors were discussed in 3 groups: factors related to animal, factors related to feeds and factors related with differences in the application of method. These factors and their effects on the results were explained. Also it can be concluded that the use of in vitro gas production technique in feed evaluation routinely can be contributed to the comprehensive feed evaluation, but standardization is needed in this technique to attain more reliable results.Keywords: In vitro, gas production technique, Hohenheim feed test, standardization
Procedia PDF Downloads 6011975 Solar Panel Design Aspects and Challenges for a Lunar Mission
Authors: Mannika Garg, N. Srinivas Murthy, Sunish Nair
Abstract:
TeamIndus is only Indian team participated in the Google Lunar X Prize (GLXP). GLXP is an incentive prize space competition which is organized by the XPrize Foundation and sponsored by Google. The main objective of the mission is to soft land a rover on the moon surface, travel minimum displacement of 500 meters and transmit HD and NRT videos and images to the Earth. Team Indus is designing a Lunar Lander which carries Rover with it and deliver onto the surface of the moon with a soft landing. For lander to survive throughout the mission, energy is required to operate all attitude control sensors, actuators, heaters and other necessary components. Photovoltaic solar array systems are the most common and primary source of power generation for any spacecraft. The scope of this paper is to provide a system-level approach for designing the solar array systems of the lander to generate required power to accomplish the mission. For this mission, the direction of design effort is to higher efficiency, high reliability and high specific power. Towards this approach, highly efficient multi-junction cells have been considered. The design is influenced by other constraints also like; mission profile, chosen spacecraft attitude, overall lander configuration, cost effectiveness and sizing requirements. This paper also addresses the various solar array design challenges such as operating temperature, shadowing, radiation environment and mission life and strategy of supporting required power levels (peak and average). The challenge to generate sufficient power at the time of surface touchdown, due to low sun elevation (El) and azimuth (Az) angle which depends on Lunar landing site, has also been showcased in this paper. To achieve this goal, energy balance analysis has been carried out to study the impact of the above-mentioned factors and to meet the requirements and has been discussed in this paper.Keywords: energy balance analysis, multi junction solar cells, photovoltaic, reliability, spacecraft attitude
Procedia PDF Downloads 2301974 Study of the Behavior of Copper Immersed in Sea Water of the Bay of Large Agadir by Electrochemical Methods
Authors: Aicha Chaouay, Lahsen Bazzi, Mustapha Hilali
Abstract:
Seawater has chemical and biological characteristics making it particularly aggressive in relation to the corrosion of many materials including copper and steels low or moderate allies. Note that these materials are widely used in the manufacture of port infrastructure in the marine environment. These structures are exposed to two types of corrosion including: general corrosion and localized corrosion caused by the presence of sulfite-reducing micro-organisms. This work contributes to the study of the problematic related to bacterial contamination of the marine environment of large Agadir and evaluating the impact of this pollution on the corrosion resistance of copper. For the realization of this work, we conducted monthly periodic draws between (October 2012 February 2013) of seawater from the Anza area of the Bay of Agadir. Thus, after each sampling, a study of the electro chemical corrosion behavior of copper was carried out. Electro chemical corrosion parameters such as the corrosion potential, the corrosion current density, the charge transfer resistance and the double layer capacity were evaluated. The electro chemical techniques used in this work are: the route potentiodynamic polarization curves and electro chemical impedance.Keywords: Bay of Agadir, microbial contamination, seawater (Morocco), corrosion, copper
Procedia PDF Downloads 5081973 Effects of Post-Emergence Herbicides on Soil Micro-Flora and Nitrogen Fixing Bacteria in Pea Field
Authors: Ali M. Zaid, Muftah Mayouf, Yahya Said Farouj
Abstract:
The effect of post emergence herbicides on soil micro-flora and nitrogen fixing bacteria was studied in pea field. Pea (Pisum sativum) was grown and treated with one or a mixture of two of several herbicides 2 weeks after sowing. Soil samples were collected 2 weeks after herbicides application. Average number of colony forming units per gram of soil of bacteria, actinomycetes and fungi were determined. Average number of nodules per plant was obtained at the end of the growing season. The results of the study showed MCPB, Bentazon, MCPB+Fluozifop-p-butyl, Bentazon+Fluozifop-p-butyl, Metribuzin, Flouzifop-p-butyl+Metribuzin, Cycloxydin, and Sethoxydin increased the population of soil fungi, with 4 to 10 times compared with the control. The herbicides used showed no significant effects on nitrogen fixing bacteria. The effects of herbicides on soil bacteria and actinomycetes were different. The study showed the use of herbicides could influence the biological balance of soil microflora, which has an important role in soil fertility and microbial ecosystem.Keywords: herbicides, post emergence, nitrogen fixing bacteria, environmental systems
Procedia PDF Downloads 4031972 Simulation and Characterization of Organic Light Emitting Diodes and Organic Photovoltaics Using Physics Based Tool
Authors: T. A. Shahul Hameed, P. Predeep, Anju Iqbal, M. R. Baiju
Abstract:
Research and development in organic photovoltaic cells and Organic Light Emitting Diodes have gained wider acceptance due to the advent of many advanced techniques to enhance the efficiency and operational hours. Here we report our work on design, simulation and characterizationracterize the bulk heterojunction organic photo cell and polymer light emitting diodes in different layer configurations using ATLAS, a licensed device simulation tool. Bulk heterojuction and multilayer devices were simulated for comparing their performance parameters.Keywords: HOMO, LUMO, PLED, OPV
Procedia PDF Downloads 5861971 Protective Effect of Aframomun chrysanthum Seed Aqueous Extract in Acetaminophen-Induced Liver Toxicity in Rats
Authors: N. Nwachoko, E. B. Essien, E. O. Ayalogu
Abstract:
Owing to the outbreak of different diseases and microbial resistance to some available drugs, proper identification, and evaluation of plants have been encouraged. There have been claims worldwide by the traditional system that some plants possessed medicinal properties. Plants and their components have been said to be source of large amount of drugs which comprise of distinct groups such as antispasmodics, anticancer and antimicrobials. Researchers have reported that chemicals in plants are responsible for the medicinal uses of plants. Thus this study evaluated the protective effect of Aframomun chrysanthum seed aqueous extract in acetaminophen-induced liver toxicity in rats. A suspension of 750 mg/kg acetaminophen was administered once every 72 hours to induce toxicity in the rats. Oral administration of 500, 1000 and 2000 mg/kg body weight of the extract and 100 mg/kg of silymarin (reference drug) were administered for 10 days. Biochemical analysis showed significant (p < 0.05) increase in the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT)and alkaline phosphatase (ALP)as well as the concentrations of albumin (ALB) and total bilirubin (T.B.) levels in rats administered with acetaminophen only. The levels of these parameters were significantly (p < 0.05) decreased in the groups pretreated with the extract.Keywords: Aframomun chrysanthum, silymarin, hepatoprotective, toxicity
Procedia PDF Downloads 3981970 PARP1 Links Transcription of a Subset of RBL2-Dependent Genes with Cell Cycle Progression
Authors: Ewelina Wisnik, Zsolt Regdon, Kinga Chmielewska, Laszlo Virag, Agnieszka Robaszkiewicz
Abstract:
Apart from protecting genome, PARP1 has been documented to regulate many intracellular processes inter alia gene transcription by physically interacting with chromatin bound proteins and by their ADP-ribosylation. Our recent findings indicate that expression of PARP1 decreases during the differentiation of human CD34+ hematopoietic stem cells to monocytes as a consequence of differentiation-associated cell growth arrest and formation of E2F4-RBL2-HDAC1-SWI/SNF repressive complex at the promoter of this gene. Since the RBL2 complexes repress genes in a E2F-dependent manner and are widespread in the genome in G0 arrested cells, we asked (a) if RBL2 directly contributes to defining monocyte phenotype and function by targeting gene promoters and (b) if RBL2 controls gene transcription indirectly by repressing PARP1. For identification of genes controlled by RBL2 and/or PARP1,we used primer libraries for surface receptors and TLR signaling mediators, genes were silenced by siRNA or shRNA, analysis of gene promoter occupation by selected proteins was carried out by ChIP-qPCR, while statistical analysis in GraphPad Prism 5 and STATISTICA, ChIP-Seq data were analysed in Galaxy 2.5.0.0. On the list of 28 genes regulated by RBL2, we identified only four solely repressed by RBL2-E2F4-HDAC1-BRM complex. Surprisingly, 24 out of 28 emerged genes controlled by RBL2 were co-regulated by PARP1 in six different manners. In one mode of RBL2/PARP1 co-operation, represented by MAP2K6 and MAPK3, PARP1 was found to associate with gene promoters upon RBL2 silencing, which was previously shown to restore PARP1 expression in monocytes. PARP1 effect on gene transcription was observed only in the presence of active EP300, which acetylated gene promoters and activated transcription. Further analysis revealed that PARP1 binding to MA2K6 and MAPK3 promoters enabled recruitment of EP300 in monocytes, while in proliferating cancer cell lines, which actively transcribe PARP1, this protein maintained EP300 at the promoters of MA2K6 and MAPK3. Genome-wide analysis revealed a similar distribution of PARP1 and EP300 around transcription start sites and the co-occupancy of some gene promoters by PARP1 and EP300 in cancer cells. Here, we described a new RBL2/PARP1/EP300 axis which controls gene transcription regardless of the cell type. In this model cell, cycle-dependent transcription of PARP1 regulates expression of some genes repressed by RBL2 upon cell cycle limitation. Thus, RBL2 may indirectly regulate transcription of some genes by controlling the expression of EP300-recruiting PARP1. Acknowledgement: This work was financed by Polish National Science Centre grants nr DEC-2013/11/D/NZ2/00033 and DEC-2015/19/N/NZ2/01735. L.V. is funded by the National Research, Development and Innovation Office grants GINOP-2.3.2-15-2016-00020 TUMORDNS, GINOP-2.3.2-15-2016-00048-STAYALIVE and OTKA K112336. AR is supported by Polish Ministry of Science and Higher Education 776/STYP/11/2016.Keywords: retinoblastoma transcriptional co-repressor like 2 (RBL2), poly(ADP-ribose) polymerase 1 (PARP1), E1A binding protein p300 (EP300), monocytes
Procedia PDF Downloads 210