Search results for: Julia programming language
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4709

Search results for: Julia programming language

2579 MapReduce Algorithm for Geometric and Topological Information Extraction from 3D CAD Models

Authors: Ahmed Fradi

Abstract:

In a digital world in perpetual evolution and acceleration, data more and more voluminous, rich and varied, the new software solutions emerged with the Big Data phenomenon offer new opportunities to the company enabling it not only to optimize its business and to evolve its production model, but also to reorganize itself to increase competitiveness and to identify new strategic axes. Design and manufacturing industrial companies, like the others, face these challenges, data represent a major asset, provided that they know how to capture, refine, combine and analyze them. The objective of our paper is to propose a solution allowing geometric and topological information extraction from 3D CAD model (precisely STEP files) databases, with specific algorithm based on the programming paradigm MapReduce. Our proposal is the first step of our future approach to 3D CAD object retrieval.

Keywords: Big Data, MapReduce, 3D object retrieval, CAD, STEP format

Procedia PDF Downloads 543
2578 Gender Agreement in Italian Compounds with Capo-

Authors: Irene Lami, Silvia Micheli, Jan Radimský, Joost van de Weijer

Abstract:

The present study examines gender agreement in Italian compounds with "capo-". Compounds containing "capo-" as the first element is highly productive in Italian and are attested from the earliest stages of the language, with "capo" indicating a prominent role in a group. This type of compound has become progressively more productive over time, establishing itself in the language to indicate human referents with a leadership role over someone or something belonging to both subordinate and coordinate compound categories. In light of the debates on the use of inclusive language, especially with regard to female professional titles in Italian, the gender agreement of the word "capo" is investigated, which in addition to social resistance, also encounters etymological resistance. Regarding the gender agreement of the word "capo-" as the first element of compounds, in addition to social and etymological resistances, morphological constraints must also be considered. In our experiment, 190 native informants were asked to match the gender of the given the word in a sentence, thinking of female referents. The results confirm a scalar hypothesis of gender agreement (i.e., titles traditionally attributed to women > titles traditionally attributed to men > the word "capo" in isolation > the word "capo-" as an element of subordinate compound > the word “capo-“ as an element of a coordinate compound). A significant interplay with number marking is also shown, as words are inflected in gender when the trait +plural is present. Moreover, the results show that, contrary to what is prescriptively established, speakers do inflect the word "capo" according to gender, in limited instances, even when this is found as a compound element, even though to a lesser extent than words that only have social hinders and not etymological or morphological ones. The results appear to show that, although a morphological obstacle is visible, sociolinguistic claims seem to be able to divert these obstacles. This study appears particularly suitable for replication tests over the next few decades, which, if society opens up further to claims of inclusiveness, could further corroborate this trend.

Keywords: compounds, gender inflection, Italian, morphology

Procedia PDF Downloads 62
2577 Deep-Learning to Generation of Weights for Image Captioning Using Part-of-Speech Approach

Authors: Tiago do Carmo Nogueira, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior, Matheus Rudolfo Diedrich Ullmann

Abstract:

Generating automatic image descriptions through natural language is a challenging task. Image captioning is a task that consistently describes an image by combining computer vision and natural language processing techniques. To accomplish this task, cutting-edge models use encoder-decoder structures. Thus, Convolutional Neural Networks (CNN) are used to extract the characteristics of the images, and Recurrent Neural Networks (RNN) generate the descriptive sentences of the images. However, cutting-edge approaches still suffer from problems of generating incorrect captions and accumulating errors in the decoders. To solve this problem, we propose a model based on the encoder-decoder structure, introducing a module that generates the weights according to the importance of the word to form the sentence, using the part-of-speech (PoS). Thus, the results demonstrate that our model surpasses state-of-the-art models.

Keywords: gated recurrent units, caption generation, convolutional neural network, part-of-speech

Procedia PDF Downloads 107
2576 An Early Attempt of Artificial Intelligence-Assisted Language Oral Practice and Assessment

Authors: Paul Lam, Kevin Wong, Chi Him Chan

Abstract:

Constant practicing and accurate, immediate feedback are the keys to improving students’ speaking skills. However, traditional oral examination often fails to provide such opportunities to students. The traditional, face-to-face oral assessment is often time consuming – attending the oral needs of one student often leads to the negligence of others. Hence, teachers can only provide limited opportunities and feedback to students. Moreover, students’ incentive to practice is also reduced by their anxiety and shyness in speaking the new language. A mobile app was developed to use artificial intelligence (AI) to provide immediate feedback to students’ speaking performance as an attempt to solve the above-mentioned problems. Firstly, it was thought that online exercises would greatly increase the learning opportunities of students as they can now practice more without the needs of teachers’ presence. Secondly, the automatic feedback provided by the AI would enhance students’ motivation to practice as there is an instant evaluation of their performance. Lastly, students should feel less anxious and shy compared to directly practicing oral in front of teachers. Technically, the program made use of speech-to-text functions to generate feedback to students. To be specific, the software analyzes students’ oral input through certain speech-to-text AI engine and then cleans up the results further to the point that can be compared with the targeted text. The mobile app has invited English teachers for the pilot use and asked for their feedback. Preliminary trials indicated that the approach has limitations. Many of the users’ pronunciation were automatically corrected by the speech recognition function as wise guessing is already integrated into many of such systems. Nevertheless, teachers have confidence that the app can be further improved for accuracy. It has the potential to significantly improve oral drilling by giving students more chances to practice. Moreover, they believe that the success of this mobile app confirms the potential to extend the AI-assisted assessment to other language skills, such as writing, reading, and listening.

Keywords: artificial Intelligence, mobile learning, oral assessment, oral practice, speech-to-text function

Procedia PDF Downloads 107
2575 Experimental Assessment of Alkaline Leaching of Lepidolite

Authors: António Fiúza, Aurora Futuro, Joana Monteiro, Joaquim Góis

Abstract:

Lepidolite is an important lithium mineral that, to the author’s best knowledge, has not been used to produce lithium hydroxide, which is necessary for energy conversion to electric vehicles. Alkaline leaching of lithium concentrates allows the establishment of a production diagram avoiding most of the environmental drawbacks that are associated with the usage of acid reagents. The tested processes involve a pretreatment by digestion at high temperatures with additives, followed by leaching at hot atmospheric pressure. The solutions obtained must be compatible with solutions from the leaching of spodumene concentrates, allowing the development of a common treatment diagram, an important accomplishment for the feasible exploitation of Portuguese resources. Statistical programming and interpretation techniques minimize the laboratory effort required by conventional approaches and allow phenomenological comprehension.

Keywords: alkaline leaching, lithium, research design, statistical interpretation

Procedia PDF Downloads 106
2574 Human Resource Management in the Innovation Activity in the Republic of Kazakhstan

Authors: A. T. Omarova, G. N. Nakipova

Abstract:

This article discusses the principles of object-oriented human capital development using the technology program. Also the article includes priorities of the strategy of industrial-innovative development of Kazakhstan in conditions of integration activity into the world community. The article shows the tasks of human resource management in the implementation of industrial and innovation development, particularities of Kazakhstan's theory of management staff, as well as due to the specificity of the Kazakhstan authorities. In the article, we have considered the factors which are affecting the people in the organization and also have considered mechanisms of HRM within organization in the conditions of innovative development in Kazakhstan.

Keywords: programming, management of human resources, innovation, investment, innovation process, HRD model, innovative development, integration, management, transformation, economic potential, competitiveness

Procedia PDF Downloads 406
2573 Induction Motor Analysis Using LabVIEW

Authors: E. Ramprasath, P. Manojkumar, P. Veena

Abstract:

Proposed paper dealt with the modelling and analysis of induction motor based on the mathematical expression using the graphical programming environment of Laboratory Virtual Instrument Engineering Workbench (LabVIEW). Induction motor modelling with the mathematical expression enables the motor to be simulated with the various required parameters. Owing to the invention of variable speed drives study about the induction motor characteristics became complex.In this simulation motor internal parameter such as stator resistance and reactance, rotor resistance and reactance, phase voltage, frequency and losses will be given as input. By varying the speed of motor corresponding parameters can be obtained they are input power, output power, efficiency, torque induced, slip and current.

Keywords: induction motor, LabVIEW software, modelling and analysi, electrical and mechanical characteristics of motor

Procedia PDF Downloads 557
2572 Image Captioning with Vision-Language Models

Authors: Promise Ekpo Osaine, Daniel Melesse

Abstract:

Image captioning is an active area of research in the multi-modal artificial intelligence (AI) community as it connects vision and language understanding, especially in settings where it is required that a model understands the content shown in an image and generates semantically and grammatically correct descriptions. In this project, we followed a standard approach to a deep learning-based image captioning model, injecting architecture for the encoder-decoder setup, where the encoder extracts image features, and the decoder generates a sequence of words that represents the image content. As such, we investigated image encoders, which are ResNet101, InceptionResNetV2, EfficientNetB7, EfficientNetV2M, and CLIP. As a caption generation structure, we explored long short-term memory (LSTM). The CLIP-LSTM model demonstrated superior performance compared to the encoder-decoder models, achieving a BLEU-1 score of 0.904 and a BLEU-4 score of 0.640. Additionally, among the CNN-LSTM models, EfficientNetV2M-LSTM exhibited the highest performance with a BLEU-1 score of 0.896 and a BLEU-4 score of 0.586 while using a single-layer LSTM.

Keywords: multi-modal AI systems, image captioning, encoder, decoder, BLUE score

Procedia PDF Downloads 82
2571 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis

Authors: Mehrnaz Mostafavi

Abstract:

The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.

Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans

Procedia PDF Downloads 108
2570 Development of a Bus Information Web System

Authors: Chiyoung Kim, Jaegeol Yim

Abstract:

Bus service is often either main or the only public transportation available in cities. In metropolitan areas, both subways and buses are available whereas in the medium sized cities buses are usually the only type of public transportation available. Bus Information Systems (BIS) provide current locations of running buses, efficient routes to travel from one place to another, points of interests around a given bus stop, a series of bus stops consisting of a given bus route, and so on to users. Thanks to BIS, people do not have to waste time at a bus stop waiting for a bus because BIS provides exact information on bus arrival times at a given bus stop. Therefore, BIS does a lot to promote the use of buses contributing to pollution reduction and saving natural resources. BIS implementation costs a huge amount of budget as it requires a lot of special equipment such as road side equipment, automatic vehicle identification and location systems, trunked radio systems, and so on. Consequently, medium and small sized cities with a low budget cannot afford to install BIS even though people in these cities need BIS service more desperately than people in metropolitan areas. It is possible to provide BIS service at virtually no cost under the assumption that everybody carries a smartphone and there is at least one person with a smartphone in a running bus who is willing to reveal his/her location details while he/she is sitting in a bus. This assumption is usually true in the real world. The smartphone penetration rate is greater than 100% in the developed countries and there is no reason for a bus driver to refuse to reveal his/her location details while driving. We have developed a mobile app that periodically reads values of sensors including GPS and sends GPS data to the server when the bus stops or when the elapsed time from the last send attempt is greater than a threshold. This app detects the bus stop state by investigating the sensor values. The server that receives GPS data from this app has also been developed. Under the assumption that the current locations of all running buses collected by the mobile app are recorded in a database, we have also developed a web site that provides all kinds of information that most BISs provide to users through the Internet. The development environment is: OS: Windows 7 64bit, IDE: Eclipse Luna 4.4.1, Spring IDE 3.7.0, Database: MySQL 5.1.7, Web Server: Apache Tomcat 7.0, Programming Language: Java 1.7.0_79. Given a start and a destination bus stop, it finds a shortest path from the start to the destination using the Dijkstra algorithm. Then, it finds a convenient route considering number of transits. For the user interface, we use the Google map. Template classes that are used by the Controller, DAO, Service and Utils classes include BUS, BusStop, BusListInfo, BusStopOrder, RouteResult, WalkingDist, Location, and so on. We are now integrating the mobile app system and the web app system.

Keywords: bus information system, GPS, mobile app, web site

Procedia PDF Downloads 224
2569 A Study on the Cultural Landscape of the Living Environment of Hoklo-Hakka: Case Study of Dacun

Authors: Meng-Li Lin, Shang-Hsuan Chiu

Abstract:

Taiwan is a country of diverse ethnic groups, the historical background of each ethnic group is different, and the conflict between them influence on each other, result in Taiwan's multi-culture. The Changhua County in Taiwan is the largest county of Hoklo-Hakka. Hakka people get along with Hoklo people for a long time. There are integration and conflict during that time and makes Hakka people gradually assimilated Hoklo-Hakka people. Today in Changhua Plain area, many Hoklo-Hakka people do not speak Hakka language. Therefore, it has been difficult to find information of Hakka from the Hakka language in the group of Hoklo-Hakka. But in the living space or culture to find relevant historical traces of life could be confirmed in Hakka Culture. In this paper, through the investigation of descent, life field, religion, language and other investigations of the Dacun, Changhua County residents to carry out the analysis of the process of assimilating Hoklo in living cultural landscape. First is through the local literature, the elderly and other oral history stories, to investigate the changes in Dacun field historical. Second, the comparison of collected traditional Hakka culture and the living cultural landscape of Hoklo-Haka are done to explore the differences between the living cultural landscape and the traditional Hakka culture. After analysis Hoklo-Hakka living cultural landscape, the significant differences, we proposed preservation strategy to provide recommendations to save the cultural life of Hoklo-Hakka landscape in future. Changhua Dacun traditional Hakka landscape is disappearing, in this study, we explore and investigate the data of Changhua Dacun Hoklo-Hakka living cultural landscape to analyze and to provide strategic advice to save. Here we have three study purposes. 1. Discuss the Hoklo-Hakka living cultural landscape of Changhua Dacun. 2. Investigate and record the Hoklo-Hakka living cultural landscape. 3. Propose a reserve strategy of the Hoklo-Hakka living cultural landscape in future.

Keywords: Hoklo-Hakka, Dacun, save policy, life Culture

Procedia PDF Downloads 346
2568 Experimental Research and Analyses of Yoruba Native Speakers’ Chinese Phonetic Errors

Authors: Obasa Joshua Ifeoluwa

Abstract:

Phonetics is the foundation and most important part of language learning. This article, through an acoustic experiment as well as using Praat software, uses Yoruba students’ Chinese consonants, vowels, and tones pronunciation to carry out a visual comparison with that of native Chinese speakers. This article is aimed at Yoruba native speakers learning Chinese phonetics; therefore, Yoruba students are selected. The students surveyed are required to be at an elementary level and have learned Chinese for less than six months. The students selected are all undergraduates majoring in Chinese Studies at the University of Lagos. These students have already learned Chinese Pinyin and are all familiar with the pinyin used in the provided questionnaire. The Chinese students selected are those that have passed the level two Mandarin proficiency examination, which serves as an assurance that their pronunciation is standard. It is discovered in this work that in terms of Mandarin’s consonants pronunciation, Yoruba students cannot distinguish between the voiced and voiceless as well as the aspirated and non-aspirated phonetics features. For instance, while pronouncing [ph] it is clearly shown in the spectrogram that the Voice Onset Time (VOT) of a Chinese speaker is higher than that of a Yoruba native speaker, which means that the Yoruba speaker is pronouncing the unaspirated counterpart [p]. Another difficulty is to pronounce some affricates like [tʂ]、[tʂʰ]、[ʂ]、[ʐ]、 [tɕ]、[tɕʰ]、[ɕ]. This is because these sounds are not in the phonetic system of the Yoruba language. In terms of vowels, some students find it difficult to pronounce some allophonic high vowels such as [ɿ] and [ʅ], therefore pronouncing them as their phoneme [i]; another pronunciation error is pronouncing [y] as [u], also as shown in the spectrogram, a student pronounced [y] as [iu]. In terms of tone, it is most difficult for students to differentiate between the second (rising) and third (falling and rising) tones because these tones’ emphasis is on the rising pitch. This work concludes that the major error made by Yoruba students while pronouncing Chinese sounds is caused by the interference of their first language (LI) and sometimes by their lingua franca.

Keywords: Chinese, Yoruba, error analysis, experimental phonetics, consonant, vowel, tone

Procedia PDF Downloads 116
2567 The Role of Vocabulary in Reading Comprehension

Authors: Engku Haliza Engku Ibrahim, Isarji Sarudin, Ainon Jariah Muhamad

Abstract:

It is generally agreed that many factors contribute to one’s reading comprehension and there is consensus that vocabulary size one of the main factors. This study explores the relationship between second language learners’ vocabulary size and their reading comprehension scores. 130 Malay pre-university students of a public university participated in this study. They were students of an intensive English language programme doing preparatory English courses to pursue bachelors degree in English. A quantitative research method was employed based on the Vocabulary Levels Test by Nation (1990) and the reading comprehension score of the in-house English Proficiency Test. A review of the literature indicates that a somewhat positive correlation is to be expected though findings of this study can only be explicated once the final analysis has been carried out. This is an ongoing study and it is anticipated that results of this research will be finalized in the near future. The findings will help provide beneficial implications for the prediction of reading comprehension performance. It also has implications for the teaching of vocabulary in the ESL context. A better understanding of the relationship between vocabulary size and reading comprehension scores will enhance teachers’ and students’ awareness of the importance of vocabulary acquisition in the L2 classroom.

Keywords: vocabulary size, vocabulary learning, reading comprehension, ESL

Procedia PDF Downloads 454
2566 Animal-Assisted Therapy: A Perspective From Singapore

Authors: Julia Wong, Hua Beng Lim, Petrina Goh, Johanna Foo, Caleb Ng, Nurul ‘Aqilah Bte Mohd Taufek

Abstract:

Animal-assisted therapy (AAT) utilizes human-animal interaction to achieve specific therapeutic goals, and its efficacy has been demonstrated across various settings overseas. The use of AAT in Singapore, however, is still limited. Ang Mo Kio-Thye Hua Kwan (AMKH) is one of the first community hospitals in Singapore to use AAT to complement its occupational therapy services with elderly patients. This study explored the perspectives of AMKH’s occupational therapists (OTs) in relation to AAT to understand barriers and enablers in implementing and practising AAT. We also examined how OTs at-large across practice settings perceive AAT. A mixed method design was used. 64 OTs at-large participated in on online survey, and 7 AMKH OTs were interviewed individually via Zoom. Survey results were analysed with descriptive and Mann-Whitney U tests. Interviews were thematically analysed. AMKH OTs perceived various benefits of AAT articulated in overseas studies in domains such as motivation and participation, emotional, social interaction, sensory tactile stimulation, and cognition. Interestingly, this perception was also supported by 67% of OTs who had responded to the survey, even though most of the OTs who had participated in the survey had no experience in AAT. Despite the perceived benefits of AAT, both OTs from AMKH and those at-large articulated concerns on risks pertaining to AAT (e.g., allergies, unexpected animal behaviour, infections, etc). However, AMKH OTs shared several ways to mitigate these risks, demonstrating their ability to develop a safe program. For e.g., volunteers and their dogs must meet specific recruitment criteria, stringent protocols are used to screen and match dogs with patients, and there are strict exclusion criteria for patients participating in AAT. AMKH OTs’ experience suggests that additional skills and knowledge are required to implement AAT, therefore, healthcare institutions should first consider improving their staff training and risk mitigation knowledge before implementing AAT. They can also refer to AMKH’s AAT protocols and those found in overseas studies, but institutions must adapt the protocols to fit their institutional settings and patients’ profiles.

Keywords: animal-assisted therapy, dog-assisted therapy, occupational therapy, complementary therapy

Procedia PDF Downloads 158
2565 Speech Acts of Selected Classroom Encounters: Analyzing the Speech Acts of a Career Technology Lesson

Authors: Michael Amankwaa Adu

Abstract:

Effective communication in the classroom plays a vital role in ensuring successful teaching and learning. In particular, the types of language and speech acts teachers use shape classroom interactions and influence student engagement. This study aims to analyze the speech acts employed by a Career Technology teacher in a junior high school. While much research has focused on speech acts in language classrooms, less attention has been given to how these acts operate in non-language subject areas like technical education. The study explores how different types of speech acts—directives, assertives, expressives, and commissives—are used during three classroom encounters: lesson introduction, content delivery, and classroom management. This research seeks to fill the gap in understanding how teachers of non-language subjects use speech acts to manage classroom dynamics and facilitate learning. The study employs a mixed-methods design, combining qualitative and quantitative approaches. Data was collected through direct classroom observation and audio recordings of a one-hour Career Technology lesson. The transcriptions of the lesson were analyzed using John Searle’s taxonomy of speech acts, classifying the teacher’s utterances into directives, assertives, expressives, and commissives. Results show that directives were the most frequently used speech act, accounting for 59.3% of the teacher's utterances. These speech acts were essential in guiding student behavior, giving instructions, and maintaining classroom control. Assertives made up 20.4% of the speech acts, primarily used for stating facts and reinforcing content. Expressives, at 14.2%, expressed emotions such as approval or frustration, helping to manage the emotional atmosphere of the classroom. Commissives were the least used, representing 6.2% of the speech acts, often used to set expectations or outline future actions. No declarations were observed during the lesson. The findings of this study reveal the critical role that speech acts play in managing classroom behavior and delivering content in technical subjects. Directives were crucial for ensuring students followed instructions and completed tasks, while assertives helped in reinforcing lesson objectives. Expressives contributed to motivating or disciplining students, and commissives, though less frequent, helped set clear expectations for students’ future actions. The absence of declarations suggests that the teacher prioritized guiding students over making formal pronouncements. These insights can inform teaching strategies across various subject areas, demonstrating that a diverse use of speech acts can create a balanced and interactive learning environment. This study contributes to the growing field of pragmatics in education and offers practical recommendations for educators, particularly in non-language classrooms, on how to utilize speech acts to enhance both classroom management and student engagement.

Keywords: classroom interaction, pragmatics, speech acts, teacher communication, career technology

Procedia PDF Downloads 24
2564 Using Maximization Entropy in Developing a Filipino Phonetically Balanced Wordlist for a Phoneme-Level Speech Recognition System

Authors: John Lorenzo Bautista, Yoon-Joong Kim

Abstract:

In this paper, a set of Filipino Phonetically Balanced Word list consisting of 250 words (PBW250) were constructed for a phoneme-level ASR system for the Filipino language. The Entropy Maximization is used to obtain phonological balance in the list. Entropy of phonemes in a word is maximized, providing an optimal balance in each word’s phonological distribution using the Add-Delete Method (PBW algorithm) and is compared to the modified PBW algorithm implemented in a dynamic algorithm approach to obtain optimization. The gained entropy score of 4.2791 and 4.2902 for the PBW and modified algorithm respectively. The PBW250 was recorded by 40 respondents, each with 2 sets data. Recordings from 30 respondents were trained to produce an acoustic model that were tested using recordings from 10 respondents using the HMM Toolkit (HTK). The results of test gave the maximum accuracy rate of 97.77% for a speaker dependent test and 89.36% for a speaker independent test.

Keywords: entropy maximization, Filipino language, Hidden Markov Model, phonetically balanced words, speech recognition

Procedia PDF Downloads 459
2563 Perspective Shifting in the Elicited Language Production Can Defy with Aging

Authors: Tuyuan Cheng

Abstract:

As we age, many things become more difficult. Among the abilities are the linguistic and cognitive ones. Competing theories have shown that these two functions could diminish together or that one is selectively affected by the other. In other words, some proposes aging affects sentence production in the same way it affects sentence comprehension and other cognitive functions, while some argues it does not.To address this question, the current investigation is conducted into the critical aspect of sentences as well as cognitive abilities – the syntactic complexity and the number of perspective shifts being contained in the elicited production. Healthy non-pathological aging is often characterized by a cognitive and neural decline in a number of cognitive abilities. Although the language is assumed to be of the more stable domain, a variety of findings in the cognitive aging literature would suggest otherwise. Older adults often show deficits in language production and multiple aspects of comprehension. Nevertheless, while some age differences likely reflect cognitive decline, others might reflect changes in communicative goals, and some even display cognitive advantages. In the domain of language processing, research efforts have been made in tests that probed a variety of communicative abilities. In general, there exists a distinction: Comprehension seems to be selectively unaffected, while production does not. The current study raises a novel question and investigates whether aging affects the production of relative clauses (RCs) under the cognitive factor of perspective shifts. Based on Perspective Hypothesis (MacWhinney, 2000, 2005), our cognitive processes build upon a fundamental system of perspective-taking, and language provides a series of cues to facilitate the construction and shifting of perspectives. These cues include a wide variety of constructions, including RCs structures. In this regard, linguistic complexity can be determined by the number of perspective shifts, and the processing difficulties of RCs can be interpreted within the theory of perspective shifting. Two experiments were conducted to study language production under controlled conditions. In Experiment 1, older healthy participants were tested on standard measures of cognitive aging, including MMSE (Mini-Mental State Examination), ToMI-2 (a simplified Theory of Mind Inventory-2), and a perspective-shifting comprehension task programmed with E-Prime. The results were analyzed to examine if/how they are correlated with aging people’s subsequent production data. In Experiment 2, the production profile of differing RCs, SRC vs. ORC, were collected with healthy aging participants who perform a picture elicitation task. Variable containing 0, 1, or 2 perspective shifts were juxtaposed respectively to the pictures and counterbalanced presented for elicitation. In parallel, a controlled group of young adults were recruited to examine the linguistic and cognitive abilities in question. The results lead us to the discussion whetheraging affects RCs production in a manner determined by its semantic structure or the number of perspective shifts it contains or the status of participants’ mental understanding. The major findingsare: (1) Elders’ production on Chinese RCtypes did not display intrinsic difficulty asymmetry. (2) RC types (the linguistic structural features) and the cognitiveperspective shifts jointly play important roles in the elders’ RCproduction. (3) The production of RC may defy the aging in the case offlexibly preserved cognitive ability.

Keywords: cognition aging, perspective hypothesis, perspective shift, relative clauses, sentence complexity

Procedia PDF Downloads 126
2562 Developing a Cloud Intelligence-Based Energy Management Architecture Facilitated with Embedded Edge Analytics for Energy Conservation in Demand-Side Management

Authors: Yu-Hsiu Lin, Wen-Chun Lin, Yen-Chang Cheng, Chia-Ju Yeh, Yu-Chuan Chen, Tai-You Li

Abstract:

Demand-Side Management (DSM) has the potential to reduce electricity costs and carbon emission, which are associated with electricity used in the modern society. A home Energy Management System (EMS) commonly used by residential consumers in a down-stream sector of a smart grid to monitor, control, and optimize energy efficiency to domestic appliances is a system of computer-aided functionalities as an energy audit for residential DSM. Implementing fault detection and classification to domestic appliances monitored, controlled, and optimized is one of the most important steps to realize preventive maintenance, such as residential air conditioning and heating preventative maintenance in residential/industrial DSM. In this study, a cloud intelligence-based green EMS that comes up with an Internet of Things (IoT) technology stack for residential DSM is developed. In the EMS, Arduino MEGA Ethernet communication-based smart sockets that module a Real Time Clock chip to keep track of current time as timestamps via Network Time Protocol are designed and implemented for readings of load phenomena reflecting on voltage and current signals sensed. Also, a Network-Attached Storage providing data access to a heterogeneous group of IoT clients via Hypertext Transfer Protocol (HTTP) methods is configured to data stores of parsed sensor readings. Lastly, a desktop computer with a WAMP software bundle (the Microsoft® Windows operating system, Apache HTTP Server, MySQL relational database management system, and PHP programming language) serves as a data science analytics engine for dynamic Web APP/REpresentational State Transfer-ful web service of the residential DSM having globally-Advanced Internet of Artificial Intelligence (AI)/Computational Intelligence. Where, an abstract computing machine, Java Virtual Machine, enables the desktop computer to run Java programs, and a mash-up of Java, R language, and Python is well-suited and -configured for AI in this study. Having the ability of sending real-time push notifications to IoT clients, the desktop computer implements Google-maintained Firebase Cloud Messaging to engage IoT clients across Android/iOS devices and provide mobile notification service to residential/industrial DSM. In this study, in order to realize edge intelligence that edge devices avoiding network latency and much-needed connectivity of Internet connections for Internet of Services can support secure access to data stores and provide immediate analytical and real-time actionable insights at the edge of the network, we upgrade the designed and implemented smart sockets to be embedded AI Arduino ones (called embedded AIduino). With the realization of edge analytics by the proposed embedded AIduino for data analytics, an Arduino Ethernet shield WizNet W5100 having a micro SD card connector is conducted and used. The SD library is included for reading parsed data from and writing parsed data to an SD card. And, an Artificial Neural Network library, ArduinoANN, for Arduino MEGA is imported and used for locally-embedded AI implementation. The embedded AIduino in this study can be developed for further applications in manufacturing industry energy management and sustainable energy management, wherein in sustainable energy management rotating machinery diagnostics works to identify energy loss from gross misalignment and unbalance of rotating machines in power plants as an example.

Keywords: demand-side management, edge intelligence, energy management system, fault detection and classification

Procedia PDF Downloads 255
2561 Mathematical Modeling of District Cooling Systems

Authors: Dana Alghool, Tarek ElMekkawy, Mohamed Haouari, Adel Elomari

Abstract:

District cooling systems have captured the attentions of many researchers recently due to the enormous benefits offered by such system in comparison with traditional cooling technologies. It is considered a major component of urban cities due to the significant reduction of energy consumption. This paper aims to find the optimal design and operation of district cooling systems by developing a mixed integer linear programming model to minimize the annual total system cost and satisfy the end-user cooling demand. The proposed model is experimented with different cooling demand scenarios. The results of the very high cooling demand scenario are only presented in this paper. A sensitivity analysis on different parameters of the model was performed.

Keywords: Annual Cooling Demand, Compression Chiller, Mathematical Modeling, District Cooling Systems, Optimization

Procedia PDF Downloads 205
2560 An Appraisal of the Design, Content, Approaches and Materials of the K-12 Grade 8 English Curriculum by Language Teachers, Supervisors and Teacher-Trainers

Authors: G. Infante Dennis, S. Balinas Elvira, C. Valencia Yolanda, Cunanan

Abstract:

This paper examined the feed-backs, concerns, and insights of the teachers, supervisors, and teacher-trainers on the nature and qualities of the K-12 grade 8 design, content, approaches, and materials. Specifically, it sought to achieve the following objectives: 1) to describe the critical nature and qualities of the design, content, teaching-learning-and-evaluation approaches, and the materials to be utilized in the implementation of the grade 8 curriculum; 2) to extract the possible challenges relevant to the implementation of the design, content, teaching-learning-and-evaluation approaches, and the materials of the grade 8 curriculum in terms of the linguistic and technical competence of the teachers, readiness to implement, willingness to implement, and capability to make relevant adaptations; 3) to present essential demands on the successful and meaningful implementation of the grade 8 curriculum in terms of teacher-related factors, school-related factors, and student-related concerns.

Keywords: curriculum reforms, K-12, teacher-training, language teaching, learning

Procedia PDF Downloads 258
2559 Towards Creative Movie Title Generation Using Deep Neural Models

Authors: Simon Espigolé, Igor Shalyminov, Helen Hastie

Abstract:

Deep machine learning techniques including deep neural networks (DNN) have been used to model language and dialogue for conversational agents to perform tasks, such as giving technical support and also for general chit-chat. They have been shown to be capable of generating long, diverse and coherent sentences in end-to-end dialogue systems and natural language generation. However, these systems tend to imitate the training data and will only generate the concepts and language within the scope of what they have been trained on. This work explores how deep neural networks can be used in a task that would normally require human creativity, whereby the human would read the movie description and/or watch the movie and come up with a compelling, interesting movie title. This task differs from simple summarization in that the movie title may not necessarily be derivable from the content or semantics of the movie description. Here, we train a type of DNN called a sequence-to-sequence model (seq2seq) that takes as input a short textual movie description and some information on e.g. genre of the movie. It then learns to output a movie title. The idea is that the DNN will learn certain techniques and approaches that the human movie titler may deploy that may not be immediately obvious to the human-eye. To give an example of a generated movie title, for the movie synopsis: ‘A hitman concludes his legacy with one more job, only to discover he may be the one getting hit.’; the original, true title is ‘The Driver’ and the one generated by the model is ‘The Masquerade’. A human evaluation was conducted where the DNN output was compared to the true human-generated title, as well as a number of baselines, on three 5-point Likert scales: ‘creativity’, ‘naturalness’ and ‘suitability’. Subjects were also asked which of the two systems they preferred. The scores of the DNN model were comparable to the scores of the human-generated movie title, with means m=3.11, m=3.12, respectively. There is room for improvement in these models as they were rated significantly less ‘natural’ and ‘suitable’ when compared to the human title. In addition, the human-generated title was preferred overall 58% of the time when pitted against the DNN model. These results, however, are encouraging given the comparison with a highly-considered, well-crafted human-generated movie title. Movie titles go through a rigorous process of assessment by experts and focus groups, who have watched the movie. This process is in place due to the large amount of money at stake and the importance of creating an effective title that captures the audiences’ attention. Our work shows progress towards automating this process, which in turn may lead to a better understanding of creativity itself.

Keywords: creativity, deep machine learning, natural language generation, movies

Procedia PDF Downloads 330
2558 Depression in Immigrants and Refugees

Authors: Fatou Cisse

Abstract:

Depression is one of the most serious health problems experienced by immigrants and refugees, who are likely to undergo heightened political, economic, social, and environmental stressors as they transition to a new culture. The purpose of this literature review is to identify and compare risks associated with depression among young adult immigrants and refugees aged 18 to 25. Ten articles focused on risks associated with depression symptoms among this population were reviewed, revealing several common themes: Stress, identity, culture, language barriers, discrimination, social support, self-esteem, length of time in the receiving country, origins, or background. Existing research has failed to account adequately for sample size, language barriers, how the concept of "depression" differs across cultures, and stressors immigrants and refugees experience prior to the transition to the new culture. The study revealed that immigrants and refugees are at risk for depression and that the risk is greater in the refugee population due to their history of trauma. The Roy Adaptation Model was employed to understand the coping mechanisms that refugees and immigrants could use to reduce rates of depression. The psychiatric nurse practitioner must be prepared to intervene and educate this population on these coping mechanisms to help them overcome the feelings that lead to depression and facilitate a smooth integration into the new culture.

Keywords: immigration, refugees, depression, young adults

Procedia PDF Downloads 207
2557 A Mixed Integer Linear Programming Model for Container Collection

Authors: J. Van Engeland, C. Lavigne, S. De Jaeger

Abstract:

In the light of the transition towards a more circular economy, recovery of products, parts or materials will gain in importance. Additionally, the EU proximity principle related to waste management and emissions generated by transporting large amounts of end-of-life products, shift attention to local recovery networks. The Flemish inter-communal cooperation for municipal solid waste management Meetjesland (IVM) is currently investigating the set-up of such a network. More specifically, the network encompasses the recycling of polyvinyl chloride (PVC), which is collected in separate containers. When these containers are full, a truck should transport them to the processor which can recycle the PVC into new products. This paper proposes a model to optimize the container collection. The containers are located at different Civic Amenity sites (CA sites) in a certain region. Since people can drop off their waste at these CA sites, the containers will gradually fill up during a planning horizon. If a certain container is full, it has to be collected and replaced by an empty container. The collected waste is then transported to a single processor. To perform this collection and transportation of containers, the responsible firm has a set of vehicles stationed at a single depot and different personnel crews. A vehicle can load exactly one container. If a trailer is attached to the vehicle, it can load an additional container. Each day of the planning horizon, the different crews and vehicles leave the depot to collect containers at the different sites. After loading one or two containers, the crew has to drive to the processor for unloading the waste and to pick up empty containers. Afterwards, the crew can again visit sites or it can return to the depot to end its collection work for that day. All along the collection process, the crew has to respect the opening hours of the sites. In order to allow for some flexibility, a crew is allowed to wait a certain amount of time at the gate of a site until it opens. The problem described can be modelled as a variant to the PVRP-TW (Periodic Vehicle Routing Problem with Time Windows). However, a vehicle can at maximum load two containers, hence only two subsequent site visits are possible. For that reason, we will refer to the model as a model for building tactical waste collection schemes. The goal is to a find a schedule describing which crew should visit which CA site on which day to minimize the number of trucks and the routing costs. The model was coded in IBM CPLEX Optimization studio and applied to a number of test instances. Good results were obtained, and specific suggestions concerning route and truck costs could be made. For a large range of input parameters, collection schemes using two trucks are obtained.

Keywords: container collection, crew scheduling, mixed integer linear programming, waste management

Procedia PDF Downloads 138
2556 Improving Cell Type Identification of Single Cell Data by Iterative Graph-Based Noise Filtering

Authors: Annika Stechemesser, Rachel Pounds, Emma Lucas, Chris Dawson, Julia Lipecki, Pavle Vrljicak, Jan Brosens, Sean Kehoe, Jason Yap, Lawrence Young, Sascha Ott

Abstract:

Advances in technology make it now possible to retrieve the genetic information of thousands of single cancerous cells. One of the key challenges in single cell analysis of cancerous tissue is to determine the number of different cell types and their characteristic genes within the sample to better understand the tumors and their reaction to different treatments. For this analysis to be possible, it is crucial to filter out background noise as it can severely blur the downstream analysis and give misleading results. In-depth analysis of the state-of-the-art filtering methods for single cell data showed that they do, in some cases, not separate noisy and normal cells sufficiently. We introduced an algorithm that filters and clusters single cell data simultaneously without relying on certain genes or thresholds chosen by eye. It detects communities in a Shared Nearest Neighbor similarity network, which captures the similarities and dissimilarities of the cells by optimizing the modularity and then identifies and removes vertices with a weak clustering belonging. This strategy is based on the fact that noisy data instances are very likely to be similar to true cell types but do not match any of these wells. Once the clustering is complete, we apply a set of evaluation metrics on the cluster level and accept or reject clusters based on the outcome. The performance of our algorithm was tested on three datasets and led to convincing results. We were able to replicate the results on a Peripheral Blood Mononuclear Cells dataset. Furthermore, we applied the algorithm to two samples of ovarian cancer from the same patient before and after chemotherapy. Comparing the standard approach to our algorithm, we found a hidden cell type in the ovarian postchemotherapy data with interesting marker genes that are potentially relevant for medical research.

Keywords: cancer research, graph theory, machine learning, single cell analysis

Procedia PDF Downloads 118
2555 Arabic Light Word Analyser: Roles with Deep Learning Approach

Authors: Mohammed Abu Shquier

Abstract:

This paper introduces a word segmentation method using the novel BP-LSTM-CRF architecture for processing semantic output training. The objective of web morphological analysis tools is to link a formal morpho-syntactic description to a lemma, along with morpho-syntactic information, a vocalized form, a vocalized analysis with morpho-syntactic information, and a list of paradigms. A key objective is to continuously enhance the proposed system through an inductive learning approach that considers semantic influences. The system is currently under construction and development based on data-driven learning. To evaluate the tool, an experiment on homograph analysis was conducted. The tool also encompasses the assumption of deep binary segmentation hypotheses, the arbitrary choice of trigram or n-gram continuation probabilities, language limitations, and morphology for both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), which provide justification for updating this system. Most Arabic word analysis systems are based on the phonotactic morpho-syntactic analysis of a word transmitted using lexical rules, which are mainly used in MENA language technology tools, without taking into account contextual or semantic morphological implications. Therefore, it is necessary to have an automatic analysis tool taking into account the word sense and not only the morpho-syntactic category. Moreover, they are also based on statistical/stochastic models. These stochastic models, such as HMMs, have shown their effectiveness in different NLP applications: part-of-speech tagging, machine translation, speech recognition, etc. As an extension, we focus on language modeling using Recurrent Neural Network (RNN); given that morphological analysis coverage was very low in dialectal Arabic, it is significantly important to investigate deeply how the dialect data influence the accuracy of these approaches by developing dialectal morphological processing tools to show that dialectal variability can support to improve analysis.

Keywords: NLP, DL, ML, analyser, MSA, RNN, CNN

Procedia PDF Downloads 47
2554 Developing Cultural Competence as Part of Nursing Studies: Language, Customs and Health Issues

Authors: Mohammad Khatib, Salam Hadid

Abstract:

Introduction: Developing nurses' cultural competence begins in their basic training and requires them to participate in an array of activities which raise their awareness and stimulate their interest, desire and curiosity about different cultures, by creating opportunities for intercultural meetings promoting the concept of 'culture' and its components, including recognition of cultural diversity and the legitimacy of the other. Importantly, professionals need to acquire specific cultural knowledge and thorough understanding of the values, norms, customs, beliefs and symbols of different cultures. Similarly, they need to be given opportunities to practice the verbal and non-verbal communication skills of other cultures according to their cultural codes. Such a system is being implemented as part of nursing studies at Zefat Academic College in two study frameworks; firstly, a course integrating nursing theory and practice in multicultural nursing; secondly, a course in learning the languages spoken in Israel focusing on medical and nursing terminology. Methods: Students participating in the 'Transcultural Nursing' course come from a variety of backgrounds: Jews, or Arabs, religious, or secular; Muslim, Christian, new immigrants, Ethiopians or from other cultural affiliations. They are required to present and discuss cultural practices that affect health. In addition, as part of the language course, students learn and teach their friends 5 spoken languages (Arabic, Russian, Amharian, Yidish, and Sign language) focusing on therapeutic interaction and communication using the vocabulary and concepts necessary for the therapeutic encounter. An evaluation of the process and the results was done using a structured questionnaire which includes series of questions relating to the contributions of the courses to their cultural knowledge, awareness and skills. 155 students completed the questionnaire. Results: A preliminary assessment of this educational system points an increase in cultural awareness and knowledge among the students as well as in their willingness to recognize the other's difference. A positive atmosphere of multiculturalism is reflected in students' mutual interest and respect was created. Students showed a deep understanding of cultural issues relating to health and care (consanguinity and genetics, food customs; cultural events, reincarnation, traditional treatments etc.). Most of the students were willing to recommend the courses to others and suggest some changes relating learning methods (more simulations, role playing and activities).

Keywords: cultural competence, nursing education, culture, language

Procedia PDF Downloads 281
2553 Intersections and Consequences of the Epistemology and Methodology used in Equity-Related Chemistry Education Research

Authors: Vanessa R. Ralph, Kathryn N. Hosbein, Megan Y. Deshaye, Paulette Vincent-Ruz

Abstract:

The language of the statement “persistent achievement gaps between demographic groups” communicates much about the philosophies inherent to the author. In this synthesis of two flagship journals of Chemistry Education Research: Chemistry Education Research and Practice and the Journal of Chemical Education, the use and investigation of equity was examined by the language, epistemology, and methodologies of the researchers. Findings include a considerable increase in the use and investigation of equity in these journals following the years 2012 and 2020. While an increase in consciousness of equity was apparent, epistemologies were stagnated. The majority reflects a deficit-oriented perspective wherein deficits are attributed to students as a “lack of achievement” inherent to specific “demographic groups” and minimized as “gaps” rather than systemic inequities. The lack of epistemological progress may be the result of reading and citing literature within discipline-based education research, failing to acknowledge the efforts propagated for decades by equity theory advancement in disciplines of sociology and psychology. To envision liberated educational systems across the globe, one must first contend with the biases within.

Keywords: liberating education research, philosophy of research, synthesis, review

Procedia PDF Downloads 209
2552 Learning Model Applied to Cope with Professional Knowledge Gaps in Final Project of Information System Students

Authors: Ilana Lavy, Rami Rashkovits

Abstract:

In this study, we describe Information Systems students' learning model which was applied by students in order to cope with professional knowledge gaps in the context of their final project. The students needed to implement a software system according to specifications and design they have made beforehand. They had to select certain technologies and use them. Most of them decided to use programming environments that were learned during their academic studies. The students had to cope with various levels of knowledge gaps. For that matter they used learning strategies that were organized by us as a learning model which includes two phases each suitable for different learning tasks. We analyze the learning model, describing advantages and shortcomings as perceived by the students, and provide excerpts to support our findings.

Keywords: knowledge gaps, independent learner skills, self-regulated learning, final project

Procedia PDF Downloads 480
2551 Coordinated Voltage Control in a Radial Distribution System

Authors: Shivarudraswamy, Anubhav Shrivastava, Lakshya Bhat

Abstract:

Distributed generation has indeed become a major area of interest in recent years. Distributed Generation can address large number of loads in a power line and hence has better efficiency over the conventional methods. However there are certain drawbacks associated with it, increase in voltage being the major one. This paper addresses the voltage control at the buses for an IEEE 30 bus system by regulating reactive power. For carrying out the analysis, the suitable location for placing distributed generators (DG) is identified through load flow analysis and seeing where the voltage profile is dipping. MATLAB programming is used to regulate the voltage at all buses within +/-5% of the base value even after the introduction of DG’s. Three methods for regulation of voltage are discussed. A sensitivity based analysis is later carried out to determine the priority among the various methods listed in the paper.

Keywords: distributed generators, distributed system, reactive power, voltage control

Procedia PDF Downloads 502
2550 Hermeneutics: Comparative Study of Shri Guru Granth Sahib's Schools of Interpretation

Authors: Amandeep Kaur

Abstract:

All religions enlighten truth which provides spiritual tranquility. But, the language of these holy books is not easy to understand because these have divine language. That's why hermeneutical Study is necessary to understand these Scriptures. There is a separate theoretical framework to study all the disciplines of language, literature, religion etc. Similarly the discipline of interpretation has its own theoretical framework known as hermeneutics. It is a science of interpretation that put forward the best ways and methods of interpretation. But in this modern world, hermeneutics is considered as a theoretical-cum-philosophical discipline. It is vast study of understanding texts. Hermeneutics is especially related to the study of religious scriptures like the Bible, the Qur'an, the Vedas and the Shri Guru Granth Sahib and many more. It is mainly the Western concept which has a great old tradition because it used the Bible as the foremost holy scripture for definition and interpretation. The Discipline of the Indian hermeneutics was led by Mimamsa School. The reference of the word hermeneutics in works of Ancient Greek philosophers indicates towards the antiquity of this word. Shri Guru Granth Sahib's schools of interpretation like Udasi, Nirmala, Sevapanthi and Gyani came into existence to interpret the discourse of Shri Guru Granth Sahib. These are sects of Sikhism and have great contribution to interpret and preach Guru Granth Sahib's revelation. This research paper will represent the comparative study of these sects methods, tools and styles of interpreting the meaning of this holy book. Interpretation is basically textual based process. So, all these schools have chosen Guru Granth Sahib for textual study. Some of the schools have done a whole interpretation of Guru Granth Sahib. But, some of them have done only interpretation of prominent banies i.e Japuji Sahib, Anand Sahib, Assa-di-war etc. This study will also throw lights on sect's historical background and contribution. At last conclusion of this paper is that all the schools have done gurbani interpretation according to their own philosophical and theological point of view. These schools have many similarities and differences among their way of interpretation. It will be discussed briefly.

Keywords: Gyani, hermeneutics, Mimamsa, Nirmala, Sevapanthi, Udasi

Procedia PDF Downloads 201