Search results for: neural control
10241 American Sign Language Recognition System
Authors: Rishabh Nagpal, Riya Uchagaonkar, Venkata Naga Narasimha Ashish Mernedi, Ahmed Hambaba
Abstract:
The rapid evolution of technology in the communication sector continually seeks to bridge the gap between different communities, notably between the deaf community and the hearing world. This project develops a comprehensive American Sign Language (ASL) recognition system, leveraging the advanced capabilities of convolutional neural networks (CNNs) and vision transformers (ViTs) to interpret and translate ASL in real-time. The primary objective of this system is to provide an effective communication tool that enables seamless interaction through accurate sign language interpretation. The architecture of the proposed system integrates dual networks -VGG16 for precise spatial feature extraction and vision transformers for contextual understanding of the sign language gestures. The system processes live input, extracting critical features through these sophisticated neural network models, and combines them to enhance gesture recognition accuracy. This integration facilitates a robust understanding of ASL by capturing detailed nuances and broader gesture dynamics. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing diverse ASL signs, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced ASL recognition system and lays the groundwork for future innovations in assistive communication technologies.Keywords: sign language, computer vision, vision transformer, VGG16, CNN
Procedia PDF Downloads 4310240 Modelling Optimal Control of Diabetes in the Workplace
Authors: Eunice Christabel Chukwu
Abstract:
Introduction: Diabetes is a chronic medical condition which is characterized by high levels of glucose in the blood and urine; it is usually diagnosed by means of a glucose tolerance test (GTT). Diabetes can cause a range of health problems if left unmanaged, as it can lead to serious complications. It is essential to manage the condition effectively, particularly in the workplace where the impact on work productivity can be significant. This paper discusses the modelling of optimal control of diabetes in the workplace using a control theory approach. Background: Diabetes mellitus is a condition caused by too much glucose in the blood. Insulin, a hormone produced by the pancreas, controls the blood sugar level by regulating the production and storage of glucose. In diabetes, there may be a decrease in the body’s ability to respond to insulin or a decrease in insulin produced by the pancreas which will lead to abnormalities in the metabolism of carbohydrates, proteins, and fats. In addition to the health implications, the condition can also have a significant impact on work productivity, as employees with uncontrolled diabetes are at risk of absenteeism, reduced performance, and increased healthcare costs. While several interventions are available to manage diabetes, the most effective approach is to control blood glucose levels through a combination of lifestyle modifications and medication. Methodology: The control theory approach involves modelling the dynamics of the system and designing a controller that can regulate the system to achieve optimal performance. In the case of diabetes, the system dynamics can be modelled using a mathematical model that describes the relationship between insulin, glucose, and other variables. The controller can then be designed to regulate the glucose levels to maintain them within a healthy range. Results: The modelling of optimal control of diabetes in the workplace using a control theory approach has shown promising results. The model has been able to predict the optimal dose of insulin required to maintain glucose levels within a healthy range, taking into account the individual’s lifestyle, medication regimen, and other relevant factors. The approach has also been used to design interventions that can improve diabetes management in the workplace, such as regular glucose monitoring and education programs. Conclusion: The modelling of optimal control of diabetes in the workplace using a control theory approach has significant potential to improve diabetes management and work productivity. By using a mathematical model and a controller to regulate glucose levels, the approach can help individuals with diabetes to achieve optimal health outcomes while minimizing the impact of the condition on their work performance. Further research is needed to validate the model and develop interventions that can be implemented in the workplace.Keywords: mathematical model, blood, insulin, pancreas, model, glucose
Procedia PDF Downloads 6110239 Singular Stochastic Control Model with Carrying Capacity of Population Management Policy for Squirrels in Durian Orchards
Authors: Sasiwimol Auepong, Raywat Tanadkithirun
Abstract:
In this work, the problem that squirrels ruin durian, which is an economical fruit in Thailand, is considered. We seek the strategy for the durian farmers to eliminate the squirrels under the consideration that squirrels also provide ecosystem service. The population dynamics of squirrels are constructed to have carrying capacity since we consider the population in a confined area. A performance index indicating the total benefit of a given elimination strategy is provided. It comprises the cost of countermeasures, the loss of resources, and the ecosystem service provided by squirrels. The optimal performance index is numerically solved through the variational inequality using the finite difference method. The optimal strategy to control the squirrel population is also given numerically.Keywords: controlled stochastic differential equation, durian, finite difference method, performance index, singular stochastic control model, squirrel
Procedia PDF Downloads 9010238 Comparative Analysis of Control Techniques Based Sliding Mode for Transient Stability Assessment for Synchronous Multicellular Converter
Authors: Rihab Hamdi, Amel Hadri Hamida, Fatiha Khelili, Sakina Zerouali, Ouafae Bennis
Abstract:
This paper features a comparative study performance of sliding mode controller (SMC) for closed-loop voltage control of direct current to direct current (DC-DC) three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM) with SMC based on hysteresis modulation (HM) where an adaptive feedforward technique is adopted. On one hand, for the PWM-based SM, the approach is to incorporate a fixed-frequency PWM scheme which is effectively a variant of SM control. On the other hand, for the HM-based SM, oncoming an adaptive feedforward control that makes the hysteresis band variable in the hysteresis modulator of the SM controller in the aim to restrict the switching frequency variation in the case of any change of the line input voltage or output load variation are introduced. The results obtained under load change, input change and reference change clearly demonstrates a similar dynamic response of both proposed techniques, their effectiveness is fast and smooth tracking of the desired output voltage. The PWM-based SM technique has greatly improved the dynamic behavior with a bit advantageous compared to the HM-based SM technique, as well as provide stability in any operating conditions. Simulation studies in MATLAB/Simulink environment have been performed to verify the concept.Keywords: DC-DC converter, hysteresis modulation, parallel multi-cells converter, pulse-width modulation, robustness, sliding mode control
Procedia PDF Downloads 16710237 Identifying Confirmed Resemblances in Problem-Solving Engineering, Both in the Past and Present
Authors: Colin Schmidt, Adrien Lecossier, Pascal Crubleau, Philippe Blanchard, Simon Richir
Abstract:
Introduction:The widespread availability of artificial intelligence, exemplified by Generative Pre-trained Transformers (GPT) relying on large language models (LLM), has caused a seismic shift in the realm of knowledge. Everyone now has the capacity to swiftly learn how these models can either serve them well or not. Today, conversational AI like ChatGPT is grounded in neural transformer models, a significant advance in natural language processing facilitated by the emergence of renowned LLMs constructed using neural transformer architecture. Inventiveness of an LLM : OpenAI's GPT-3 stands as a premier LLM, capable of handling a broad spectrum of natural language processing tasks without requiring fine-tuning, reliably producing text that reads as if authored by humans. However, even with an understanding of how LLMs respond to questions asked, there may be lurking behind OpenAI’s seemingly endless responses an inventive model yet to be uncovered. There may be some unforeseen reasoning emerging from the interconnection of neural networks here. Just as a Soviet researcher in the 1940s questioned the existence of Common factors in inventions, enabling an Under standing of how and according to what principles humans create them, it is equally legitimate today to explore whether solutions provided by LLMs to complex problems also share common denominators. Theory of Inventive Problem Solving (TRIZ) : We will revisit some fundamentals of TRIZ and how Genrich ALTSHULLER was inspired by the idea that inventions and innovations are essential means to solve societal problems. It's crucial to note that traditional problem-solving methods often fall short in discovering innovative solutions. The design team is frequently hampered by psychological barriers stemming from confinement within a highly specialized knowledge domain that is difficult to question. We presume ChatGPT Utilizes TRIZ 40. Hence, the objective of this research is to decipher the inventive model of LLMs, particularly that of ChatGPT, through a comparative study. This will enhance the efficiency of sustainable innovation processes and shed light on how the construction of a solution to a complex problem was devised. Description of the Experimental Protocol : To confirm or reject our main hypothesis that is to determine whether ChatGPT uses TRIZ, we will follow a stringent protocol that we will detail, drawing on insights from a panel of two TRIZ experts. Conclusion and Future Directions : In this endeavor, we sought to comprehend how an LLM like GPT addresses complex challenges. Our goal was to analyze the inventive model of responses provided by an LLM, specifically ChatGPT, by comparing it to an existing standard model: TRIZ 40. Of course, problem solving is our main focus in our endeavours.Keywords: artificial intelligence, Triz, ChatGPT, inventiveness, problem-solving
Procedia PDF Downloads 7410236 A Novel Stator Resistance Estimation Method and Control Design of Speed-Sensorless Induction Motor Drives
Authors: N. Ben Si Ali, N. Benalia, N. Zarzouri
Abstract:
Speed sensorless systems are intensively studied during recent years; this is mainly due to their economical benefit and fragility of mechanical sensors and also the difficulty of installing this type of sensor in many applications. These systems suffer from instability problems and sensitivity to parameter mismatch at low speed operation. In this paper an analysis of adaptive observer stability with stator resistance estimation is given.Keywords: motor drive, sensorless control, adaptive observer, stator resistance estimation
Procedia PDF Downloads 37510235 Encephalon-An Implementation of a Handwritten Mathematical Expression Solver
Authors: Shreeyam, Ranjan Kumar Sah, Shivangi
Abstract:
Recognizing and solving handwritten mathematical expressions can be a challenging task, particularly when certain characters are segmented and classified. This project proposes a solution that uses Convolutional Neural Network (CNN) and image processing techniques to accurately solve various types of equations, including arithmetic, quadratic, and trigonometric equations, as well as logical operations like logical AND, OR, NOT, NAND, XOR, and NOR. The proposed solution also provides a graphical solution, allowing users to visualize equations and their solutions. In addition to equation solving, the platform, called CNNCalc, offers a comprehensive learning experience for students. It provides educational content, a quiz platform, and a coding platform for practicing programming skills in different languages like C, Python, and Java. This all-in-one solution makes the learning process engaging and enjoyable for students. The proposed methodology includes horizontal compact projection analysis and survey for segmentation and binarization, as well as connected component analysis and integrated connected component analysis for character classification. The compact projection algorithm compresses the horizontal projections to remove noise and obtain a clearer image, contributing to the accuracy of character segmentation. Experimental results demonstrate the effectiveness of the proposed solution in solving a wide range of mathematical equations. CNNCalc provides a powerful and user-friendly platform for solving equations, learning, and practicing programming skills. With its comprehensive features and accurate results, CNNCalc is poised to revolutionize the way students learn and solve mathematical equations. The platform utilizes a custom-designed Convolutional Neural Network (CNN) with image processing techniques to accurately recognize and classify symbols within handwritten equations. The compact projection algorithm effectively removes noise from horizontal projections, leading to clearer images and improved character segmentation. Experimental results demonstrate the accuracy and effectiveness of the proposed solution in solving a wide range of equations, including arithmetic, quadratic, trigonometric, and logical operations. CNNCalc features a user-friendly interface with a graphical representation of equations being solved, making it an interactive and engaging learning experience for users. The platform also includes tutorials, testing capabilities, and programming features in languages such as C, Python, and Java. Users can track their progress and work towards improving their skills. CNNCalc is poised to revolutionize the way students learn and solve mathematical equations with its comprehensive features and accurate results.Keywords: AL, ML, hand written equation solver, maths, computer, CNNCalc, convolutional neural networks
Procedia PDF Downloads 12210234 Soil Enzyme Activity as Influenced by Post-emergence Herbicides Applied in Soybean [Glycine max (L.) Merrill]
Authors: Uditi Dhakad, Baldev Ram, Chaman K. Jadon, R. K. Yadav, D. L. Yadav, Pratap Singh, Shalini Meena
Abstract:
A field experiment was conducted during Kharif 2021 at Agricultural Research Station, Kota, to evaluate the effect of different post-emergence herbicides applied to soybean [Glycine max (L.) Merrill] on soil enzymes activity viz. dehydrogenase, phosphatase, and urease. The soil of the experimental site was clay loam (vertisols) in texture and slightly alkaline in reaction with 7.7 pH. The soil was low in organic carbon (0.49%), medium in available nitrogen (210 kg/ha), phosphorus (23.5 P2O5 kg/ha), and high in potassium (400 K2O kg/ha) status. The results elucidated that no significant adverse effect on soil dehydrogenase, urease, and phosphatase activity was determined with the application of post-emergence herbicides over the untreated control. Two hands weeding at 20 and 40 DAS registered maximum dehydrogenase enzyme activity (0.329 μgTPF/g soil/d) closely followed by herbicides mixtures and sole herbicide while pre-emergence application of pendimethalin + imazethapyr 960 g a.i./ha and pendimethalin 1.0 kg a.i./ha significantly reduced dehydrogenase enzyme activity compared to control. Urease enzyme activity was not much affected under different weed control treatments and weedy checks. The treatments were found statistically non-significant, and values ranged between 1.16-1.25 μgNH4N/g soil/d. Phosphatase enzyme activity was also not influenced significantly due to various weed control treatments. Though maximum phosphatase enzyme activity (30.17 μgpnp/g soil/hr) was observed under two-hand weeding, followed by fomesafen + fluazifop-p-butyl 220 g a.i./ha. Herbicidal weed control measures did not influence the total bacteria, fungi, and actinomycetes population.Keywords: dehydrogenase, phosphatase, post-emergence, soil enzymes, urease.
Procedia PDF Downloads 10510233 Network Based Speed Synchronization Control for Multi-Motor via Consensus Theory
Authors: Liqin Zhang, Liang Yan
Abstract:
This paper addresses the speed synchronization control problem for a network-based multi-motor system from the perspective of cluster consensus theory. Each motor is considered as a single agent connected through fixed and undirected network. This paper presents an improved control protocol from three aspects. First, for the purpose of improving both tracking and synchronization performance, this paper presents a distributed leader-following method. The improved control protocol takes the importance of each motor’s speed into consideration, and all motors are divided into different groups according to speed weights. Specifically, by using control parameters optimization, the synchronization error and tracking error can be regulated and decoupled to some extent. The simulation results demonstrate the effectiveness and superiority of the proposed strategy. In practical engineering, the simplified models are unrealistic, such as single-integrator and double-integrator. And previous algorithms require the acceleration information of the leader available to all followers if the leader has a varying velocity, which is also difficult to realize. Therefore, the method focuses on an observer-based variable structure algorithm for consensus tracking, which gets rid of the leader acceleration. The presented scheme optimizes synchronization performance, as well as provides satisfactory robustness. What’s more, the existing algorithms can obtain a stable synchronous system; however, the obtained stable system may encounter some disturbances that may destroy the synchronization. Focus on this challenging technological problem, a state-dependent-switching approach is introduced. In the presence of unmeasured angular speed and unknown failures, this paper investigates a distributed fault-tolerant consensus tracking algorithm for a group non-identical motors. The failures are modeled by nonlinear functions, and the sliding mode observer is designed to estimate the angular speed and nonlinear failures. The convergence and stability of the given multi-motor system are proved. Simulation results have shown that all followers asymptotically converge to a consistent state when one follower fails to follow the virtual leader during a large enough disturbance, which illustrates the good performance of synchronization control accuracy.Keywords: consensus control, distributed follow, fault-tolerant control, multi-motor system, speed synchronization
Procedia PDF Downloads 12510232 Zarit Burden Interview among Informal Caregiver of Person with Dementia: A Systematic Review and Meta-Analysis
Authors: Nuraisyah H. Zulkifley, Suriani Ismail, Rosliza Abdul Manaf, Poh Y. Lim
Abstract:
Taking care of a person with dementia (PWD) is one of the most problematic and challenging caregiving situations. Without proper support, caregiver would need to deal with the impact of caregiving that would lead to caregiver burden. One of the most common tools used to measure caregiver burden among caregivers of PWD is Zarit Burden Interview (ZBI). A systematic review has been conducted through searching Medline, Science Direct, Cochrane Library, Embase, PsycINFO, ProQuest, and Scopus databases to identify relevant articles that elaborate on intervention and outcomes on ZBI among informal caregiver of PWD. The articles were searched in October 2019 with no restriction on language or publication status. Inclusion criteria are randomized control trial (RCT) studies, participants were informal caregivers of PWD, ZBI measured as outcomes, and intervention group was compared with no intervention control or usual care control. Two authors reviewed and extracted the data from the full-text articles. From a total of 344 records, nine studies were selected and included in this narrative review, and eight studies were included in the meta-analysis. The types of interventions that were implemented to ease caregiver burden are psychoeducation, physical activity, psychosocial, and computer-based intervention. The meta-analysis showed that there is a significant difference in the mean score of ZBI (p = 0.006) in the intervention group compared to the control group after implementation of intervention. In conclusion, interventions such as psychoeducation, psychosocial, and physical activity can help to reduce the burden experiencing by the caregivers of PWD.Keywords: dementia, informal caregiver, randomized control trial, Zarit burden interview
Procedia PDF Downloads 18010231 Canine Visceral Leishmaniasis In Brazil
Authors: Elisangela Sobreira, Denise Teixeira
Abstract:
Visceral leishmaniasis is a public health problem in Brazil, it is the main reservoir dog. In the period 2012-2016 78 diagnoses were performed in dogs suspected. Blood samples were collected from the cephalic vein obtaining serum used for the indirect immunofluorescence test and enzyme-linked immunosorbent assay, while it collected a drop of blood for the rapid chromatographic immunoassay. Obtained in 32 dogs positive. The test is important for the control of this disease and is used routinely in the Zoonoses Control Center.Keywords: Brazil, dogs, Leismaniasis, Zoonoses center
Procedia PDF Downloads 26210230 Method for Tuning Level Control Loops Based on Internal Model Control and Closed Loop Step Test Data
Authors: Arnaud Nougues
Abstract:
This paper describes a two-stage methodology derived from internal model control (IMC) for tuning a proportional-integral-derivative (PID) controller for levels or other integrating processes in an industrial environment. Focus is the ease of use and implementation speed which are critical for an industrial application. Tuning can be done with minimum effort and without the need for time-consuming open-loop step tests on the plant. The first stage of the method applies to levels only: the vessel residence time is calculated from equipment dimensions and used to derive a set of preliminary proportional-integral (PI) settings with IMC. The second stage, re-tuning in closed-loop, applies to levels as well as other integrating processes: a tuning correction mechanism has been developed based on a series of closed-loop simulations with model errors. The tuning correction is done from a simple closed-loop step test and the application of a generic correlation between observed overshoot and integral time correction. A spin-off of the method is that an estimate of the vessel residence time (levels) or open-loop process gain (other integrating process) is obtained from the closed-loop data.Keywords: closed-loop model identification, IMC-PID tuning method, integrating process control, on-line PID tuning adaptation
Procedia PDF Downloads 22210229 Resale Housing Development Board Price Prediction Considering Covid-19 through Sentiment Analysis
Authors: Srinaath Anbu Durai, Wang Zhaoxia
Abstract:
Twitter sentiment has been used as a predictor to predict price values or trends in both the stock market and housing market. The pioneering works in this stream of research drew upon works in behavioural economics to show that sentiment or emotions impact economic decisions. Latest works in this stream focus on the algorithm used as opposed to the data used. A literature review of works in this stream through the lens of data used shows that there is a paucity of work that considers the impact of sentiments caused due to an external factor on either the stock or the housing market. This is despite an abundance of works in behavioural economics that show that sentiment or emotions caused due to an external factor impact economic decisions. To address this gap, this research studies the impact of Twitter sentiment pertaining to the Covid-19 pandemic on resale Housing Development Board (HDB) apartment prices in Singapore. It leverages SNSCRAPE to collect tweets pertaining to Covid-19 for sentiment analysis, lexicon based tools VADER and TextBlob are used for sentiment analysis, Granger Causality is used to examine the relationship between Covid-19 cases and the sentiment score, and neural networks are leveraged as prediction models. Twitter sentiment pertaining to Covid-19 as a predictor of HDB price in Singapore is studied in comparison with the traditional predictors of housing prices i.e., the structural and neighbourhood characteristics. The results indicate that using Twitter sentiment pertaining to Covid19 leads to better prediction than using only the traditional predictors and performs better as a predictor compared to two of the traditional predictors. Hence, Twitter sentiment pertaining to an external factor should be considered as important as traditional predictors. This paper demonstrates the real world economic applications of sentiment analysis of Twitter data.Keywords: sentiment analysis, Covid-19, housing price prediction, tweets, social media, Singapore HDB, behavioral economics, neural networks
Procedia PDF Downloads 11610228 A Study of Environmental Investment on the Sustainable Development in United States
Authors: K. Y. Chen, Y. N. Jia, H. Chua, C. W. Kan
Abstract:
In United States (US), the environmental policy went through two stages that are government control period and market mechanism period. In the government control period in the 1970s, environmental problems in U.S. are treated by mandatory direct control method, including promulgation of laws, formulation of emission standards and mandatory installation of pollution treatment equipment. After the 1980s, the environmental policy in U.S. went into the second stage, in which the government strengthened the incentives and coordination effects of market. Since then, environmental governance had been partially replaced by means of economic regulation of the market. Green Tax Policy and Marketable Pollution Permits are good examples of government's economic interventions. U.S. Federal Government regards environmental industry as high-tech industry which is promoted in this period. Therefore, in the paper, we aim to analyse the effect of environmental investment on the sustainable development in the US. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.Keywords: United States, public environmental investment, analysis, sustainable development
Procedia PDF Downloads 24910227 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 5510226 Application of the Total Least Squares Estimation Method for an Aircraft Aerodynamic Model Identification
Authors: Zaouche Mohamed, Amini Mohamed, Foughali Khaled, Aitkaid Souhila, Bouchiha Nihad Sarah
Abstract:
The aerodynamic coefficients are important in the evaluation of an aircraft performance and stability-control characteristics. These coefficients also can be used in the automatic flight control systems and mathematical model of flight simulator. The study of the aerodynamic aspect of flying systems is a reserved domain and inaccessible for the developers. Doing tests in a wind tunnel to extract aerodynamic forces and moments requires a specific and expensive means. Besides, the glaring lack of published documentation in this field of study makes the aerodynamic coefficients determination complicated. This work is devoted to the identification of an aerodynamic model, by using an aircraft in virtual simulated environment. We deal with the identification of the system, we present an environment framework based on Software In the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. We propose The Total Least Squares Estimation technique (TLSE) to identify the aerodynamic parameters, which are unknown, variable, classified and used in the expression of the piloting law. In this paper, we define each aerodynamic coefficient as the mean of its numerical values. All other variations are considered as modeling uncertainties that will be compensated by the robustness of the piloting control.Keywords: aircraft aerodynamic model, total least squares estimation, piloting the aircraft, robust control, Microsoft Flight Simulator, MQ-1 predator
Procedia PDF Downloads 28710225 Reforming the Law to Allow a Duress Defence to Those Committing Crime under Coercive Control
Authors: Amy Elkington
Abstract:
Women in abusive relationships who commit crimes under duress are unfairly treated by the English legal system. Despite the offence of Coercive Control being introduced in 2015 that recognises that a woman’s autonomy has been eroded, coercion is no longer a defence to women who feel compelled to act due to their partner’s behavior or abuse. This problem is intensified by the fact that women in abusive relationships are more likely to commit crimes to ensure their survival. Furthermore, the very fact that they are ‘associating’ with their abusive partners means that they are excluded from pleading a defence of duress. Women who kill their abusers may be able to reduce their conviction from murder to manslaughter, but this depends on successfully pleading either loss of control or diminished responsibility, both not without their issues, but this does not provide a defence where a lesser crime is committed. Self-defence is also widely unavailable to either murder or non-fatal offences, as the amount of force used is often deemed disproportionate because women are more likely to use weapons in their defence. Regardless, this would not provide a defence where the crime committed is one such as theft. An alternative that has been proposed would be to introduce a new defence that would work similarly to the exemption to prosecution afforded to those who are trafficked that commit crime under duress. Despite having support in the Lords in March 2021, this recommendation has been rejected by the Government on the basis that it would not achieve an appropriate balance of justice. The result is that abused women who commit crime are left without an appropriate defence. A doctrinal approach highlights the injustices in these types of cases and concludes that it is time for the current law of duress to change.Keywords: coercive control, crime, defences, duress
Procedia PDF Downloads 19510224 The 10,000 Fold Effect Retrograde Neurotransmission: A Newer Concept for Paraplegia’s Physiological Revival by the Use of Intrathecal Sodium Nitroprusside
Authors: V. K. Tewari, M. Hussain, H. K. D. Gupta
Abstract:
B-Methylprednisolone-level-1-benefit (20%) usually given in paraplegia (but within 8hrs). Patients wait-long-duration for physiological-recovery. Intrathecal-Sodium-Nitroprusside(ITSNP) has been used-in vasospasm-due-to-subarachnoid-hemorrhage. ITSNP-has been studied-here for wide-window-period-range for-treatment, fast-recovery/affordability. 2- for acute-cases-and 1-mechanism-for chronic-cases, which-are-interrelated, are being-proposed-for-physiological-recovery. retrograde-neurotransmission, vasospasm and long-term-potentiation-(ltp) mechanisms are proposed here for recovery. It’s a case-control-prospective-study. 82paraplegia-patients(10patients taken as control-no superfusion or dextrose5% superfusion and 72patients as ITSNP-group). The mean time for superfusion was 14.11 days. ITSNP administered at a dosage of 0.2 mg/kg bo wt. Pre/post ITSNP monitored by SSEP/MEP. After-2-Hours in ITSNP-group Mean-Change-From-Baseline-Asia Motor/Sensory-Score 13.84%/13.10%, after-24-hours MOTOR-1.27-points decrease(3.77%) and SENSORY 10.5points-increase(6.22%)as compared to Control-group no-change noted upto 24-hours, At-7days ITSNP motor/sensory;11.56%/6.22% as compared to Control-group 7.60/4.48%, At-2-months in ITSNP 27.69%/6.22% as compared to Control-group 16.02/4.5%. SSEP/MEP-documented-improvements-noted. ITSNP, a-swift-acting-drug in treatment-of-paraplegia, is effective within-two-hours(mean-change-MOTOR-13.84% and SENSORY-13.10%) on-mean14.11th postparaplegia-day with a small-detrimental-response after-24-hours which-recovers-fast.Keywords: paraplegias, intrathecal sodium nitroprusside, retrograde transmission, the 10, 000 fold effect, perforators, vasodilatations, long term potenciations
Procedia PDF Downloads 40910223 Effect of Erythropoietin Hormone Supplementation on Hypoxia-Inducible Factor1-Alpha in Rat Kidneys with Experimental Diabetic Nephropathy
Authors: Maha Deif, Alaa Eldin Hassan, Eman Shaat, Nesrine Elazhary, Eman Magdy
Abstract:
Background: Erythropoietin (EPO) is a hematopoietic factor with multiple protective effects. The aim of the present study was to investigate the potential effect of EPO administration on renal functions and hypoxia inducible factor 1-alpha (HIF-1a) in diabetic rat kidneys. Methodology: The current study was carried out on 40 male albino rats divided into four groups (n= 10 in each). Group I served as normal control, group II was the diabetic control, group III rats received EPO on the same day of diagnosis of diabetes mellitus (DM), while group IV received the first dose of EPO 2 weeks after the diagnosis of DM. Results: The results showed that EPO supplementation leads to a significant decrease in serum urea, urinary protein and creatinine clearance as well as a significant increase in renal HIF-1a in group III and IV rats compared to the diabetic control group (group II). However, fasting blood glucose was significantly decreased in group III as compared to the diabetic control group in the third week, but no significant difference was reported in the fourth week among groups II, III and IV. Conclusion: EPO administration leads to the improvement of renal functions and increased levels of HIF-1a in diabetic rats.Keywords: erythropoietin, diabetic nephropathy, hypoxia-inducible factor1-alpha, renal functions
Procedia PDF Downloads 28610222 Real-Time Hybrid Simulation for a Tuned Liquid Column Damper Implementation
Authors: Carlos Riascos, Peter Thomson
Abstract:
Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. Another practical application of RTHS is the evaluation of control systems, as these devices are often nonlinear and their characterization is an important step in the design of controllers with the desired performance. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems.Keywords: structural control, hybrid simulation, tuned liquid column damper, semi-active sontrol strategy
Procedia PDF Downloads 29710221 Numerical Investigation of Turbulent Flow Control by Suction and Injection on a Subsonic NACA23012 Airfoil by Proper Orthogonal Decomposition Analysis and Perturbed Reynolds Averaged Navier‐Stokes Equations
Authors: Azam Zare
Abstract:
Separation flow control for performance enhancement over airfoils at high incidence angle has become an increasingly important topic. This work details the characteristics of an efficient feedback control of the turbulent subsonic flow over NACA23012 airfoil using forced reduced‐order model based on the proper orthogonal decomposition/Galerkin projection and perturbation method on the compressible Reynolds Averaged Navier‐Stokes equations. The forced reduced‐order model is used in the optimal control of the turbulent separated flow over a NACA23012 airfoil at Mach number of 0.2, Reynolds number of 5×106, and high incidence angle of 24° using blowing/suction controlling jets. The Spallart-Almaras turbulence model is implemented for high Reynolds number calculations. The main shortcoming of the POD/Galerkin projection on flow equations for controlling purposes is that the blowing/suction controlling jet velocity does not show up explicitly in the resulting reduced order model. Combining perturbation method and POD/Galerkin projection on flow equations introduce a forced reduced‐order model that can predict the time-varying influence of the blowing/suction controlling jet velocity. An optimal control theory based on forced reduced‐order system is used to design a control law for a nonlinear reduced‐order model, which attempts to minimize the vorticity content in the turbulent flow field over NACA23012 airfoil. Numerical simulations were performed to help understand the behavior of the controlled suction jet at 12% to 18% chord from leading edge and a pair of blowing/suction jets at 15% to 18% and 24% to 30% chord from leading edge, respectively. Analysis of streamline profiles indicates that the blowing/suction jets are efficient in removing separation bubbles and increasing the lift coefficient up to 22%, while the perturbation method can predict the flow field in an accurate Manner.Keywords: flow control, POD, Galerkin projection, separation
Procedia PDF Downloads 14910220 Generalized Additive Model for Estimating Propensity Score
Authors: Tahmidul Islam
Abstract:
Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching
Procedia PDF Downloads 36710219 Efficacy and Safety of Inhaled Nebulized Chemotherapy in Treatment of Patients with Newly Diagnosed Pulmonary Tuberculosis in Comparison to Standard Antimycobacterial Therapy
Authors: M. Kuzhko, M. Gumeniuk, D. Butov, T. Tlustova, O. Denysov, T. Sprynsian
Abstract:
Abstract: The objective of this work was to study the efficacy and safety of inhaled nebulized chemotherapy in the treatment of patients with newly diagnosed pulmonary tuberculosis in comparison with standard antimycobacterial therapy. Materials and methods: The study involved 68 patients aged between 20 and 70 years with newly diagnosed pulmonary tuberculosis. Patients were allocated to two groups. The first (main, n=21) group of patients received standard chemotherapy and further 0.15 g of isoniazid and rifampicin 0.15 g inhaled through a nebulizer, also they received salmeterol 50 mcg + fluticasone propionate 250 mcg at 2 breaths twice a day for 2 months. The second (control, n=47) group of patients received standard chemotherapy, consisting of orally administered isoniazid (0.3 g), rifampicin (0.6 g), pyrazinamide (2 g), ethambutol (1.2 g) with a dose reduction after the intensive phase of the therapy. The anti-TB drugs were procured through the Ukraine’s centralized national supply system. Results: Intoxication symptoms in the first group reduced following 1.39±0.18 months, whereas in the second group, intoxication symptoms reduced following 2.7±0.1 months, p<.001. Moreover, respiratory symptoms regression in the first group was observed following 1.6±0.2 months, whereas in the second group – following 2.5±0.2 months, p<0.05. Bacillary excretion period evaluated within 1 month was reduced, as it was shown by 66.6±10.5% in the main group compared to 27.6±6.5%, p<0.05, in the control group. In addition, period of cavities healing was reduced to 2.9±0.2 months in the main group compared to 3.7±0.1 months, p<0.05, in the control group. Residual radiological lung damage findings (large residual changes) were observed in 22 (23.8±9.5 %) patients of the main group versus 24 (51.0±7.2 %) patients in the control group, p<0.05. After completion of treatment scar stenosis of the bronchi II-III art. diagnosed in 3 (14.2±7.8%) patients in main group and 17 (68.0±6.8%) - control group, p<0.05. The duration of hospital treatment was 2.4±0.4 months in main group and 4.1±0.4 months in control group, p<0.05. Conclusion: Administration of of inhaled nebulized chemotherapy in patients with newly diagnosed pulmonary tuberculosis resulted in a comparatively quick reduction of disease manifestation.Keywords: inhaled nebulized chemotherapy, pulmonary tuberculosis, tuberculosis, treatment of tuberculosis
Procedia PDF Downloads 19710218 Information and Communication Technology (ICT) Education Improvement for Enhancing Learning Performance and Social Equality
Authors: Heichia Wang, Yalan Chao
Abstract:
Social inequality is a persistent problem. One of the ways to solve this problem is through education. At present, vulnerable groups are often less geographically accessible to educational resources. However, compared with educational resources, communication equipment is easier for vulnerable groups. Now that information and communication technology (ICT) has entered the field of education, today we can accept the convenience that ICT provides in education, and the mobility that it brings makes learning independent of time and place. With mobile learning, teachers and students can start discussions in an online chat room without the limitations of time or place. However, because liquidity learning is quite convenient, people tend to solve problems in short online texts with lack of detailed information in a lack of convenient online environment to express ideas. Therefore, the ICT education environment may cause misunderstanding between teachers and students. Therefore, in order to better understand each other's views between teachers and students, this study aims to clarify the essays of the analysts and classify the students into several types of learning questions to clarify the views of teachers and students. In addition, this study attempts to extend the description of possible omissions in short texts by using external resources prior to classification. In short, by applying a short text classification, this study can point out each student's learning problems and inform the instructor where the main focus of the future course is, thus improving the ICT education environment. In order to achieve the goals, this research uses convolutional neural network (CNN) method to analyze short discussion content between teachers and students in an ICT education environment. Divide students into several main types of learning problem groups to facilitate answering student problems. In addition, this study will further cluster sub-categories of each major learning type to indicate specific problems for each student. Unlike most neural network programs, this study attempts to extend short texts with external resources before classifying them to improve classification performance. In short, by applying the classification of short texts, we can point out the learning problems of each student and inform the instructors where the main focus of future courses will improve the ICT education environment. The data of the empirical process will be used to pre-process the chat records between teachers and students and the course materials. An action system will be set up to compare the most similar parts of the teaching material with each student's chat history to improve future classification performance. Later, the function of short text classification uses CNN to classify rich chat records into several major learning problems based on theory-driven titles. By applying these modules, this research hopes to clarify the main learning problems of students and inform teachers that they should focus on future teaching.Keywords: ICT education improvement, social equality, short text analysis, convolutional neural network
Procedia PDF Downloads 12810217 Fuzzy Control of Thermally Isolated Greenhouse Building by Utilizing Underground Heat Exchanger and Outside Weather Conditions
Authors: Raghad Alhusari, Farag Omar, Moustafa Fadel
Abstract:
A traditional greenhouse is a metal frame agricultural building used for cultivation plants in a controlled environment isolated from external climatic changes. Using greenhouses in agriculture is an efficient way to reduce the water consumption, where agriculture field is considered the biggest water consumer world widely. Controlling greenhouse environment yields better productivity of plants but demands an increase of electric power. Although various control approaches have been used towards greenhouse automation, most of them are applied to traditional greenhouses with ventilation fans and/or evaporation cooling system. Such approaches are still demanding high energy and water consumption. The aim of this research is to develop a fuzzy control system that minimizes water and energy consumption by utilizing outside weather conditions and underground heat exchanger to maintain the optimum climate of the greenhouse. The proposed control system is implemented on an experimental model of thermally isolated greenhouse structure with dimensions of 6x5x2.8 meters. It uses fans for extracting heat from the ground heat exchanger system, motors for automatic open/close of the greenhouse windows and LED as lighting system. The controller is integrated also with environmental condition sensors. It was found that using the air-to-air horizontal ground heat exchanger with 90 mm diameter and 2 mm thickness placed 2.5 m below the ground surface results in decreasing the greenhouse temperature of 3.28 ˚C which saves around 3 kW of consumed energy. It also eliminated the water consumption needed in evaporation cooling systems which are traditionally used for cooling the greenhouse environment.Keywords: automation, earth-to-air heat exchangers, fuzzy control, greenhouse, sustainable buildings
Procedia PDF Downloads 12910216 Analysis of DC\DC Converter of Photovoltaic System with MPPT Algorithms Comparison
Authors: Badr M. Alshammari, Mohamed A. Khlifi
Abstract:
This paper presents the analysis of DC/DC converter including a comparative study of control methods to extract the maximum power and to track the maximum power point (MPP) from photovoltaic (PV) systems under changeable environmental conditions. This paper proposes two methods of maximum power point tracking algorithm for photovoltaic systems, based on the first hand on P&O control and the other hand on the first order IC. The MPPT system ensures that solar cells can deliver the maximum power possible to the load. Different algorithms are used to design it. Here we compare them and simulate the photovoltaic system with two algorithms. The algorithms are used to control the duty cycle of a DC-DC converter in order to boost the output voltage of the PV generator and guarantee the operation of the solar panels in the Maximum Power Point (MPP). Simulation and experimental results show that the proposed algorithms can effectively improve the efficiency of a photovoltaic array output.Keywords: solar cell, DC/DC boost converter, MPPT, photovoltaic system
Procedia PDF Downloads 20210215 Identification and Control the Yaw Motion Dynamics of Open Frame Underwater Vehicle
Authors: Mirza Mohibulla Baig, Imil Hamda Imran, Tri Bagus Susilo, Sami El Ferik
Abstract:
The paper deals with system identification and control a nonlinear model of semi-autonomous underwater vehicle (UUV). The input-output data is first generated using the experimental values of the model parameters and then this data is used to compute the estimated parameter values. In this study, we use the semi-autonomous UUV LAURS model, which is developed by the Sensors and Actuators Laboratory in University of Sao Paolo. We applied three methods to identify the parameters: integral method, which is a classical least square method, recursive least square, and weighted recursive least square. In this paper, we also apply three different inputs (step input, sine wave input and random input) to each identification method. After the identification stage, we investigate the control performance of yaw motion of nonlinear semi-autonomous Unmanned Underwater Vehicle (UUV) using feedback linearization-based controller. In addition, we compare the performance of the control with an integral and a non-integral part along with state feedback. Finally, disturbance rejection and resilience of the controller is tested. The results demonstrate the ability of the system to recover from such fault.Keywords: system identification, underwater vehicle, integral method, recursive least square, weighted recursive least square, feedback linearization, integral error
Procedia PDF Downloads 53610214 Assessment of Trace Metal Concentration of Soils Contaminated with Carbide in Abraka, Delta State, Nigeria
Authors: O.M. Agbogidi, I.M. Onochie
Abstract:
An investigation was carried out on trace metal concentration of soils contaminated with carbide in Abraka, Delta State, Nigeria in 2014 with a view to providing baseline formation on their status relative to the control plants and to the tolerable limits recommended by World standard bodies including WHO and FAO. The metals were analyzed using the Atomic Absorption Spectrophotometer which showed an elevated level when compared with the control plots. High level of metals including Fe, Pb, Zn, Cu, Cd, Ni, Cr and arsenic were recorded and these values were significantly different (P<0.05) from values obtained from the control plots. These results are indicative of the fact that carbide polluted soil had higher level of trace metals and because these metals are non-biodegradable elements in the ecosystem, a rise to their lethal levels in food chains is envisaged due to the interdependency of plants and animals stemming from soil-water organisms interrelationship.Keywords: bio-concentration, carbide contaminated soils, heavy metals, trace metals
Procedia PDF Downloads 27510213 Neuromuscular Control and Performance during Sudden Acceleration in Subjects with and without Unilateral Acute Ankle Sprains
Authors: M. Qorbani
Abstract:
Neuromuscular control of posture as understood through studies of responses to mechanical sudden acceleration automatically has been previously demonstrated in individuals with chronic ankle instability (CAI), but the presence of acute condition has not been previously explored specially in a sudden acceleration. The aim of this study was to determine neuromuscular control pattern in those with and without unilateral acute ankle sprains. Design: Case - control. Setting: University research laboratory. The sinker–card protocol with surface translation was be used as a sudden acceleration protocol with study of EMG upon 4 posture stabilizer muscles in two sides of the body in response to sudden acceleration in forward and backward directions. 20 young adult women in two groups (10 LAS; 23.9 ± 2.03 yrs and 10 normal; 26.4 ± 3.2 yrs). The data of EMG were assessed by using multivariate test and one-way repeated measures 2×2×4 ANOVA (P< 0.05). The results showed a significant muscle by direction interaction. Higher TA activity of left and right side in LAS group than normal group in forward direction significantly be showed. Higher MGR activity in normal group than LAS group in backward direction significantly showed. These findings suggest that compared two sides of the body in two directions for 4 muscles EMG activities between and within group for neuromuscular control of posture in avoiding fall. EMG activations of two sides of the body in lateral ankle sprain (LAS) patients were symmetric significantly. Acute ankle instability following once ankle sprains caused to coordinated temporal spatial patterns and strategy selection.Keywords: neuromuscular response, sEMG, lateral ankle sprain, posture.
Procedia PDF Downloads 48210212 Adverse Childhood Experiences and the Sense of Effectiveness and Coping with Emotions among Adolescents Taking Drugs
Authors: Monika Szpringer, Aneta Pawlinska
Abstract:
Adverse childhood experiences are linked to various types of health and adapt problems at different stages of life. They include various types of abuse, neglect, and dysfunctional environment. They have an unfavorable impact on the development of a child and his future functioning in society. Adolescents who were exposed to bad treatment may suffer from health problems during adulthood, like chronic diseases, psychological disorders, drug addiction, and suicide attempts. Objective: The aim of the project is to assess the relationship between adverse childhood experiences and the sense of efficacy and coping with emotions among teenagers aged 16-18 taking drugs. Material And Methods: The research was carried out in the period from March to December 2018 in Mazowieckie, Świętokrzyskie, Łódzkie, and Lubelskie Voivodship. The group consisted of 600 people aged 16-18 (M=16,58; SD=0, 78), men (63,2%) aged 16-18 (M=16,60;SD= 0,78) and women (35,5%) aged 16-18 (M16,55;SD=0,79). Participants included residents from Youth Educational Centers and Youth Sociotherapy Centers. Each participant filled in Author's Questionnaire, Adverse Childhood Questionnaire, then Courtland Emotional Control Scale-CECS and Generalized Self Efficacy Scale-GSES. Results and conclusions: The most common adverse experiences, according to teenagers, were family abuse, divorce/separation/parent's death, overuse of alcohol or drugs by an inmate, and emotional neglect. Adolescents who suffered from five to twelve adverse experiences had a higher level of depression's control. Adverse childhood experiences have an importance for the level of anger and depression's control among teenagers taking drugs. The greatest importance of the level of anger's control has emotional neglect. A higher level of emotional neglect is linked to a lower ability to control anger. The greatest importance of the level of depression's control has physical abuse and emotional neglect. The higher physical abuse during childhood, and the higher frequency of emotional neglect, the bigger the depression's control. The sense of efficacy in the group of people who suffered from one to four adverse experiences is close to the sense of efficacy that suffered people from five to twelve adverse experiences. The most important factor lowering the sense of one's efficacy was the intensification of sexual abuse. It was confirmed that the intensification and frequency of adverse childhood experiences were higher among women than men. Women also characterized lower anger control and greater depression's control. The authors’ own analyses confirmed the relationship between adverse childhood experiences and the sense of efficacy and coping with emotions among teenagers aged 16-18 taking drugs.Keywords: adolescences, adverse childhood experiences, coping with emotions, drugs
Procedia PDF Downloads 102