Search results for: circular economy model
16976 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-Fed Sesame (Sesamum Indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray, Ethiopia
Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu
Abstract:
Sesame is an important oilseed crop in Ethiopia, which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool, which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validate the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates, 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99, and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99 and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.Keywords: aquacrop model, normalized water productivity, nitrogen fertilizer, canopy cover, sesame
Procedia PDF Downloads 7716975 Physical Characterization of a Watershed for Correlation with Parameters of Thomas Hydrological Model and Its Application in Iber Hidrodinamic Model
Authors: Carlos Caro, Ernest Blade, Nestor Rojas
Abstract:
This study determined the relationship between basic geo-technical parameters and parameters of the hydro logical model Thomas for water balance of rural watersheds, as a methodological calibration application, applicable in distributed models as IBER model, which represents a distributed system simulation models for unsteady flow numerical free surface. There was an exploration in 25 points (on 15 sub) basin of Rio Piedras (Boy.) obtaining soil samples, to which geo-technical characterization was performed by laboratory tests. Thomas model has a physical characterization of the input area by only four parameters (a, b, c, d). Achieve measurable relationship between geo technical parameters and 4 values of hydro logical parameters helps to determine subsurface, underground and surface flow more agile manner. It is intended in this way to reach some solutions regarding limits initial model parameters on the basis of Thomas geo-technical characterization. In hydro geological models of rural watersheds, calibration is an important process in the characterization of the study area. This step can require a significant computational cost and time, especially if the initial values or parameters before calibration are outside of the geo-technical reality. A better approach in these initial values means optimization of these process through a geo-technical materials area, where is obtained an important approach to the study as in the starting range of variation for the calibration parameters.Keywords: distributed hydrology, hydrological and geotechnical characterization, Iber model
Procedia PDF Downloads 52016974 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.Keywords: optimal control, nonlinear systems, state estimation, Kalman filter
Procedia PDF Downloads 20016973 Economic and Environmental Impact of the Missouri Grazing Schools
Authors: C. A. Roberts, S. L. Mascaro, J. R. Gerrish, J. L. Horner
Abstract:
Management-intensive Grazing (MiG) is a practice that rotates livestock through paddocks in a way that best matches the nutrient requirements of the animal to the yield and quality of the pasture. In the USA, MiG has been taught to livestock producers throughout the state of Missouri in 2- and 3-day workshops called “Missouri Grazing Schools.” The economic impact of these schools was quantified using IMPLAN software. The model included hectares of adoption, animal performance, carrying capacity, and input costs. To date, MiG, as taught in the Missouri Grazing Schools, has been implemented on more than 70,000 hectares in Missouri. The economic impact of these schools is presently $125 million USD per year added to the state economy. This magnitude of impact is the result not only of widespread adoption but also because of increased livestock carrying capacity; in Missouri, a capacity increase of 25 to 30% has been well documented. Additional impacts have been MiG improving forage quality and reducing the cost of feed and fertilizer. The environmental impact of MiG in the state of Missouri is currently being estimated. Environmental impact takes into account the reduction in the application of commercial fertilizers; in MiG systems, nitrogen is supplied by N fixation from legumes, and much of the P and K is recycled naturally by well-distributed manure. The environmental impact also estimates carbon sequestration and methane production; MiG can increase carbon sequestration and reduce methane production in comparison to default grazing practices and feedlot operations in the USA.Keywords: agricultural education, forage quality, management-intensive grazing, nutrient cycling, stock density, sustainable agriculture
Procedia PDF Downloads 19916972 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.
Authors: Zabeehullah, Fahim Arif, Yawar Abbas
Abstract:
Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.Keywords: SDN, IoT, DL, ML, DRS
Procedia PDF Downloads 11016971 Integrated Approach Towards Safe Wastewater Reuse in Moroccan Agriculture
Authors: Zakia Hbellaq
Abstract:
The Mediterranean region is considered a hotbed for climate change. Morocco is a semi-arid Mediterranean country facing water shortages and poor water quality. Its limited water resources limit the activities of various economic sectors. Most of Morocco's territory is in arid and desert areas. The potential water resources are estimated at 22 billion m3, which is equivalent to about 700 m3/inhabitant/year, and Morocco is in a state of structural water stress. Strictly speaking, the Kingdom of Morocco is one of the “very riskiest” countries, according to the World Resources Institute (WRI), which oversees the calculation of water stress risk in 167 countries. The surprising results of the Institute (WRI) rank Morocco as one of the riskiest countries in terms of water scarcity, ranking 3.89 out of 5, thus occupying the 23rd place out of a total of 167 countries, which indicates that the demand for water exceeds the available resources. Agriculture with a score of 3.89 is most affected by water stress from irrigation and places a heavy burden on the water table. Irrigation is an unavoidable technical need and has undeniable economic and social benefits given the available resources and climatic conditions. Irrigation, and therefore the agricultural sector, currently uses 86% of its water resources, while industry uses 5.5%. Although its development has undeniable economic and social benefits, it also contributes to the overfishing of most groundwater resources and the surprising decline in levels and deterioration of water quality in some aquifers. In this context, REUSE is one of the proposed solutions to reduce the water footprint of the agricultural sector and alleviate the shortage of water resources. Indeed, wastewater reuse, also known as REUSE (reuse of treated wastewater), is a step forward not only for the circular economy but also for the future, especially in the context of climate change. In particular, water reuse provides an alternative to existing water supplies and can be used to improve water security, sustainability, and resilience. However, given the introduction of organic trace pollutants or, organic micro-pollutants, the absorption of emerging contaminants, and decreasing salinity, it is possible to tackle innovative capabilities to overcome these problems and ensure food and health safety. To this end, attention will be paid to the adoption of an integrated and attractive approach, based on the reinforcement and optimization of the treatments proposed for the elimination of the organic load with particular attention to the elimination of emerging pollutants, to achieve this goal. , membrane bioreactors (MBR) as stand-alone technologies are not able to meet the requirements of WHO guidelines. They will be combined with heterogeneous Fenton processes using persulfate or hydrogen peroxide oxidants. Similarly, adsorption and filtration are applied as tertiary treatment In addition, the evaluation of crop performance in terms of yield, productivity, quality, and safety, through the optimization of Trichoderma sp strains that will be used to increase crop resistance to abiotic stresses, as well as the use of modern omics tools such as transcriptomic analysis using RNA sequencing and methylation to identify adaptive traits and associated genetic diversity that is tolerant/resistant/resilient to biotic and abiotic stresses. Hence, ensuring this approach will undoubtedly alleviate water scarcity and, likewise, increase the negative and harmful impact of wastewater irrigation on the condition of crops and the health of their consumers.Keywords: water scarcity, food security, irrigation, agricultural water footprint, reuse, emerging contaminants
Procedia PDF Downloads 15716970 Improving Ghana's Oil Industry Through Integrated Operations
Authors: Esther Simpson, Evans Addo Tetteh
Abstract:
One of the most important sectors in Ghana’s economy is the oil and gas sector. Effective supply chain management is required to ensure the timely delivery of these products to the end users, given the rise in nationwide demand for petroleum products. Contrarily, freight forwarding plays a crucial role in facilitating intra- and intra-country trade, particularly the movement of oil goods. Nevertheless, there has not been enough scientific study done on how marketing, supply chain management, and freight forwarding are integrated in the oil business. By highlighting possible areas for development in the supply chain management of petroleum products, this article seeks to close this gap. The study was predominantly qualitative and featured semi-structured interviews with influential figures in the oil and gas sector, such as marketers, distributors, freight forwarders, and regulatory organizations. The purpose of the interviews was to determine the difficulties and possibilities for enhancing the management of the petroleum products supply chain. Thematic analysis was used to examine the data obtained in order to find patterns and themes that arose. The findings from the study revealed that the oil sector faced a number of issues in terms of supply chain management. Inadequate infrastructure, insufficient storage facilities, a lack of cooperation among parties, and an inadequate regulatory framework were among the obstacles. Furthermore, the study indicated significant prospects for enhancing petroleum product supply chain management, such as the integration of more advanced digital technologies, the formation of strategic alliances, and the adoption of sustainable practices in petroleum product supply chain management. The study's conclusions have far-reaching ramifications for the oil and gas sector, freight forwarding, and Ghana’s economy as a whole. Marketing, supply chain management, and freight forwarding has high prospects from being integrated to improve the efficiency of the petroleum product supply chain, resulting in considerable cost savings for the industry. Furthermore, the use of sustainable practices will improve the industry's sustainability and lessen the environmental effect of the petroleum product supply chain. Based on the findings, we propose that stakeholders in Ghana’s oil and gas sector work together and collaborate to enhance petroleum supply chain management. This collaboration should include the use of digital technologies, the formation of strategic alliances, and the implementation of sustainable practices. Moreover, we urge that governments establish suitable rules to guarantee the efficient and sustainable management of petroleum product supply chains. In conclusion, the integration and combination of marketing, supply chain management, and freight forwarding in the oil business gives a tremendous opportunity for enhancing petroleum product supply chain management. The study's conclusions have far-reaching ramifications for the sector, freight forwarding, and the economy as a whole. Using sustainable practices, integrating digital technology, and forming strategic alliances will improve the efficiency and sustainability of the petroleum product supply chain. We expect that this conference paper will encourage more study and collaboration among oil and gas sector stakeholders to improve petroleum supply chain management.Keywords: collaboration, logistics, sustainability, supply chain management
Procedia PDF Downloads 8016969 Modeling and Optimization of a Microfluidic Electrochemical Cell for the Electro-Reduction of CO₂ to CH₃OH
Authors: Barzin Rajabloo, Martin Desilets
Abstract:
First, an electrochemical model for the reduction of CO₂ into CH₃OH is developed in which mass and charge transfer, reactions at the surface of the electrodes and fluid flow of the electrolyte are considered. This mathematical model is developed in COMSOL Multiphysics® where both secondary and tertiary current distribution interfaces are coupled to consider concentrations and potentials inside different parts of the cell. Constant reaction rates are assumed as the fitted parameters to minimize the error between experimental data and modeling results. The model is validated through a comparison with experimental data in terms of faradaic efficiency for production of CH₃OH, the current density in different applied cathode potentials as well as current density in different electrolyte flow rates. The comparison between model outputs and experimental measurements shows a good agreement. The model indicates the higher hydrogen evolution in comparison with CH₃OH production as well as mass transfer limitation caused by CO₂ concentration, which are consistent with findings in the literature. After validating the model, in the second part of the study, some design parameters of the cell, such as cathode geometry and catholyte/anolyte channel widths, are modified to reach better performance and higher faradaic efficiency of methanol production.Keywords: carbon dioxide, electrochemical reduction, methanol, modeling
Procedia PDF Downloads 10716968 A Dynamic Neural Network Model for Accurate Detection of Masked Faces
Authors: Oladapo Tolulope Ibitoye
Abstract:
Neural networks have become prominent and widely engaged in algorithmic-based machine learning networks. They are perfect in solving day-to-day issues to a certain extent. Neural networks are computing systems with several interconnected nodes. One of the numerous areas of application of neural networks is object detection. This is a prominent area due to the coronavirus disease pandemic and the post-pandemic phases. Wearing a face mask in public slows the spread of the virus, according to experts’ submission. This calls for the development of a reliable and effective model for detecting face masks on people's faces during compliance checks. The existing neural network models for facemask detection are characterized by their black-box nature and large dataset requirement. The highlighted challenges have compromised the performance of the existing models. The proposed model utilized Faster R-CNN Model on Inception V3 backbone to reduce system complexity and dataset requirement. The model was trained and validated with very few datasets and evaluation results shows an overall accuracy of 96% regardless of skin tone.Keywords: convolutional neural network, face detection, face mask, masked faces
Procedia PDF Downloads 6716967 A Comparative Analysis of ARIMA and Threshold Autoregressive Models on Exchange Rate
Authors: Diteboho Xaba, Kolentino Mpeta, Tlotliso Qejoe
Abstract:
This paper assesses the in-sample forecasting of the South African exchange rates comparing a linear ARIMA model and a SETAR model. The study uses a monthly adjusted data of South African exchange rates with 420 observations. Akaike information criterion (AIC) and the Schwarz information criteria (SIC) are used for model selection. Mean absolute error (MAE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) are error metrics used to evaluate forecast capability of the models. The Diebold –Mariano (DM) test is employed in the study to check forecast accuracy in order to distinguish the forecasting performance between the two models (ARIMA and SETAR). The results indicate that both models perform well when modelling and forecasting the exchange rates, but SETAR seemed to outperform ARIMA.Keywords: ARIMA, error metrices, model selection, SETAR
Procedia PDF Downloads 24216966 The Quality of Management: A Leadership Maturity Model to Leverage Complexity
Authors: Marlene Kuhn, Franziska Schäfer, Heiner Otten
Abstract:
Today´s production processes experience a constant increase in complexity paving new ways for progressive forms of leadership. In the customized production, individual customer requirements drive companies to adapt their manufacturing processes constantly while the pressure for smaller lot sizes, lower costs and faster lead times grows simultaneously. When production processes are becoming more dynamic and complex, the conventional quality management approaches show certain limitations. This paper gives an introduction to complexity science from a quality management perspective. By analyzing and evaluating different characteristics of complexity, the critical complexity parameters are identified and assessed. We found that the quality of leadership plays a crucial role when dealing with increasing complexity. Therefore, we developed a concept for qualitative leadership customized for the management within complex processes based on a maturity model. The maturity model was then applied in the industry to assess the leadership quality of several shop floor managers with a positive evaluation feedback. In result, the maturity model proved to be a sustainable approach to leverage the rising complexity in production processes more effectively.Keywords: maturity model, process complexity, quality of leadership, quality management
Procedia PDF Downloads 36716965 An Exploration of Cyberspace Security, Strategy for a New Era
Authors: Laxmi R. Kasaraneni
Abstract:
The Internet connects all the networks, including the nation’s critical infrastructure that are used extensively by not only a nation’s government and military to protect sensitive information and execute missions, but also the primary infrastructure that provides services that enable modern conveniences such as education, potable water, electricity, natural gas, and financial transactions. It has become the central nervous system for the government, the citizens, and the industries. When it is attacked, the effects can ripple far and wide impacts not only to citizens’ well-being but nation’s economy, civil infrastructure, and national security. As such, these critical services may be targeted by malicious hackers during cyber warfare, it is imperative to not only protect them and mitigate any immediate or potential threats, but to also understand the current or potential impacts beyond the IT networks or the organization. The Nation’s IT infrastructure which is now vital for communication, commerce, and control of our physical infrastructure, is highly vulnerable to attack. While existing technologies can address some vulnerabilities, fundamentally new architectures and technologies are needed to address the larger structural insecurities of an infrastructure developed in a more trusting time when mass cyber attacks were not foreseen. This research is intended to improve the core functions of the Internet and critical-sector information systems by providing a clear path to create a safe, secure, and resilient cyber environment that help stakeholders at all levels of government, and the private sector work together to develop the cybersecurity capabilities that are key to our economy, national security, and public health and safety. This research paper also emphasizes the present and future cyber security threats, the capabilities and goals of cyber attackers, a strategic concept and steps to implement cybersecurity for maximum effectiveness, enabling technologies, some strategic assumptions and critical challenges, and the future of cyberspace.Keywords: critical challenges, critical infrastructure, cyber security, enabling technologies, national security
Procedia PDF Downloads 29416964 Simulation of a Fluid Catalytic Cracking Process
Authors: Sungho Kim, Dae Shik Kim, Jong Min Lee
Abstract:
Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery indusrty. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its nonlinearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flowsheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flowsheet simulator to develop an integrated process model.Keywords: fluid catalytic cracking, simulation, plant data, process design
Procedia PDF Downloads 45216963 Organisational Factors and Total Quality Management Practice in Nigeria Manufacturing Industry: Evidence from Honeywell Flour Mills Plc
Authors: Cornelius Femi Popoola
Abstract:
Nigerian manufacturing industry, particularly the flour producing firms play vital roles in Nigerian economy. This sector’s quality management practice is given a little attention along with organizational factors that hinder successful practice of total quality management which needs to be documented. Honeywell Flour Mills Plc operate in Nigeria with an appreciable number of products that serves this sector of the economy. Internal-external disposition of the company and total quality practice of the company deserve some elucidations. Hence, this study examined the influence of organizational factors on total quality management practice of Nigerian manufacturing industry, using Honeywell Flour Mills Plc as a case study. The study employed the correlational type of descriptive survey research design. The population consisted of 656 staff of Honeywell Flour Mills Plc, out of which 235 members were selected through scientific sampling method developed by Paler-Calmorin and Calmorin. A total of 235 copies of questionnaires titled 'Organisational Factors and Total Quality Management Practices (QF-TQM) Questionnaire' were administered with a response rate of 66 copies returned. The following variables were applied internal organisational factors (IOFs), external organizational factors (EOFs) and total quality management (TQM). Data generated were analysed using frequency distribution and regression analysis at 0.05 level. The findings revealed that IOFs positively and significantly related with TQM (r = .147**, N= 64, P(.000) < .01). Also, EOFs negatively and significantly related with TQM (r = -.117, N= 64, P(.000) < .01). Findings showed that internal and external organizational factors jointly influenced TQM practiced in F₍₂,₆₁₎=22.250; R²=.629; Adj.R²=.603; P(.000) < .05). The study concluded that organizational factors are determinants of TQM practice in Nigerian manufacturing industry. It is recommended that both internal and external organizational factors influencing TQM practices should be considered in the development of TQM strategies.Keywords: external organizational factors, internal organisational factors, Nigerian manufacturing industry, total quality management
Procedia PDF Downloads 30816962 Neuron Dynamics of Single-Compartment Traub Model for Hardware Implementations
Authors: J. C. Moctezuma, V. Breña-Medina, Jose Luis Nunez-Yanez, Joseph P. McGeehan
Abstract:
In this work we make a bifurcation analysis for a single compartment representation of Traub model, one of the most important conductance-based models. The analysis focus in two principal parameters: current and leakage conductance. Study of stable and unstable solutions are explored; also Hop-bifurcation and frequency interpretation when current varies is examined. This study allows having control of neuron dynamics and neuron response when these parameters change. Analysis like this is particularly important for several applications such as: tuning parameters in learning process, neuron excitability tests, measure bursting properties of the neuron, etc. Finally, a hardware implementation results were developed to corroborate these results.Keywords: Traub model, Pinsky-Rinzel model, Hopf bifurcation, single-compartment models, bifurcation analysis, neuron modeling
Procedia PDF Downloads 32116961 Development of Groundwater Management Model Using Groundwater Sustainability Index
Authors: S. S. Rwanga, J. M. Ndambuki, Y. Woyessa
Abstract:
Development of a groundwater management model is an important step in the exploitation and management of any groundwater aquifer as it assists in the long-term sustainable planning of the resource. The current study was conducted in Central Limpopo province of South Africa with the overall objective of determining how much water can be withdrawn from the aquifer without producing nonreversible impacts on the groundwater quantity, hence developing a model which can sustainably protect the aquifer. The development was done through the computation of Groundwater Sustainability Index (GSI). Values of GSI close to unity and above indicated overexploitation. In this study, an index of 0.8 was considered as overexploitation. The results indicated that there is potential for higher abstraction rates compared to the current abstraction rates. GSI approach can be used in the management of groundwater aquifer to sustainably develop the resource and also provides water managers and policy makers with fundamental information on where future water developments can be carried out.Keywords: development, groundwater, groundwater sustainability index, model
Procedia PDF Downloads 16716960 Residual Life Estimation Based on Multi-Phase Nonlinear Wiener Process
Authors: Hao Chen, Bo Guo, Ping Jiang
Abstract:
Residual life (RL) estimation based on multi-phase nonlinear Wiener process was studied in this paper, which is significant for complicated products with small samples. Firstly, nonlinear Wiener model with random parameter was introduced and multi-phase nonlinear Wiener model was proposed to model degradation process of products that were nonlinear and separated into different phases. Then the multi-phase RL probability density function based on the presented model was derived approximately in a closed form and parameters estimation was achieved with the method of maximum likelihood estimation (MLE). Finally, the method was applied to estimate the RL of high voltage plus capacitor. Compared with the other three different models by log-likelihood function (Log-LF) and Akaike information criterion (AIC), the results show that the proposed degradation model can capture degradation process of high voltage plus capacitors in a better way and provide a more reliable result.Keywords: multi-phase nonlinear wiener process, residual life estimation, maximum likelihood estimation, high voltage plus capacitor
Procedia PDF Downloads 45216959 Improvement of Central Composite Design in Modeling and Optimization of Simulation Experiments
Authors: A. Nuchitprasittichai, N. Lerdritsirikoon, T. Khamsing
Abstract:
Simulation modeling can be used to solve real world problems. It provides an understanding of a complex system. To develop a simplified model of process simulation, a suitable experimental design is required to be able to capture surface characteristics. This paper presents the experimental design and algorithm used to model the process simulation for optimization problem. The CO2 liquefaction based on external refrigeration with two refrigeration circuits was used as a simulation case study. Latin Hypercube Sampling (LHS) was purposed to combine with existing Central Composite Design (CCD) samples to improve the performance of CCD in generating the second order model of the system. The second order model was then used as the objective function of the optimization problem. The results showed that adding LHS samples to CCD samples can help capture surface curvature characteristics. Suitable number of LHS sample points should be considered in order to get an accurate nonlinear model with minimum number of simulation experiments.Keywords: central composite design, CO2 liquefaction, latin hypercube sampling, simulation-based optimization
Procedia PDF Downloads 16416958 The Impact of Trade on Stock Market Integration of Emerging Markets
Authors: Anna M. Pretorius
Abstract:
The emerging markets category for portfolio investment was introduced in 1986 in an attempt to promote capital market development in less developed countries. Investors traditionally diversified their portfolios by investing in different developed markets. However, high growth opportunities forced investors to consider emerging markets as well. Examples include the rapid growth of the “Asian Tigers” during the 1980s, growth in Latin America during the 1990s and the increased interest in emerging markets during the global financial crisis. As such, portfolio flows to emerging markets have increased substantially. In 2002 7% of all equity allocations from advanced economies went to emerging markets; this increased to 20% in 2012. The stronger links between advanced and emerging markets led to increased synchronization of asset price movements. This increased level of stock market integration for emerging markets is confirmed by various empirical studies. Against the background of increased interest in emerging market assets and the increasing level of integration of emerging markets, this paper focuses on the determinants of stock market integration of emerging market countries. Various studies have linked the level of financial market integration with specific economic variables. These variables include: economic growth, local inflation, trade openness, local investment, budget surplus/ deficit, market capitalization, domestic bank credit, domestic institutional and legal environment and world interest rates. The aim of this study is to empirically investigate to what extent trade-related determinants have an impact on stock market integration. The panel data sample include data of 16 emerging market countries: Brazil, Chile, China, Colombia, Czech Republic, Hungary, India, Malaysia, Pakistan, Peru, Philippines, Poland, Russian Federation, South Africa, Thailand and Turkey for the period 1998-2011. The integration variable for each emerging stock market is calculated as the explanatory power of a multi-factor model. These factors are extracted from a large panel of global stock market returns. Trade related explanatory variables include: exports as percentage of GDP, imports as percentage of GDP and total trade as percentage of GDP. Other macroeconomic indicators – such as market capitalisation, the size of the budget deficit and the effectiveness of the regulation of the securities exchange – are included in the regressions as control variables. An initial analysis on a sample of developed stock markets could not identify any significant determinants of stock market integration. Thus the macroeconomic variables identified in the literature are much more significant in explaining stock market integration of emerging markets than stock market integration of developed markets. The three trade variables are all statistically significant at a 5% level. The market capitalisation variable is also significant while the regulation variable is only marginally significant. The global financial crisis has highlighted the urgency to better understand the link between the financial and real sectors of the economy. This paper comes to the important finding that, apart from the level of market capitalisation (as financial indicator), trade (representative of the real economy) is a significant determinant of stock market integration of countries not yet classified as developed economies.Keywords: emerging markets, financial market integration, panel data, trade
Procedia PDF Downloads 30616957 Solar-Plasma Reactors for a Zero-Emission Economy
Authors: Dassou Nagassou
Abstract:
Recent increase in frequency and severity of climatic impacts throughout the world has put a particular emphasis on the urgency to address the anthropogenic greenhouse gas emissions. The latter, mainly composed of carbon dioxide are responsible for the global warming of planet earth. Despite efforts to transition towards a zero-emission economy, manufacturing industries, electricity generation power plants, and transportation sectors continue to encounter challenges which hinder their progress towards a full decarbonization. The growing energy demand from both developed and under-developed economies exacerbates the situation and as a result, more carbon dioxide is discharged into the atmosphere. This situation imposes a lot of constraints on industries which are involved i.e., manufacturing industries, transportation, and electricity generation which must navigate the stringent environmental regulations in order to remain profitable. Existing solutions such as energy efficiencies, green materials (life cycle analysis), and many more have fallen short to address the problem due to their inadaptation to existing infrastructures, low efficiencies, and prohibitive costs. The proposed technology exploits the synergistic interaction between solar radiation and plasma to boost a direct decomposition of the molecules of carbon dioxide while producing alternative fuels which can be used to sustain on-site high-temperature processes via 100% solar energy harvesting in the form of photons and electricity. The advantages of this technology and its ability to be easily integrated into existing systems make it appealing for the industry which can now afford to fast track on the path towards full decarbonization, thanks to the solar plasma reactor. Despite the promising experimental results which proved the viability of this concept, solar-plasma reactors require further investigations to understand the synergistic interactions between plasma and solar radiation for a potential technology scale-up.Keywords: solar, non-equilibrium, plasma, reactor, greenhouse-gases, solar-fuels
Procedia PDF Downloads 5716956 An Assessment of the Temperature Change Scenarios Using RS and GIS Techniques: A Case Study of Sindh
Authors: Jan Muhammad, Saad Malik, Fadia W. Al-Azawi, Ali Imran
Abstract:
In the era of climate variability, rising temperatures are the most significant aspect. In this study PRECIS model data and observed data are used for assessing the temperature change scenarios of Sindh province during the first half of present century. Observed data from various meteorological stations of Sindh are the primary source for temperature change detection. The current scenario (1961–1990) and the future one (2010-2050) are acted by the PRECIS Regional Climate Model at a spatial resolution of 25 * 25 km. Regional Climate Model (RCM) can yield reasonably suitable projections to be used for climate-scenario. The main objective of the study is to map the simulated temperature as obtained from climate model-PRECIS and their comparison with observed temperatures. The analysis is done on all the districts of Sindh in order to have a more precise picture of temperature change scenarios. According to results the temperature is likely to increases by 1.5 - 2.1°C by 2050, compared to the baseline temperature of 1961-1990. The model assesses more accurate values in northern districts of Sindh as compared to the coastal belt of Sindh. All the district of the Sindh province exhibit an increasing trend in the mean temperature scenarios and each decade seems to be warmer than the previous one. An understanding of the change in temperatures is very vital for various sectors such as weather forecasting, water, agriculture, and health, etc.Keywords: PRECIS Model, real observed data, Arc GIS, interpolation techniques
Procedia PDF Downloads 24816955 Hydrodynamics of Dual Hybrid Impeller of Stirred Reactor Using Radiotracer
Authors: Noraishah Othman, Siti K. Kamarudin, Norinsan K. Othman, Mohd S. Takriff, Masli I. Rosli, Engku M. Fahmi, Mior A. Khusaini
Abstract:
The present work describes hydrodynamics of mixing characteristics of two dual hybrid impeller consisting of, radial and axial impeller using radiotracer technique. Type A mixer, a Rushton turbine is mounted above a Pitched Blade Turbine (PBT) at common shaft and Type B mixer, a Rushton turbine is mounted below PBT. The objectives of this paper are to investigate the residence time distribution (RTD) of two hybrid mixers and to represent the respective mixers by RTD model. Each type of mixer will experience five radiotracer experiments using Tc99m as source of tracer and scintillation detectors NaI(Tl) are used for tracer detection. The results showed that mixer in parallel model and mixers in series with exchange can represent the flow model in mixer A whereas only mixer in parallel model can represent Type B mixer well than other models. In conclusion, Type A impeller, Rushton impeller above PBT, reduced the presence of dead zone in the mixer significantly rather than Type B.Keywords: hybrid impeller, residence time distribution (RTD), radiotracer experiments, RTD model
Procedia PDF Downloads 35716954 A Mathematical Agent-Based Model to Examine Two Patterns of Language Change
Authors: Gareth Baxter
Abstract:
We use a mathematical model of language change to examine two recently observed patterns of language change: one in which most speakers change gradually, following the mean of the community change, and one in which most individuals use predominantly one variant or another, and change rapidly if they change at all. The model is based on Croft’s Utterance Selection account of language change, which views language change as an evolutionary process, in which different variants (different ‘ways of saying the same thing’) compete for usage in a population of speakers. Language change occurs when a new variant replaces an older one as the convention within a given population. The present model extends a previous simpler model to include effects related to speaker aging and interspeaker variation in behaviour. The two patterns of individual change (one more centralized and the other more polarized) were recently observed in historical language changes, and it was further observed that slower changes were more associated with the centralized pattern, while quicker changes were more polarized. Our model suggests that the two patterns of change can be explained by different balances between the preference of speakers to use one variant over another and the degree of accommodation to (propensity to adapt towards) other speakers. The correlation with the rate of change appears naturally in our model, and results from the fact that both differential weighting of variants and the degree of accommodation affect the time for change to occur, while also determining the patterns of change. This work represents part of an ongoing effort to examine phenomena in language change through the use of mathematical models. This offers another way to evaluate qualitative explanations that cannot be practically tested (or cannot be tested at all) in a real-world, large-scale speech community.Keywords: agent based modeling, cultural evolution, language change, social behavior modeling, social influence
Procedia PDF Downloads 23316953 Effects of Screen Time on Children from a Systems Engineering Perspective
Authors: Misagh Faezipour
Abstract:
This paper explores the effects of screen time on children from a systems engineering perspective. We reviewed literature from several related works on the effects of screen time on children to explore all factors and interrelationships that would impact children that are subjected to using long screen times. Factors such as kids' age, parent attitudes, parent screen time influence, amount of time kids spend with technology, psychosocial and physical health outcomes, reduced mental imagery, problem-solving and adaptive thinking skills, obesity, unhealthy diet, depressive symptoms, health problems, disruption in sleep behavior, decrease in physical activities, problematic relationship with mothers, language, social, emotional delays, are examples of some factors that could be either a cause or effect of screen time. A systems engineering perspective is used to explore all the factors and factor relationships that were discovered through literature. A causal model is used to illustrate a graphical representation of these factors and their relationships. Through the causal model, the factors with the highest impacts can be realized. Future work would be to develop a system dynamics model to view the dynamic behavior of the relationships and observe the impact of changes in different factors in the model. The different changes on the input of the model, such as a healthier diet or obesity rate, would depict the effect of the screen time in the model and portray the effect on the children’s health and other factors that are important, which also works as a decision support tool.Keywords: children, causal model, screen time, systems engineering, system dynamics
Procedia PDF Downloads 14316952 Erosion Modeling of Surface Water Systems for Long Term Simulations
Authors: Devika Nair, Sean Bellairs, Ken Evans
Abstract:
Flow and erosion modeling provides an avenue for simulating the fine suspended sediment in surface water systems like streams and creeks. Fine suspended sediment is highly mobile, and many contaminants that may have been released by any sort of catchment disturbance attach themselves to these sediments. Therefore, a knowledge of fine suspended sediment transport is important in assessing contaminant transport. The CAESAR-Lisflood Landform Evolution Model, which includes a hydrologic model (TOPMODEL) and a hydraulic model (Lisflood), is being used to assess the sediment movement in tropical streams on account of a disturbance in the catchment of the creek and to determine the dynamics of sediment quantity in the creek through the years by simulating the model for future years. The accuracy of future simulations depends on the calibration and validation of the model to the past and present events. Calibration and validation of the model involve finding a combination of parameters of the model, which, when applied and simulated, gives model outputs similar to those observed for the real site scenario for corresponding input data. Calibrating the sediment output of the CAESAR-Lisflood model at the catchment level and using it for studying the equilibrium conditions of the landform is an area yet to be explored. Therefore, the aim of the study was to calibrate the CAESAR-Lisflood model and then validate it so that it could be run for future simulations to study how the landform evolves over time. To achieve this, the model was run for a rainfall event with a set of parameters, plus discharge and sediment data for the input point of the catchment, to analyze how similar the model output would behave when compared with the discharge and sediment data for the output point of the catchment. The model parameters were then adjusted until the model closely approximated the real site values of the catchment. It was then validated by running the model for a different set of events and checking that the model gave similar results to the real site values. The outcomes demonstrated that while the model can be calibrated to a greater extent for hydrology (discharge output) throughout the year, the sediment output calibration may be slightly improved by having the ability to change parameters to take into account the seasonal vegetation growth during the start and end of the wet season. This study is important to assess hydrology and sediment movement in seasonal biomes. The understanding of sediment-associated metal dispersion processes in rivers can be used in a practical way to help river basin managers more effectively control and remediate catchments affected by present and historical metal mining.Keywords: erosion modelling, fine suspended sediments, hydrology, surface water systems
Procedia PDF Downloads 8316951 Engine with Dual Helical Crankshaft System Operating at an Overdrive Gear Ratio
Authors: Anierudh Vishwanathan
Abstract:
This paper suggests a new design of the crankshaft system that would help to use a low revving engine for applications requiring the use of a high revving engine operating at the same power by converting the extra or unnecessary torque obtained from a low revving engine into angular velocity of the crankshaft of the engine hence, improve the fuel economy of the vehicle because of the fact that low revving engines run more effectively on lean air fuel mixtures accompanied with less wear and tear of the engine due to lesser rubbing of the piston rings with the cylinder walls. If the crankshaft with the proposed design is used in a low revving engine, then it will give the same torque and speed as that given by a high revving engine operating at the same power but the new engine will give better fuel economy. Hence the new engine will give the benefits of a low revving engine as well as a high revving engine. The proposed crankshaft design will be achieved by changing the design of the crankweb in such a way that it functions both as a counterweight as well as a helical gear that can transfer power to the secondary gear shaft which will be incorporated in the crankshaft system. The crankshaft and the secondary gear shaft will be operating at an overdrive ratio. The crankshaft will now be a two shaft system instead of a single shaft system. The newly designed crankshaft will be mounted on the bearings instead of being connected to the flywheel of the engine. This newly designed crankshaft will transmit power to the secondary shaft which will rotate the flywheel and then the rotary motion will be transmitted to the transmission system as usual. In this design, the concept of power transmission will be incorporated in the crankshaft system. In the paper, the crankshaft and the secondary shafts have been designed in such a way that at any instant of time only half the number of crankwebs will be meshed with the secondary shaft. For example, during one revolution of the crankshaft, if for the first half of revolution; first, second, seventh and eighth crankwebs are meshing with the secondary shaft then for the next half revolution, third, fourth, fifth and sixth crankwebs will mesh with the secondary shaft. This paper also analyses the proposed crankshaft design for safety against fatigue failure. Finite element analysis of the crankshaft has been done and the resultant stresses have been calculated.Keywords: low revving, high revving, secondary shaft, partial meshing
Procedia PDF Downloads 26716950 Modeling and Optimization of Micro-Grid Using Genetic Algorithm
Authors: Mehrdad Rezaei, Reza Haghmaram, Nima Amjadi
Abstract:
This paper proposes an operating and cost optimization model for micro-grid (MG). This model takes into account emission costs of NOx, SO2, and CO2, together with the operation and maintenance costs. Wind turbines (WT), photovoltaic (PV) arrays, micro turbines (MT), fuel cells (FC), diesel engine generators (DEG) with different capacities are considered in this model. The aim of the optimization is minimizing operation cost according to constraints, supply demand and safety of the system. The proposed genetic algorithm (GA), with the ability to fine-tune its own settings, is used to optimize the micro-grid operation.Keywords: micro-grid, optimization, genetic algorithm, MG
Procedia PDF Downloads 50916949 Buckling Analysis of Laminated Composite Plates with Central Holes
Authors: Pratyasha Patnaik, A. V. Asha
Abstract:
Laminated composite plates are made up of plates consisting of layers bonded together and made up of materials chemically different from each other but combined macroscopically. These have an application in aircrafts, railway coaches, bridges etc. because they are easy to handle, have got improved properties and the cost of their fabrication is low. But their failure can lead to catastrophic disasters. And generally, the failure of these structures is due to the combined effect of excessive stresses on it and buckling. Hence, the buckling behavior of these kinds of plates should be analyzed properly. Holes are provided either at the center or elsewhere in the laminar plates for the purpose of pipes for electric cables or other purposes. Due to the presence of holes in the plates, the stress concentration is near to the holes and the stiffness of the plates is reduced. In this study, the effect of a cut-out, its shape, different boundary conditions, length/thickness ratio, stacking sequence, and ply orientation has been studied. The analysis was carried out with laminated composite plates with circular, square and triangular cut-outs. Results show the effect of different cut-out shapes, boundary conditions, the orientation of layers and length/thickness ratio of the buckling loadKeywords: buckling, composite plates, cut-out, stress
Procedia PDF Downloads 32816948 Effective Emergency Response and Disaster Prevention: A Decision Support System for Urban Critical Infrastructure Management
Authors: M. Shahab Uddin, Pennung Warnitchai
Abstract:
Currently more than half of the world’s populations are living in cities, and the number and sizes of cities are growing faster than ever. Cities rely on the effective functioning of complex and interdependent critical infrastructures networks to provide public services, enhance the quality of life, and save the community from hazards and disasters. In contrast, complex connectivity and interdependency among the urban critical infrastructures bring management challenges and make the urban system prone to the domino effect. Unplanned rapid growth, increased connectivity, and interdependency among the infrastructures, resource scarcity, and many other socio-political factors are affecting the typical state of an urban system and making it susceptible to numerous sorts of diversion. In addition to internal vulnerabilities, urban systems are consistently facing external threats from natural and manmade hazards. Cities are not just complex, interdependent system, but also makeup hubs of the economy, politics, culture, education, etc. For survival and sustainability, complex urban systems in the current world need to manage their vulnerabilities and hazardous incidents more wisely and more interactively. Coordinated management in such systems makes for huge potential when it comes to absorbing negative effects in case some of its components were to function improperly. On the other hand, ineffective management during a similar situation of overall disorder from hazards devastation may make the system more fragile and push the system to an ultimate collapse. Following the quantum, the current research hypothesizes that a hazardous event starts its journey as an emergency, and the system’s internal vulnerability and response capacity determine its destination. Connectivity and interdependency among the urban critical infrastructures during this stage may transform its vulnerabilities into dynamic damaging force. An emergency may turn into a disaster in the absence of effective management; similarly, mismanagement or lack of management may lead the situation towards a catastrophe. Situation awareness and factual decision-making is the key to win a battle. The current research proposed a contextual decision support system for an urban critical infrastructure system while integrating three different models: 1) Damage cascade model which demonstrates damage propagation among the infrastructures through their connectivity and interdependency, 2) Restoration model, a dynamic restoration process of individual infrastructure, which is based on facility damage state and overall disruptions in surrounding support environment, and 3) Optimization model that ensures optimized utilization and distribution of available resources in and among the facilities. All three models are tightly connected, mutually interdependent, and together can assess the situation and forecast the dynamic outputs of every input. Moreover, this integrated model will hold disaster managers and decision makers responsible when it comes to checking all the alternative decision before any implementation, and support to produce maximum possible outputs from the available limited inputs. This proposed model will not only support to reduce the extent of damage cascade but will ensure priority restoration and optimize resource utilization through adaptive and collaborative management. Complex systems predictably fail but in unpredictable ways. System understanding, situation awareness, and factual decisions may significantly help urban system to survive and sustain.Keywords: disaster prevention, decision support system, emergency response, urban critical infrastructure system
Procedia PDF Downloads 22616947 Optimism and Entrepreneurial Intentions: The Mediating Role of Emotional Intelligence
Authors: Neta Kela Madar, Tali Teeni-Harari, Tamar Icekson, Yaron Sela
Abstract:
This paper proposes and empirically tests a theoretical model positing relationships between dispositional optimism, emotional intelligence, and entrepreneurial intention. To author's best knowledge, this study examined for the first time the role of dispositional optimism together with emotional intelligence as predictors of entrepreneurial intentions. The study findings suggest that optimism may increase entrepreneurial intentions indirectly by enhancing emotional intelligence/ model formulation is based on a random survey of students (N= 227). Model parameter estimation was supported by Structural Equation Modeling (SEM). Results indicate that students’ optimism and emotional intelligence are associated with increased levels of entrepreneurial intention. Additionally, the present study argues that emotional intelligence mediates the positive relationship between optimism and entrepreneurial intention. Theoretical and practical implications of this model are discussed.Keywords: entrepreneurial intentions, emotional intelligence, optimism, dispositional optimism
Procedia PDF Downloads 225