Search results for: LMS–learning management system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29624

Search results for: LMS–learning management system

27494 Learning Environment and Motivation of Cavite National High School Students

Authors: Madelaine F. Gatchalian, Mary Jane D. Tepora

Abstract:

This study was designed to determine the relationship between learning environment and motivation of CNHS, SY 2012-2013. There were 376 respondents taken randomly. Frequency distribution, percentage, mean, standard deviation, Mann Whitney Test, Kruskall Wallis One-way ANOVA and Spearman Rank Correlational Coefficient were used in analyzing the data. As to age, most of the respondents were 13 years old while female students outnumbered the male students. Majority of parents’ educational attainment of CNHS students were high school/vocational graduates. Most fathers worked in the private sector, while majority of the mothers were unemployed whose family income range from Php 5,000.00 to Php 14,999.00. Most of the respondents were first child composed of five family members. Findings showed no significant differences in perceived learning environment when respondents were grouped in terms of age, sex, parents’ educational attainment, parents’ occupation, sibling order and number of family members. Only monthly family income showed significant differences in perceived learning environment. There are no significant differences in perceived learning motivation when respondents were grouped in terms of age, sex, parents’ educational attainment (father), parents’ occupation (father), sibling order, and number of family members. Parents’ educational attainment (mother), parents’ occupation (mother) and monthly family income showed significant differences in perceived learning motivation. There is significant relationship between the six subscales of perceived learning environment, namely: student cohesiveness, teacher support, involvement, task orientation, cooperation and equity and perceived learning motivation of CNHS students, SY, 2012-2013. The results of this study indicated that learning environment including student cohesiveness, teachers support, involvement, task orientation, cooperation and equity is significantly related to students’ learning motivation.

Keywords: learning environment, motivation, demographic profile, secondary students

Procedia PDF Downloads 377
27493 Design of EV Steering Unit Using AI Based on Estimate and Control Model

Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin

Abstract:

Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.

Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system

Procedia PDF Downloads 44
27492 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning

Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie

Abstract:

This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.

Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network

Procedia PDF Downloads 143
27491 Evaluation of Massive Open Online Course in a Rural Marginalized Area: Case Study of Alice Community, Eastern Cape, South Africa

Authors: Dare Ebenezer Fatumo, Olusesan Emmanuel Adelabu

Abstract:

Online learning has taken another dimension through the introduction of Massive Open Online Courses (MOOCs), it has also become an important resource base for teaching and learning. This research aimed at investigating the use of Massive Open Online Course in a rural marginalized area. The survey research design of descriptive nature was adopted to evaluate the awareness and usage of Massive Open Online Course (MOOCs) in Alice community, Eastern Cape, South Africa. This study also employed quantitative approach by using self-structured questionnaire to evoke information from the respondents. The data collected were analyzed by Statistical Package for Social Sciences (SPSS). The findings revealed amongst others the efficacy of Massive Open Online Course (MOOCs) in fostering teaching and learning in rural marginalized areas. This study concludes that MOOCs is a veritable medium for busy or less privileged individual to acquire a degree or certification. Therefore, the study recommends MOOCs platform to be fully embraced by people in rural marginalized areas, awareness programs about its usefulness should be propagated across the municipalities nationwide.

Keywords: distance learning, information and communication technology, massive open online course, online learning, teaching and learning

Procedia PDF Downloads 179
27490 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization

Authors: Yihao Kuang, Bowen Ding

Abstract:

With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graph and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improve strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain better and more efficient inference effect by introducing PPO into knowledge inference technology.

Keywords: reinforcement learning, PPO, knowledge inference, supervised learning

Procedia PDF Downloads 67
27489 Difficulties in Teaching and Learning English Pronunciation in Sindh Province, Pakistan

Authors: Majno Ajbani

Abstract:

Difficulties in teaching and learning English pronunciation in Sindh province, Pakistan Abstract Sindhi language is widely spoken in Sindh province, and it is one of the difficult languages of the world. Sindhi language has fifty-two alphabets which have caused a serious issue in learning and teaching of English pronunciation for teachers and students of Colleges and Universities. This study focuses on teachers’ and students’ need for extensive training in the pronunciation that articulates the real pronunciation of actual words. The study is set to contribute in the sociolinguistic studies of English learning communities in this region. Data from 200 English teachers and students was collected by already tested structured questionnaire. The data was analysed using SPSS 20 software. The data analysis clearly demonstrates the higher range of inappropriate pronunciations towards English learning and teaching. The anthropogenic responses indicate 87 percentages teachers and students had an improper pronunciation. This indicates the substantial negative effects on academic and sociolinguistic aspects. It is suggested an improper speaking of English, based on rapid changes in geopolitical and sociocultural surroundings.

Keywords: alphabets, pronunciation, sociolinguistic, anthropogenic, imprudent, malapropos

Procedia PDF Downloads 396
27488 Causal-Explanatory Model of Academic Performance in Social Anxious Adolescents

Authors: Beatriz Delgado

Abstract:

Although social anxiety is one of the most prevalent disorders in adolescents and causes considerable difficulties and social distress in those with the disorder, to date very few studies have explored the impact of social anxiety on academic adjustment in student populations. The aim of this study was analyze the effect of social anxiety on school functioning in Secondary Education. Specifically, we examined the relationship between social anxiety and self-concept, academic goals, causal attributions, intellectual aptitudes, and learning strategies, personality traits, and academic performance, with the purpose of creating a causal-explanatory model of academic performance. The sample consisted of 2,022 students in the seven to ten grades of Compulsory Secondary Education in Spain (M = 13.18; SD = 1.35; 51.1% boys). We found that: (a) social anxiety has a direct positive effect on internal attributional style, and a direct negative effect on self-concept. Social anxiety also has an indirect negative effect on internal causal attributions; (b) prior performance (first academic trimester) exerts a direct positive effect on intelligence, achievement goals, academic self-concept, and final academic performance (third academic trimester), and a direct negative effect on internal causal attributions. It also has an indirect positive effect on causal attributions (internal and external), learning goals, achievement goals, and study strategies; (c) intelligence has a direct positive effect on learning goals and academic performance (third academic trimester); (d) academic self-concept has a direct positive effect on internal and external attributional style. Also, has an indirect effect on learning goals, achievement goals, and learning strategies; (e) internal attributional style has a direct positive effect on learning strategies and learning goals. Has a positive but indirect effect on achievement goals and learning strategies; (f) external attributional style has a direct negative effect on learning strategies and learning goals and a direct positive effect on internal causal attributions; (g) learning goals have direct positive effect on learning strategies and achievement goals. The structural equation model fit the data well (CFI = .91; RMSEA = .04), explaining 93.8% of the variance in academic performance. Finally, we emphasize that the new causal-explanatory model proposed in the present study represents a significant contribution in that it includes social anxiety as an explanatory variable of cognitive-motivational constructs.

Keywords: academic performance, adolescence, cognitive-motivational variables, social anxiety

Procedia PDF Downloads 333
27487 Important Management Competencies: University of Technology Perspective

Authors: Courtley Pharaoh, D. J. Visser

Abstract:

University management is often caught between competing interests from stakeholders like students, trustees, donors, government and the community it serves. This study aimed to identify what management competencies are required by executive management members of universities of technology to effectively manage a university of technology in South Africa from the perspective of the executive management members. This exploratory study will make use of a qualitative methodology to establish what management competencies are deemed as important to manage a university of technology in South Africa from the executive management perspective. Due to the consequences of the COVID-19 Pandemic, the study made use of online face-to-face interviews to ascertain from executive management members of universities of technology what the required management competencies needed by executive management members of universities of technology to effectively manage a University of Technology in South Africa. Qualitative Content Analysis was used to analyse the data collected. The findings of the study identified a total of 26 management competencies which were categorised into three groupings or themes. This study identified a list of required management competencies needed by executive management members of universities of technology to effectively manage a university of technology in South Africa, as per the lived experience of executive management members. The researcher recommends further studies at traditional and comprehensive universities and compares the results of those future studies with the results of this study. A comprehensive list of management competencies could then be identified, which could assist with the compilation of job descriptions of executive management members of universities in South Africa.

Keywords: university of technology, management competencies, executive management, executive management members, important

Procedia PDF Downloads 107
27486 The Integration of ICT in the Teaching and Learning of French Language in Some Selected Schools in Nigeria: Prospects and Challenges

Authors: Oluyomi A. Abioye

Abstract:

The 21st century has been witnessing a lot of technological advancements and innovations, and Information and Communication Technology (ICT) happens to be one of them. Education is the cornerstone of any nation and the language in which it is delivered is the bedrock of any development. The French language is our choice in this study. French is a language of reference on the national and international scenes; however its teaching is clouded with myriads of problems. The output of students’ academic performance depends on to a large extent on the teaching and learning the process. The methodology employed goes a long way in contributing to the effectiveness of the teaching and learning the process. Therefore, with the integration of ICT, French teaching has to align with and adapt to this new digital era. An attempt is made to define the concept of ICT. Some of the challenges encountered in the teaching of French language are highlighted. Then it discusses the existing methods of French teaching and the integration of ICT in the teaching and learning of the same language. Then some prospects and challenges of ICT in the teaching and learning of French are discussed. Data collected from questionnaires administered among some students of some selected schools are analysed. Our findings revealed that only very few schools in Nigeria have the electronic and computer-mediated facilities to teach the French language. The paper concludes by encouraging 'savoir-faire' of ICT by the French teachers, an openness of students to this digital technology and adequate provision of electronic and computer-mediated gadgets by the Nigerian government to its educational institutions.

Keywords: French language in Nigeria, integration of ICT, prospects and challenges, teaching and learning

Procedia PDF Downloads 348
27485 Impact of Tablet Based Learning on Continuous Assessment (ESPRIT Smart School Framework)

Authors: Mehdi Attia, Sana Ben Fadhel, Lamjed Bettaieb

Abstract:

Mobile technology has become a part of our daily lives and assist learners (despite their level and age) in their leaning process using various apparatus and mobile devices (laptop, tablets, etc.). This paper presents a new learning framework based on tablets. This solution has been developed and tested in ESPRIT “Ecole Supérieure Privée d’Igénieurie et de Technologies”, a Tunisian school of engineering. This application is named ESSF: Esprit Smart School Framework. In this work, the main features of the proposed solution are listed, particularly its impact on the learners’ evaluation process. Learner’s assessment has always been a critical component of the learning process as it measures students’ knowledge. However, traditional evaluation methods in which the learner is evaluated once or twice each year cannot reflect his real level. This is why a continuous assessment (CA) process becomes necessary. In this context we have proved that ESSF offers many important features that enhance and facilitate the implementation of the CA process.

Keywords: continuous assessment, mobile learning, tablet based learning, smart school, ESSF

Procedia PDF Downloads 334
27484 An Evaluation of the Auxiliary Instructional App Amid Learning Chinese Characters for Children with Specific Learning Disorders

Authors: Chieh-Ning Lan, Tzu-Shin Lin, Kun-Hao Lin

Abstract:

Chinese handwriting skill is one of the basic skills of school-age children in Taiwan, which helps them to learn most academic subjects. Differ from the alphabetic language system, Chinese written language is a logographic script with a complicated 2-dimensional character structure as a morpheme. Visuospatial ability places a great role in Chinese handwriting to maintain good proportion and alignment of these interwoven strokes. In Taiwan, school-age students faced the challenge to recognize and write down Chinese characters, especially in children with written expression difficulties (CWWDs). In this study, we developed an instructional app to help CWWDs practice Chinese handwriting skills, and we aimed to apply the mobile assisted language learning (MALL) system in clinical writing strategies. To understand the feasibility and satisfaction of this auxiliary instructional writing app, we investigated the perceive and value both from school-age students and the clinic therapists, who were the target users and the experts. A group of 8 elementary school children, as well as 8 clinic therapists, were recruited. The school-age students were asked to go through a paper-based instruction and were asked to score the visual expression based on their graphic preference; the clinic therapists were asked to watch an introductive video of this instructional app and complete the online formative questionnaire. In the results of our study, from the perspective of user interface design, school-age students were more attracted to cartoon-liked pictures rather than line drawings or vivid photos. Moreover, compared to text, pictures which have higher semantic transparency were more commonly chosen by children. In terms of the quantitative survey from clinic therapists, they were highly satisfied with this auxiliary instructional writing app, including the concepts such as visual design, teaching contents, and positive reinforcement system. Furthermore, the qualitative results also suggested comprehensive positive feedbacks on the teaching contents and the feasibility of integrating the app into clinical treatments. Interestingly, we found that clinic therapists showed high agreement in approving CWWDs’ writing ability with using orthographic knowledge; however, in the qualitative section, clinic therapists pointed out that CWWDs usually have relative insufficient background knowledge in Chinese character orthographic rules, which because it is not a key-point in conventional handwriting instruction. Also, previous studies indicated that conventional Chinese reading and writing instructions were lacked of utilizing visual-spatial arrangement strategies. Based on the sharing experiences from all participants, we concluded several interesting topics that are worth to dedicate to in the future. In this undergoing app system, improvement and revision will be applied into the system design, and will establish a better and more useful instructional system for CWWDs within their treatments; enlightened by the opinions related to learning content, the importance of orthographic knowledge in Chinese character recognition should be well discussed and involved in CWWDs’ intervention in the future.

Keywords: auxiliary instructional app, children with writing difficulties, Chinese handwriting, orthographic knowledge

Procedia PDF Downloads 173
27483 The Application of Active Learning to Develop Creativity in General Education

Authors: Chalermwut Wijit

Abstract:

This research is conducted in order to 1) study the result of applying “Active Learning” in general education subject to develop creativity 2) explore problems and obstacles in applying Active Learning in general education subject to improve the creativity in 1780 undergraduate students who registered this subject in the first semester 2013. The research is implemented by allocating the students into several groups of 10 -15 students and assigning them to design the activities for society under the four main conditions including 1) require no financial resources 2) practical 3) can be attended by every student 4) must be accomplished within 2 weeks. The researcher evaluated the creativity prior and after the study. Ultimately, the problems and obstacles from creating activity are evaluated from the open-ended questions in the questionnaires. The study result states that overall average scores on students’ ability increased significantly in terms of creativity, analytical ability and the synthesis, the complexity of working plan and team working. It can be inferred from the outcome that active learning is one of the most efficient methods in developing creativity in general education.

Keywords: creative thinking, active learning, general education, social sustainability

Procedia PDF Downloads 184
27482 Automatic Detection and Filtering of Negative Emotion-Bearing Contents from Social Media in Amharic Using Sentiment Analysis and Deep Learning Methods

Authors: Derejaw Lake Melie, Alemu Kumlachew Tegegne

Abstract:

The increasing prevalence of social media in Ethiopia has exacerbated societal challenges by fostering the proliferation of negative emotional posts and comments. Illicit use of social media has further exacerbated divisions among the population. Addressing these issues through manual identification and aggregation of emotions from millions of users for swift decision-making poses significant challenges, particularly given the rapid growth of Amharic language usage on social platforms. Consequently, there is a critical need to develop an intelligent system capable of automatically detecting and categorizing negative emotional content into social, religious, and political categories while also filtering out toxic online content. This paper aims to leverage sentiment analysis techniques to achieve automatic detection and filtering of negative emotional content from Amharic social media texts, employing a comparative study of deep learning algorithms. The study utilized a dataset comprising 29,962 comments collected from social media platforms using comment exporter software. Data pre-processing techniques were applied to enhance data quality, followed by the implementation of deep learning methods for training, testing, and evaluation. The results showed that CNN, GRU, LSTM, and Bi-LSTM classification models achieved accuracies of 83%, 50%, 84%, and 86%, respectively. Among these models, Bi-LSTM demonstrated the highest accuracy of 86% in the experiment.

Keywords: negative emotion, emotion detection, social media filtering sentiment analysis, deep learning.

Procedia PDF Downloads 26
27481 Mathematical Model of Corporate Bond Portfolio and Effective Border Preview

Authors: Sergey Podluzhnyy

Abstract:

One of the most important tasks of investment and pension fund management is building decision support system which helps to make right decision on corporate bond portfolio formation. Today there are several basic methods of bond portfolio management. They are duration management, immunization and convexity management. Identified methods have serious disadvantage: they do not take into account credit risk or insolvency risk of issuer. So, identified methods can be applied only for management and evaluation of high-quality sovereign bonds. Applying article proposes mathematical model for building an optimal in case of risk and yield corporate bond portfolio. Proposed model takes into account the default probability in formula of assessment of bonds which results to more correct evaluation of bonds prices. Moreover, applied model provides tools for visualization of the efficient frontier of corporate bonds portfolio taking into account the exposure to credit risk, which will increase the quality of the investment decisions of portfolio managers.

Keywords: corporate bond portfolio, default probability, effective boundary, portfolio optimization task

Procedia PDF Downloads 318
27480 Waste Heat Recovery System

Authors: A. Ramkumar, Anvesh Sagar, Preetham P. Karkera

Abstract:

Globalization in the modern era is dependent on the International logistics, the economic and reliable means is provided by the ocean going merchant vessel. The propulsion system which drives this massive vessels has gone through leaps and bounds of evolution. Most reliable system of propulsion adopted by the majority of vessels is by marine diesel engine. Since the first oil crisis of 1973, there is demand in increment of efficiency of main engine. Due to increase in the oil prices ship-operators explores for reduction in the operational cost of ship. And newly adopted IMO’s EEDI & SEEMP rules calls for the effective measures taken in this regard. The main engine of a ship suffers a lot of thermal losses, they mainly occur due to exhaust gas waste heat, radiation and cooling. So to increase the overall efficiency of system, we have to look into the solution to harnessing this waste energy of main engine to increase the fuel economy. During the course of research, engine manufacturers have developed many waste heat recovery systems. In our paper we see about additional options to harness this waste heat. The exhaust gas of engine coming out from the turbocharger still holds enough heat to go to the exhaust gas economiser to produce steam. This heat of exhaust gas can be used to heat a liquid of less boiling point after coming out from the turbocharger. The vapour of this secondary liquid can be superheated by a bypass exhaust or exhaust of turbocharger. This vapour can be utilized to rotate the turbine which is coupled to a generator. And the electric power for ship service can be produced with proper configuration of system. This can be included in PMS of ship. In this paper we seek to concentrate on power generation with use of exhaust gas. Thereby taking out the load on the main generator and increasing the efficiency of the system. This will help us to comply with the new rules of IMO. Our method helps to develop clean energy.

Keywords: EEDI–energy efficiency design index, IMO–international maritime organization PMS-power management system, SEEMP–ship energy efficiency management plan

Procedia PDF Downloads 381
27479 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 150
27478 Integration of Social Media in Teaching and Learning Activities: A Case Study

Authors: A. Nagaletchimee Annamalai

Abstract:

The study investigated on how a small group of pre-service teachers and lecturers used social media to interact and collaborate to complete their tasks. The study is a qualitative case study that explored the lecturers’ reflections and pre-service teachers’ interviews. The lecturers were given the option to choose Facebook or any other social media as their teaching and learning platforms. However, certain guidelines based on were given to lecturers to conduct their teaching and learning activities. The findings revealed that although Facebook was a popular social networking site, it was not a preferred educational platform. Lecturers preferred to use WhatsApp, Canvas, and email. The focus group interview found positive and negative experiences of the pre-service teachers. The study suggested several pedagogical implications and importantly highlighted the need for changes in curriculum to ensure lecturers leverage the potential of technology in education.

Keywords: social media, interactions, collaboration, online learning environment

Procedia PDF Downloads 182
27477 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

Authors: Ying Su, Morgan C. Wang

Abstract:

Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).

Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis

Procedia PDF Downloads 105
27476 The Protection of Assets in the Crisis Management Processes

Authors: Jiri Barta

Abstract:

This paper deals with the prevention and management of emergencies. It focuses on the protection of assets of the critical infrastructure entities that are important to preventing, preparing for and management of emergencies and crisis situations. The paper defines assets and specifies their use and place in the process of crisis management and planning. Critical assets that are protected from the negative effects of emergency or crisis situation we can use in crisis management and response. This basic rule applies mainly to the substantial assets used in the protection of critical infrastructure processes.

Keywords: asset, continuity, critical infrastructure, crisis management process

Procedia PDF Downloads 515
27475 Cash Management and the Impact of Cashless Policy in a Developing Nation: Nigeria as a Case Study

Authors: Ossai Paulinus Edwin

Abstract:

Cash Management is a broad area having to do with the collection, concentration, and disbursement of cash including measuring the level of liquidity and managing the cash balance and short-Term Investments. Cash Management involves the efficient collection and disbursement of cash and cash equivalents. It also includes management of marketable securities because, in modern Terminology, money comprises marketable securities and actual cash in hand or in a bank. This cash management is concerned with management of cash inflow and cash outflow of a business especially as it concerns a developing nation like Nigeria. The paper throws light on the impact of cashless policy in Nigeria as it was introduced by the Central Bank of Nigeria (CBN) in December 2011 and was kick-started in Lagos in January 2012. Survey research was adopted with the questionnaires as data collection instrument. Responses show that cashless policy if adopted generally shall increase employment opportunities, reduce cash related robbery thereby reducing risk of carrying cash; it shall also reduce cash related corruption and attract more foreign investors to the country. It is expected that the introduction of cashless policy in Nigeria is a step in the right direction as it shall bring about modernization of Nigeria payment system, reduction in the cost of banking services, reduction in high security and safety risk and also curb banking related corruptions.

Keywords: cashless economy, cash management, cashless policy, e-banking, Nigeria

Procedia PDF Downloads 539
27474 Data-Driven Insights Into Juvenile Recidivism: Leveraging Machine Learning for Rehabilitation Strategies

Authors: Saiakhil Chilaka

Abstract:

Juvenile recidivism presents a significant challenge to the criminal justice system, impacting both the individuals involved and broader societal safety. This study aims to identify the key factors influencing recidivism and successful rehabilitation outcomes by utilizing a dataset of over 25,000 individuals from the NIJ Recidivism Challenge. We employed machine learning techniques, particularly Random Forest Classification, combined with SHAP (SHapley Additive exPlanations) for model interpretability. Our findings indicate that supervision risk score, percent days employed, and education level are critical factors affecting recidivism, with higher levels of supervision, successful employment, and education contributing to lower recidivism rates. Conversely, Gang Affiliation emerged as a significant risk factor for reoffending. The model achieved an accuracy of 68.8%, highlighting its utility in identifying high-risk individuals and informing targeted interventions. These results suggest that a comprehensive approach involving personalized supervision, vocational training, educational support, and anti-gang initiatives can significantly reduce recidivism and enhance rehabilitation outcomes for juveniles, providing critical insights for policymakers and juvenile justice practitioners.

Keywords: juvenile, justice system, data analysis, SHAP

Procedia PDF Downloads 23
27473 Focusing on the Utilization of Information and Communication Technology for Improving Childrens’ Potentials in Science: Challenges for Sustainable Development in Nigeria

Authors: Osagiede Mercy Afe

Abstract:

After the internet explosion in the 90’s, Technology was immediately integrated into the school system. Technology which symbolizes advancement in human knowledge was seen as a setback by many educators many efforts have been made to help stem this erroneous believes and help educators realize the benefits of technology and ways of implementing it in the classrooms especially in the sciences. This advancement created a constantly expanding gap between the pupil’s perception on the use of technology within the learning atmosphere and the teacher’s perception and limitations hence the focus of this paper is on the need to refocus on the potentials of Science and Technology in enhancing children learning at school especially in science for sustainable development in Nigeria. The paper recommended measures for facilitating the sustenance of science and technology in Nigerian schools so as to enhance the potentials of our children in Science and Technology for a better tomorrow.

Keywords: children, information communication technology (ICT), potentials, sustainable development, science education

Procedia PDF Downloads 488
27472 The Influence of the Normative Gender Binary in Diversity Management: A Multi-Method Study on Gender Diversity of Diversity Management

Authors: Robin C. Ladwig

Abstract:

Diversity Management, as a substantial element of Human Resource Management, aims to secure the economic benefit that assumingly comes with a diverse workforce. Consequently, diversity managers focus on the protection of employees and securing equality measurements to assure organisational gender diversity. Gender diversity as one aspect of Diversity Management seems to adhere to gender binarism and cis-normativity. Workplaces are gendered spaces which are echoing the binary gender-normativity presented in Diversity Management, sold under the label of gender diversity. While the expectation of Diversity Management implies the inclusion of a multiplicity of marginalised groups, such as trans and gender diverse people, in current literature and practice, the reality is curated by gender binarism and cis-normativity. The qualitative multi-method research showed a lack of knowledge about trans and gender diverse matters within the profession of Diversity Management and Human Resources. The semi-structured interviews with trans and gender diverse individuals from various backgrounds and occupations in Australia exposed missing considerations of trans and gender diverse experiences in the inclusivity and gender equity of various workplaces. Even if practitioners consider trans and gender diverse matters under gender diversity, the practical execution is limited to gender binary structures and cis-normative actions as the photo-elicit questionnaire with diversity managers, human resource officers, and personnel management demonstrates. Diversity Management should approach a broader source of informed practice by extending their business focus to the knowledge of humanity studies. Humanity studies could include diversity, queer, or gender studies to increase the inclusivity of marginalised groups such as trans and gender diverse employees and people. Furthermore, the definition of gender diversity should be extended beyond the gender binary and cis-normative experience. People may lose trust in Diversity Management as a supportive ally of marginalised employees if the understanding of inclusivity is limited to a gender binary and cis-normativity value system that misrepresents the richness of gender diversity.

Keywords: cis-normativity, diversity management, gender binarism, trans and gender diversity

Procedia PDF Downloads 202
27471 Exploring Non-Governmental Organizations’ Performance Management: Bahrain Athletics Association as a Case Study

Authors: Nooralhuda Aljlas

Abstract:

In the ever-growing field of non-governmental organizations, the enhancement of performance management and measurement systems has been increasingly acknowledged by political, economic, social, legal, technological and environmental factors. Within Bahrain Athletics Association, such enhancement results from the key factors leading performance management including collaboration, feedback, human resource management, leadership and participative management. The exploratory, qualitative research conducted reviewed performance management theory. As reviewed, the key factors leading performance management were identified. Drawing on a non-governmental organization case study, the key factors leading Bahrain Athletics Association’s performance management were explored. By exploring the key factors leading Bahrain Athletics Association’s performance management, the research study proposed a theoretical framework of the key factors leading performance management in non-governmental organizations in general. The research study recommended further investigation of the role of the two key factors of command and control and leadership, combining military and civilian approaches to enhancing non-governmental organizations’ performance management.

Keywords: Bahrain athletics association, exploratory, key factor, performance management

Procedia PDF Downloads 364
27470 Data-Driven Decision Making: A Reference Model for Organizational, Educational and Competency-Based Learning Systems

Authors: Emanuel Koseos

Abstract:

Data-Driven Decision Making (DDDM) refers to making decisions that are based on historical data in order to inform practice, develop strategies and implement policies that benefit organizational settings. In educational technology, DDDM facilitates the implementation of differential educational learning approaches such as Educational Data Mining (EDM) and Competency-Based Education (CBE), which commonly target university classrooms. There is a current need for DDDM models applied to middle and secondary schools from a concern for assessing the needs, progress and performance of students and educators with respect to regional standards, policies and evolution of curriculums. To address these concerns, we propose a DDDM reference model developed using educational key process initiatives as inputs to a machine learning framework implemented with statistical software (SAS, R) to provide a best-practices, complex-free and automated approach for educators at their regional level. We assessed the efficiency of the model over a six-year period using data from 45 schools and grades K-12 in the Langley, BC, Canada regional school district. We concluded that the model has wider appeal, such as business learning systems.

Keywords: competency-based learning, data-driven decision making, machine learning, secondary schools

Procedia PDF Downloads 174
27469 The Content-Based Classroom: Perspectives on Integrating Language and Content

Authors: Mourad Ben Bennani

Abstract:

Views of language and language learning have undergone a tremendous change over the last decades. Language is no longer seen as a set of structured rules. It is rather viewed as a tool of interaction and communication. This shift in views has resulted in change in viewing language learning, which gave birth to various approaches and methodologies of language teaching. Two of these approaches are content-based instruction and content and language integrated learning (CLIL). These are similar approaches which integrate content and foreign/second language learning through various methodologies and models as a result of different implementations around the world. This presentation deals with sociocultural view of CBI and CLIL. It also defines language and content as vital components of CBI and CLIL. Next it reviews the origins of CBI and the continuum perspectives and CLIL definitions and models featured in the literature. Finally it summarizes current aspects around research in program evaluation with a focus on the benefits and challenges of these innovative approaches for second language teaching.

Keywords: CBI, CLIL, CBI continuum, CLIL models

Procedia PDF Downloads 436
27468 Educators’ Perceived Capacity to Create Inclusive Learning Environments: Exploring Individual Competencies and District Policy

Authors: Thuy Phan, Stephanie Luallin

Abstract:

Inclusive education policies have demonstrated benefits for students with and without disabilities in the US. There are several laws that relate to inclusive education, such as 'No Child Left Behind', 'The Individuals with Disabilities Education Act'. However, the application of these inclusive education laws and policies vary per state and school district. Classroom teachers in an inclusive classroom often experience confusion as to how to apply these policies in order to create appropriate inclusive learning environments that meet the abilities and needs of their diverse student population. The study aims to investigate teachers’ perspective of their capacities to create an appropriate learning environment for their diverse student population including students with disabilities. Qualitative method is implemented in this study, using open-end interview questions to investigate teachers’ perspective of their capacities to create an appropriate inclusive learning environment for all students based on current inclusive education laws and district policies in the state of Colorado, USA. These findings may indicate a lack of confidence in teachers’ capacity to create appropriate inclusive learning environments based on laws and district policies; including challenges that classroom teachers may experience in creating inclusive learning environments. The purpose of this study is to examine the adequate preparation of classroom teachers in creating inclusive classrooms with the intent of determining implications for developing policies in inclusive education.

Keywords: educator’s capacity, inclusive education, inclusive learning environment, policy

Procedia PDF Downloads 170
27467 Automated System: Managing the Production and Distribution of Radiopharmaceuticals

Authors: Shayma Mohammed, Adel Trabelsi

Abstract:

Radiopharmacy is the art of preparing high-quality, radioactive, medicinal products for use in diagnosis and therapy. Radiopharmaceuticals unlike normal medicines, this dual aspect (radioactive, medical) makes their management highly critical. One of the most convincing applications of modern technologies is the ability to delegate the execution of repetitive tasks to programming scripts. Automation has found its way to the most skilled jobs, to improve the company's overall performance by allowing human workers to focus on more important tasks than document filling. This project aims to contribute to implement a comprehensive system to insure rigorous management of radiopharmaceuticals through the use of a platform that links the Nuclear Medicine Service Management System to the Nuclear Radio-pharmacy Management System in accordance with the recommendations of World Health Organization (WHO) and International Atomic Energy Agency (IAEA). In this project we attempt to build a web application that targets radiopharmacies, the platform is built atop the inherently compatible web stack which allows it to work in virtually any environment. Different technologies are used in this project (PHP, Symfony, MySQL Workbench, Bootstrap, Angular 7, Visual Studio Code and TypeScript). The operating principle of the platform is mainly based on two parts: Radiopharmaceutical Backoffice for the Radiopharmacian, who is responsible for the realization of radiopharmaceutical preparations and their delivery and Medical Backoffice for the Doctor, who holds the authorization for the possession and use of radionuclides and he/she is responsible for ordering radioactive products. The application consists of sven modules: Production, Quality Control/Quality Assurance, Release, General Management, References, Transport and Stock Management. It allows 8 classes of users: The Production Manager (PM), Quality Control Manager (QCM), Stock Manager (SM), General Manager (GM), Client (Doctor), Parking and Transport Manager (PTM), Qualified Person (QP) and Technical and Production Staff. Digital platform bringing together all players involved in the use of radiopharmaceuticals and integrating the stages of preparation, production and distribution, Web technologies, in particular, promise to offer all the benefits of automation while requiring no more than a web browser to act as a user client, which is a strength because the web stack is by nature multi-platform. This platform will provide a traceability system for radiopharmaceuticals products to ensure the safety and radioprotection of actors and of patients. The new integrated platform is an alternative to write all the boilerplate paperwork manually, which is a tedious and error-prone task. It would minimize manual human manipulation, which has proven to be the main source of error in nuclear medicine. A codified electronic transfer of information from radiopharmaceutical preparation to delivery will further reduce the risk of maladministration.

Keywords: automated system, management, radiopharmacy, technical papers

Procedia PDF Downloads 156
27466 Development of Risk Management System for Urban Railroad Underground Structures and Surrounding Ground

Authors: Y. K. Park, B. K. Kim, J. W. Lee, S. J. Lee

Abstract:

To assess the risk of the underground structures and surrounding ground, we collect basic data by the engineering method of measurement, exploration and surveys and, derive the risk through proper analysis and each assessment for urban railroad underground structures and surrounding ground including station inflow. Basic data are obtained by the fiber-optic sensors, MEMS sensors, water quantity/quality sensors, tunnel scanner, ground penetrating radar, light weight deflectometer, and are evaluated if they are more than the proper value or not. Based on these data, we analyze the risk level of urban railroad underground structures and surrounding ground. And we develop the risk management system to manage efficiently these data and to support a convenient interface environment at input/output of data.

Keywords: urban railroad, underground structures, ground subsidence, station inflow, risk

Procedia PDF Downloads 336
27465 Using Mobile Phones for M-Learning in Higher Education: A Comparative Study

Authors: Islam Elsayed Hussein Ali, Stefan M. Wagner

Abstract:

Smartphone and tablet computers, as well as other ultra portable devices, have already gained enough critical mass to be considered mainstream devices, being present in the daily lives of millions of higher education students. Many universities throughout the world have already adopted or are planning to adopt mobile technologies in many of their courses as a better way to connect students with the subjects they are studying. These new mobile platforms allow students to access content anywhere/anytime to immerse himself/herself into that content (alone or interacting with teachers or colleagues via web communication forms) and to interact with that content in ways that were not previously possible. This paper plans to provide a thorough overview of the possibilities and consequences of m-learning in higher education environments as a gateway to ubiquitous learning – perhaps the ultimate form of learner engagement, since it allows the student to learn, access and interact with important content in any way or at any time or place he might want so the objective of the study is to examine how the usage of mobile phones for m-learning differs between heavy and light mobile phone users at TU Braunschweig. Heavy mobile phone users are hypothesized to have access to/subscribe to one type of mobile content than light mobile phone users, to have less frequent access to, subscribe to or purchase mobile content within the last year than light mobile phone users, and to pay less money for mobile learning, its content and mobile games than light mobile phone users.

Keywords: mobile learning, technologies, applications, higher education

Procedia PDF Downloads 416