Search results for: graph operations
82 The Relationships between Sustainable Supply Chain Management Practices, Digital Transformation, and Enterprise Performance in Vietnam
Authors: Thi Phuong Pham
Abstract:
This paper explores the intricate relationships between Sustainable Supply Chain Management (SSCM) practices, digital transformation (DT), and enterprise performance within the context of Vietnam. Over the past two decades, there has been a paradigm shift in supply chain management, with sustainability gaining prominence due to increasing concerns about climate change, labor practices, and the environmental impact of business operations. In the ever-evolving realm of global business, sustainability and digital transformation (DT) intersecting dynamics have become pivotal catalysts for organizational success. This research investigates how integrating SSCM with DT can enhance enterprise performance, a subject of significant relevance as Vietnam undergoes rapid economic growth and digital transformation. The primary objectives of this research are twofold: (1) to examine the effects of SSCM practices on enterprise performance in three critical aspects: economic, environmental, and social performance in Vietnam and (2) to explore the mediating role of DT in this relationship. By analyzing these dynamics, the study aims to provide valuable insights for policymakers and the academic community regarding the potential benefits of aligning SSCM principles with digital technologies. To achieve these objectives, the research employs a robust mixed-method approach. The research begins with a comprehensive literature review to establish a theoretical framework that underpins the empirical analysis. Data collection was conducted through a structured survey targeting Vietnamese enterprises, with the survey instrument designed to measure SSCM practices, DT, and enterprise performance using a five-point Likert scale. The reliability and validity of the survey were ensured by pre-testing with industry practitioners and refining the questionnaire based on their feedback. For data analysis, structural equation modeling (SEM) was employed to quantify the direct effects of SSCM on enterprise performance, while mediation analysis using the PROCESS Macro 4.0 in SPSS was conducted to assess the mediating role of DT. The findings reveal that SSCM practices positively influence enterprise performance by enhancing operational efficiency, reducing costs, and improving sustainability metrics. Furthermore, DT acts as a significant mediator, amplifying the positive impacts of SSCM practices through improved data management, enhanced communication, and more agile supply chain processes. These results underscore the critical role of DT in maximizing the benefits of SSCM practices, particularly in a developing economy like Vietnam. This research contributes to the existing body of knowledge by highlighting the synergistic effects of SSCM and DT on enterprise performance. It offers practical implications for businesses that enhance their sustainability and digital capabilities, providing a roadmap for integrating these two pivotal aspects to achieve competitive advantage. The study's insights can also inform governmental policies designed to foster sustainable economic growth and digital innovation in Vietnam.Keywords: sustainable supply chain management, digital transformation, enterprise performance, Vietnam
Procedia PDF Downloads 2381 Distribution Routs Redesign through the Vehicle Problem Routing in Havana Distribution Center
Authors: Sonia P. Marrero Duran, Lilian Noya Dominguez, Lisandra Quintana Alvarez, Evert Martinez Perez, Ana Julia Acevedo Urquiaga
Abstract:
Cuban business and economic policy are in the constant update as well as facing a client ever more knowledgeable and demanding. For that reason become fundamental for companies competitiveness through the optimization of its processes and services. One of the Cuban’s pillars, which has been sustained since the triumph of the Cuban Revolution back in 1959, is the free health service to all those who need it. This service is offered without any charge under the concept of preserving human life, but it implied costly management processes and logistics services to be able to supply the necessary medicines to all the units who provide health services. One of the key actors on the medicine supply chain is the Havana Distribution Center (HDC), which is responsible for the delivery of medicines in the province; as well as the acquisition of medicines from national and international producers and its subsequent transport to health care units and pharmacies in time, and with the required quality. This HDC also carries for all distribution centers in the country. Given the eminent need to create an actor in the supply chain that specializes in the medicines supply, the possibility of centralizing this operation in a logistics service provider is analyzed. Based on this decision, pharmacies operate as clients of the logistic service center whose main function is to centralize all logistics operations associated with the medicine supply chain. The HDC is precisely the logistic service provider in Havana and it is the center of this research. In 2017 the pharmacies had affectations in the availability of medicine due to deficiencies in the distribution routes. This is caused by the fact that they are not based on routing studies, besides the long distribution cycle. The distribution routs are fixed, attend only one type of customer and there respond to a territorial location by the municipality. Taking into consideration the above-mentioned problem, the objective of this research is to optimize the routes system in the Havana Distribution Center. To accomplish this objective, the techniques applied were document analysis, random sampling, statistical inference and tools such as Ishikawa diagram and the computerized software’s: ArcGis, Osmand y MapIfnfo. As a result, were analyzed four distribution alternatives; the actual rout, by customer type, by the municipality and the combination of the two last. It was demonstrated that the territorial location alternative does not take full advantage of the transportation capacities or the distance of the trips, which leads to elevated costs breaking whit the current ways of distribution and the currents characteristics of the clients. The principal finding of the investigation was the optimum option distribution rout is the 4th one that is formed by hospitals and the join of pharmacies, stomatology clinics, polyclinics and maternal and elderly homes. This solution breaks the territorial location by the municipality and permits different distribution cycles in dependence of medicine consumption and transport availability.Keywords: computerized geographic software, distribution, distribution routs, vehicle problem routing (VPR)
Procedia PDF Downloads 15980 Integrating the Principles of Sustainability and Corporate Social Responsibility (CSR): By Engaging the India Inc. With Sustainable Development Goals (SDGs)
Authors: Radhika Ralhan
Abstract:
With the formalization of 2030, Global Agenda for Sustainable Development nations have instantaneously geared up their efforts towards the implementation of a comprehensive list of global goals. The criticality of Sustainable Development Goals (SDGs) is imperative, as it will define the course and pace of development for the next 15 years. This development will entail transformational shifts towards a green and inclusive growth. Leadership, investments and technology will constitute as key ingredients of this transformational shift and governance will emerge as a one of the most significant driver of the global 2030 agenda. Corporate Governance is viewed as one of the key force to accelerate the momentum of SDGs and initiate these transformational shifts. Many senior level leaders have reinstated their conviction that adopting a triple bottom line approach will play an imperative role in transforming the entire industrial sector. In the Indian context, the above occurrence bears an intriguing facet, as the framing of SDGs in the global scenario coincided with the emergence of mandatory Corporate Social Responsibility (CSR) Rules in India at national level. As one of the leading democracies in the world, India is among few countries to formally mandate companies to spend 2% from their CSR funds under Section 135 of The New Companies Act 2013. The overarching framework of SDGs correlates to the areas of CSR interventions as mentioned in the Schedule VII of Section 135. As one of the legitimate stakeholders, business leaders have expressed their commitments to their respective governments, to reorient the entire fabric of their companies to scale up global priorities. This is explicitly seen in the case of India where leading business entities have converged national government priorities of Clean India, Make in India and Skill India by actively participating in the campaigns and incorporating these programmes within the ambit of their CSR policies. However, the CSR Act has received mixed responses with associated concerns such as the onus of doing what the government has to do, mandatory reporting mechanisms, policy disclosures, personnel handling CSR portfolios etc. The overall objective of the paper, therefore, rests in analyzing the discourse of CSR and the perspectives of Indian Inc. in imbibing the principles of SDGs within their business polices and operations. Through primary and secondary research analysis, the paper attempts to outline the diverse challenges that are being faced by Indian businesses while establishing the business case of sustainable responsibility. Some of the principal questions that paper addresses are: What are the SDG priorities for India Inc. as per their respective industry sectors? How can corporate policies imbibe the SDGs principles? How can the global concerns in form of SDGs align with the national CSR mandate and development issues? What initiatives have been undertaken by the companies to integrate their long term business strategy and sustainability? The paper will also reinstate an approach or a way forward that will enable businesses to proceed beyond compliance and accentuate the principles of responsibility and transparency within their operational framework.Keywords: corporate social responsibility, CSR, India Inc., section 135, new companies act 2013, sustainable development goals, SDGs, sustainability, corporate governance
Procedia PDF Downloads 25179 Water Ingress into Underground Mine Voids in the Central Rand Goldfields Area, South Africa-Fluid Induced Seismicity
Authors: Artur Cichowicz
Abstract:
The last active mine in the Central Rand Goldfields area (50 km x 15 km) ceased operations in 2008. This resulted in the closure of the pumping stations, which previously maintained the underground water level in the mining voids. As a direct consequence of the water being allowed to flood the mine voids, seismic activity has increased directly beneath the populated area of Johannesburg. Monitoring of seismicity in the area has been on-going for over five years using the network of 17 strong ground motion sensors. The objective of the project is to improve strategies for mine closure. The evolution of the seismicity pattern was investigated in detail. Special attention was given to seismic source parameters such as magnitude, scalar seismic moment and static stress drop. Most events are located within historical mine boundaries. The seismicity pattern shows a strong relationship between the presence of the mining void and high levels of seismicity; no seismicity migration patterns were observed outside the areas of old mining. Seven years after the pumping stopped, the evolution of the seismicity has indicated that the area is not yet in equilibrium. The level of seismicity in the area appears to not be decreasing over time since the number of strong events, with Mw magnitudes above 2, is still as high as it was when monitoring began over five years ago. The average rate of seismic deformation is 1.6x1013 Nm/year. Constant seismic deformation was not observed over the last 5 years. The deviation from the average is in the order of 6x10^13 Nm/year, which is a significant deviation. The variation of cumulative seismic moment indicates that a constant deformation rate model is not suitable. Over the most recent five year period, the total cumulative seismic moment released in the Central Rand Basin was 9.0x10^14 Nm. This is equivalent to one earthquake of magnitude 3.9. This is significantly less than what was experienced during the mining operation. Characterization of seismicity triggered by a rising water level in the area can be achieved through the estimation of source parameters. Static stress drop heavily influences ground motion amplitude, which plays an important role in risk assessments of potential seismic hazards in inhabited areas. The observed static stress drop in this study varied from 0.05 MPa to 10 MPa. It was found that large static stress drops could be associated with both small and large events. The temporal evolution of the inter-event time provides an understanding of the physical mechanisms of earthquake interaction. Changes in the characteristics of the inter-event time are produced when a stress change is applied to a group of faults in the region. Results from this study indicate that the fluid-induced source has a shorter inter-event time in comparison to a random distribution. This behaviour corresponds to a clustering of events, in which short recurrence times tend to be close to each other, forming clusters of events.Keywords: inter-event time, fluid induced seismicity, mine closure, spectral parameters of seismic source
Procedia PDF Downloads 28378 E-Governance: A Key for Improved Public Service Delivery
Authors: Ayesha Akbar
Abstract:
Public service delivery has witnessed a significant improvement with the integration of information communication technology (ICT). It not only improves management structure with advanced technology for surveillance of service delivery but also provides evidence for informed decisions and policy. Pakistan’s public sector organizations have not been able to produce some good results to ensure service delivery. Notwithstanding, some of the public sector organizations in Pakistan has diffused modern technology and proved their credence by providing better service delivery standards. These good indicators provide sound basis to integrate technology in public sector organizations and shift of policy towards evidence based policy making. Rescue-1122 is a public sector organization which provides emergency services and proved to be a successful model for the provision of service delivery to save human lives and to ensure human development in Pakistan. The information about the organization has been received by employing qualitative research methodology. The information is broadly based on primary and secondary sources which includes Rescue-1122 website, official reports of organizations; UNDP (United Nation Development Program), WHO (World Health Organization) and by conducting 10 in-depth interviews with the high administrative staff of organizations who work in the Lahore offices. The information received has been incorporated with the study for the better understanding of the organization and their management procedures. Rescue-1122 represents a successful model in delivering the services in an efficient way to deal with the disaster management. The management of Rescue has strategized the policies and procedures in such a way to develop a comprehensive model with the integration of technology. This model provides efficient service delivery as well as maintains the standards of the organization. The service delivery model of rescue-1122 works on two fronts; front-office interface and the back-office interface. Back-office defines the procedures of operations and assures the compliance of the staff whereas, front-office equipped with the latest technology and good infrastructure handles the emergency calls. Both ends are integrated with satellite based vehicle tracking, wireless system, fleet monitoring system and IP camera which monitors every move of the staff to provide better services and to pinpoint the distortions in the services. The standard time of reaching to the emergency spot is 7 minutes, and during entertaining the case; driver‘s behavior, traffic volume and the technical assistance being provided to the emergency case is being monitored by front-office. Then the whole information get uploaded to the main dashboard of Lahore headquarter from the provincial offices. The latest technology is being materialized by Rescue-1122 for delivering the efficient services, investigating the flaws; if found, and to develop data to make informed decision making. The other public sector organizations of Pakistan can also develop such models to integrate technology for improving service delivery and to develop evidence for informed decisions and policy making.Keywords: data, e-governance, evidence, policy
Procedia PDF Downloads 24577 Co-management Organizations: A Way to Facilitate Sustainable Management of the Sundarbans Mangrove Forests of Bangladesh
Authors: Md. Wasiul Islam, Md. Jamius Shams Sowrov
Abstract:
The Sundarbans is the largest single tract of mangrove forest in the world. This is located in the southwest corner of Bangladesh. This is a unique ecosystem which is a great breeding and nursing ground for a great biodiversity. It supports the livelihood of about 3.5 million coastal dwellers and also protects the coastal belt and inland areas from various natural calamities. Historically, the management of the Sundarbans was controlled by the Bangladesh Forest Department following top-down approach without the involvement of local communities. Such fence and fining-based blue-print approach was not effective to protect the forest which caused Sundarbans to degrade severely in the recent past. Fifty percent of the total tree cover has been lost in the last 30 years. Therefore, local multi-stakeholder based bottom-up co-management approach was introduced at some of the parts of the Sundarbans in 2006 to improve the biodiversity status by enhancing the protection level of the forest. Various co-management organizations were introduced under co-management approach where the local community people could actively involve in various activities related to the management and welfare of the Sundarbans including the decision-making process to achieve the goal. From this backdrop, the objective of the study was to assess the performance of co-management organizations to facilitate sustainable management of the Sundarbans mangrove forests. The qualitative study followed face-to-face interview to collect data using two sets of semi-structured questionnaires. A total of 40 respondents participated in the research that was from eight villagers under two forest ranges. 32 representatives from the local communities as well as 8 official representatives involved in co-management approach were interviewed using snowball sampling technique. The study shows that the co-management approach improved governance system of the Sundarbans through active participation of the local community people and their interactions with the officials via the platform of co-management organizations. It facilitated accountability and transparency system to some extent through following some formal and informal rules and regulations. It also improved the power structure of the management process by fostering local empowerment process particularly the women. Moreover, people were able to learn from their interactions with and within the co-management organizations as well as interventions improved environmental awareness and promoted social learning. The respondents considered good governance as the most important factor for achieving the goal of sustainable management and biodiversity conservation of the Sundarbans. The success of co-management planning process also depends on the active and functional participation of different stakeholders including the local communities where co-management organizations were considered as the most functional platform. However, the governance system was also facing various challenges which resulted in barriers to the sustainable management of the Sundarbans mangrove forest. But still there were some members involved in illegal forest operations and created obstacles against sustainable management of the Sundarbans. Respondents recommended greater patronization from the government, financial and logistic incentives for alternative income generation opportunities with effective participatory monitoring and evaluation system to improve sustainable management of the Sundarbans.Keywords: Bangladesh, co-management approach, co-management organizations, governance, Sundarbans, sustainable management
Procedia PDF Downloads 17576 WhatsApp as a Public Health Management Tool in India
Authors: Drishti Sharma, Mona Duggal
Abstract:
Background: WhatsApp can serve as a cost-effective, scalable, convenient, and popular medium for public health management related communication in the developing world where the existing system of communication is top-down and slow. The product supports sending and receiving a variety of media: text, photos, videos, documents, and location, as well as voice/video calls. With growing number of users of smartphones and improving access and penetration of internet, the scope of information technology remains immense in resolving the hurdles faced by traditional public health system. Poor infrastructure, gap in digital literacy, faulty documentation, strict organizational hierarchy and slow movement of information across desks and offices- all these, make WhatsApp an efficient prospect to complement the existing system for communication, feedback and leadership for public health system in India. Objective: This study investigates the benefits, challenges and limitations associated with WhatsApp usage as a public health management tool. Methods: The study was conducted within the Chandigarh Union Territory. We used a qualitative approach and conducted individual semi-structured interviews and group interviews (n = 10). Participants included medical officers (n 20), Program managers (n = 4), academicians (n=2) and administrators (n=2). Thematic and content qualitative analyses were conducted. Message log of the WhatsApp group of one of the health program was assessed. Results: Medical Officers said that WhatsApp helped them remain in touch with the program officer. They could easily give feedback and highlight those challenges which needed immediate intervention from the program managers, hence they felt supported. Also, the application helped them share pictures of their activities (meetings and field activities) with the group which they thought inspired others and gave themselves immense satisfaction. Also, it helped build stronger relationships and better coordination among themselves, the same being important in team events. For program managers, it had become a portal for coordinating large scale campaigns. Its reach and the fact that the feedback is real-time make WhatsApp ideal for district level events. Though the easy informal connectivity made them answerable to their staff but it also provided them with flexibility in operations. It turned out to be an important portal for sharing outcome and goals related feedback (both positive and negative) to the team. To be sure, using WhatsApp for the purpose of public health program presents considerable challenges, including technological barriers, organizational challenges, gender issues, confidentiality concerns and unplanned aftereffects. Nevertheless, its advantages in a low-cost setting make it an efficient alternative. Conclusion: WhatsApp has become an integral part of our lives. Use of this app for public health program management within closed groups looks promising and useful. At the same time, addressing the challenges involved would make its usage safer.Keywords: communication, mobile technology, public health management, WhatsApp
Procedia PDF Downloads 17775 Importance of Hospitality In Tourism Industry
Authors: S M Abdus Sattar
Abstract:
Introduction: The tourism industry is a vital component of economies, providing opportunities for economic growth and cultural exchange. At the heart of this industry lies the concept of hospitality. Tourism refers to the activity of traveling for leisure or business and hospitality refers to the welcoming, amenities and providing of services to guests in the travel and accommodation industries. Tourism is one of the fastest growing industries in the world today. Objectives: The most important objective of Tourism and Hospitality study are: To assess different aspects, To identify the reasons, To analyze the contribution in GDP of Bangladesh, To identify importances of hospitality, To identify challenges, To Development of leadership characteristics, communication, teamwork skill, customer service and problem-solving, To provide welcoming treatment to guests, offering accommodation, food, transportation and entertainment services to ensure guests feel safe and comfortable away from home, To explore future prospects in Bangladesh and To suggests some recommendations for development of these sector. Methodology: Statistical method has been adopted in this study. Common characteristics of the people of particular area are found out. Tourism data is collected through various methods, such as surveys, interviews, visitor registration, travel agency records, hotel bookings, transport ticketing systems, online platforms, social media, Bangladesh Tourism Corporation, World Travel and Tourism Council, Quantitative and qualitative research methods are used while collecting and analyzing data. Findings: Tourism and Hospitality focuses on marketing, management, attractions, recreation events, travel related services, lodging, operations of restaurants and food services. Tourism offers great opportunities for emerging economies and developing countries. It creates jobs, strengthens the local economy, contributes to local infrastructure development, can help to conserve the natural environment, cultural assets, traditions, reduce poverty and inequality. The hospitality industry contributes to the economy of a country by employing its human resources. It generates new employment, contributing to the Gross Domestic Product (GDP) of a country. Around 330 million people were employed in the Tourism and Hospitality sector in globally. Tourism and Hospitality industry is creating high tax revenues. Tourism is a rising industry in Bangladesh. Studying hospitality can also help develop a range of essential skills that are valuable in any industry. Conclusion: As the conclusion, tourism industry is focused on providing quality attractions and events in order to entice tourists to come. The hospitality industry provides the good service for client. Hospitality and Tourism are closely related. Hospitality built up the relationship between host and guest. The importance of hospitality in tourism industry is immense. The Tourism and Hospitality industry is an important contributor to Bangladesh's economy. It is necessary to develop the Tourism infrastructure, maintain tourist destinations, railway stations, airports, rest house, hotels and improve the quality of services.Keywords: tourism, hospitality, GDP, employment, economy
Procedia PDF Downloads 2574 Testing Two Actors Contextual Interaction Theory in a Multi Actors Context: Case of COVID-19 Disease Prevention and Control Policy
Authors: Muhammad Fayyaz Nazir, Ellen Wayenberg, Shahzadaah Faahed Qureshi
Abstract:
Introduction: The study is based on the Contextual Interaction Theory (CIT) constructs to explore the role of policy actors in implementing the COVID-19 Disease Prevention and Control (DP&C) Policy. The study analyzes the role of healthcare workers' contextual factors, such as cognition, motives, and resources, and their interactions in implementing Social Distancing (SD). In this way, we test a two actors policy implementation theory, i.e., the CIT in a three-actor context. Methods: Data was collected through document analysis and semi-structured interviews. For a qualitative study design, interviews were conducted with questions on cognition, motives, and resources from the healthcare workers involved in implementing SD in the local context in Multan – Pakistan. The possible interactions resulting from contextual factors of the policy actors – healthcare workers were identified through framework analysis protocol guided by CIT and supported by trustworthiness criterion and data saturation. Results: This inquiry resulted in theory application, addition, and enrichment. The theoretical application in the three actor's contexts illustrates the different levels of motives, cognition, and resources of healthcare workers – senior administrators, managers, and healthcare professionals. The senior administrators working in National Command and Operations Center (NCOC), Provincial Technical Committees (PTCs), and Districts Covid Teams (DCTs) were playing their role with high motivation. They were fully informed about the policy and moderately resourceful. The policy implementors: healthcare managers working on implementing the SD within their respective hospitals were playing their role with high motivation and were fully informed about the policy. However, they lacked the required resources to implement SD. The target medical and allied healthcare professionals were moderately motivated but lack of resources and information. The interaction resulted in cooperation and the need for learning to manage the future healthcare crisis. However, the lack of resources created opposition to the implementation of SD. Objectives of the Study: The study aimed to apply a two actors theory in a multi actors context. We take this as an opportunity to qualitatively test the theory in a novel situation of the Covid-19 pandemic and make way for its quantitative application by designing a survey instrument so that implementation researchers can apply CIT through multivariate analyses or higher-order statistical modeling. Conclusion: Applying two actors' implementation theory in exploring a complex case of healthcare intervention in three actors context is a unique work that has never been done before, up to the best of our knowledge. So, the work will contribute to the policy implementation studies by applying, extending, and enriching an implementation theory in a novel case of the Covi-19 pandemic, ultimately fulfilling the gap in implementation literature. Policy institutions and other low or middle-income countries can learn from this research and improve SD implementation by working on the variables with weak significance levels.Keywords: COVID-19, disease prevention and control policy, implementation, policy actors, social distancing
Procedia PDF Downloads 5873 On-Farm Mechanized Conservation Agriculture: Preliminary Agro-Economic Performance Difference between Disc Harrowing, Ripping and No-Till
Authors: Godfrey Omulo, Regina Birner, Karlheinz Koller, Thomas Daum
Abstract:
Conservation agriculture (CA) as a climate-resilient and sustainable practice have been carried out for over three decades in Zambia. However, its continued promotion and adoption has been predominantly on a small-scale basis. Despite the plethora of scholarship pointing to the positive benefits of CA in regard to enhanced yield, profitability, carbon sequestration and minimal environmental degradation, these have not stimulated commensurate agricultural extensification desired for Zambia. The objective of this study was to investigate the potential differences between mechanized conventional and conservation tillage practices on operation time, fuel consumption, labor costs, soil moisture retention, soil temperature and crop yield. An on-farm mechanized conservation agriculture (MCA) experiment arranged in a randomized complete block design with four replications was used. The research was conducted on a 15 ha of sandy loam rainfed land: soybeans on 7ha with plot dimensions of 24 m by 210 m and maize on 8ha with plot dimensions of 24 m by 250 m. The three tillage treatments were: residue burning followed by disc harrowing, ripping tillage and no-till. The crops were rotated in two subsequent seasons. All operations were done using a 60hp 2-wheel tractor, a disc harrow, a two-tine ripper and a two-row planter. Soil measurements and the agro-economic factors were recorded for two farming seasons. The season results showed that the yield of maize and soybeans under no-till and ripping tillage practices were not significantly different from the conventional burning and discing. But, there was a significant difference in soil moisture content between no-till (25.31SFU±2.77) and disced (11.91SFU±0.59) plots at depths from 10-60 cm. Soil temperature in no-till plots (24.59°C±0.91) was significantly lower compared to the disced plots (26.20°C±1.75) at the depths 15 cm and 45 cm. For maize, there was a significant difference in operation time between disc-harrowed (3.68hr/ha±1.27) and no-till (1.85hr/ha±0.04) plots, and a significant difference in cost of labor between disc-harrowed (45.45$/ha±19.56) and no-till (21.76$/ha) plots. There was no significant difference in fuel consumption between ripping and disc-harrowing and direct seeding. For soybeans, there was a significant difference in operation time between no-tillage (1.96hr/ha±0.31) and ripping (3.34hr/ha±0.53) and disc harrowing (3.30hr/ha±0.16). Further, fuel consumption and labor on no-till plots were significantly different from both the ripped and disc-harrowed plots. The high seed emergence percentage on maize disc-harrowed plot (93.75%±5.87) was not significantly different from ripping and no-till plots. Again, the high seed emergence percentage for the soybean ripped plot (93.75%±13.03) had no significant difference with discing and ripping. The results show that it is economically sound and timesaving to practice MCA and get viable yields compared to conventional farming. This research fills the gap on the potential of MCA in the context of Zambia and its profitability in incentivizing policymakers to invest in appropriate and sustainable machinery and implements for extensive agricultural production.Keywords: climate-smart agriculture, labor cost, mechanized conservation agriculture, soil moisture, Zambia
Procedia PDF Downloads 14772 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland
Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski
Abstract:
PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks
Procedia PDF Downloads 14871 Evaluating the Social Learning Processes Involved in Developing Community-Informed Wildfire Risk Reduction Strategies in the Prince Albert Forest Management Area
Authors: Carly Madge, Melanie Zurba, Ryan Bullock
Abstract:
The Boreal Forest has experienced some of the most drastic climate change-induced temperature rises in Canada, with average winter temperatures increasing by 3°C since 1948. One of the main concerns of the province of Saskatchewan, and particularly wildfire managers, is the increased risk of wildfires due to climate change. With these concerns in mind Sakaw Askiy Management Inc., a forestry corporation located in Prince Albert, Saskatchewan with operations in the Boreal Forest biome, is developing wildfire risk reduction strategies that are supported by the shareholders of the corporation as well as the stakeholders of the Prince Albert Forest Management Area (which includes citizens, hunters, trappers, cottage owners, and outfitters). In the past, wildfire management strategies implemented through harvesting have been received with skepticism by some community members of Prince Albert. Engagement of the stakeholders of the Prince Albert Management Area through the development of the wildfire risk reduction strategies aims to reduce this skepticism and rebuild some of the trust that has been lost between industry and community. This research project works with the framework of social learning, which is defined as the learning that occurs when individuals come together to form a group with the purpose of understanding environmental challenges and determining appropriate responses to them. The project evaluates the social learning processes that occur through the development of the risk reduction strategies and how the learning has allowed Sakaw to work towards implementing the strategies into their forest harvesting plans. The incorporation of wildfire risk reduction strategies works to increase the adaptive capacity of Sakaw, which in this case refers to the ability to adjust to climate change, moderate potential damages, take advantage of opportunities, and cope with consequences. Using semi-structured interviews and wildfire workshop meetings shareholders and stakeholders shared their knowledge of wildfire, their main wildfire concerns, and changes they would like to see made in the Prince Albert Forest Management Area. Interviews and topics discussed in the workshops were inductively coded for themes related to learning, adaptive capacity, areas of concern, and preferred methods of wildfire risk reduction strategies. Analysis determined that some of the learning that has occurred has resulted through social interactions and the development of networks oriented towards wildfire and wildfire risk reduction strategies. Participants have learned new knowledge and skills regarding wildfire risk reduction. The formation of wildfire networks increases access to information on wildfire and the social capital (trust and strengthened relations) of wildfire personnel. Both factors can be attributed to increases in adaptive capacity. Interview results were shared with the General Manager of Sakaw, where the areas of concern and preferred strategies of wildfire risk reduction will be considered and accounted for in the implementation of new harvesting plans. This research also augments the growing conceptual and empirical evidence of the important role of learning and networks in regional wildfire risk management efforts.Keywords: adaptive capacity, community-engagement, social learning, wildfire risk reduction
Procedia PDF Downloads 14570 Is Materiality Determination the Key to Integrating Corporate Sustainability and Maximising Value?
Authors: Ruth Hegarty, Noel Connaughton
Abstract:
Sustainability reporting has become a priority for many global multinational companies. This is associated with ever-increasing expectations from key stakeholders for companies to be transparent about their strategies, activities and management with regard to sustainability issues. The Global Reporting Initiative (GRI) encourages reporters to only provide information on the issues that are really critical in order to achieve the organisation’s goals for sustainability and manage its impact on environment and society. A key challenge for most reporting organisations is how to identify relevant issues for sustainability reporting and prioritise those material issues in accordance with company and stakeholder needs. A recent study indicates that most of the largest companies listed on the world’s stock exchanges are failing to provide data on key sustainability indicators such as employee turnover, energy, greenhouse gas emissions (GHGs), injury rate, pay equity, waste and water. This paper takes an indepth look at the approaches used by a select number of international sustainability leader corporates to identify key sustainability issues. The research methodology involves performing a detailed analysis of the sustainability report content of up to 50 companies listed on the 2014 Dow Jones Sustainability Indices (DJSI). The most recent sustainability report content found on the GRI Sustainability Disclosure Database is then compared with 91 GRI Specific Standard Disclosures and a small number of GRI Standard Disclosures. Preliminary research indicates significant gaps in the information disclosed in corporate sustainability reports versus the indicator content specified in the GRI Content Index. The following outlines some of the key findings to date: Most companies made a partial disclosure with regard to the Economic indicators of climate change risks and infrastructure investments, but did not focus on the associated negative impacts. The top Environmental indicators disclosed were energy consumption and reductions, GHG emissions, water withdrawals, waste and compliance. The lowest rates of indicator disclosure included biodiversity, water discharge, mitigation of environmental impacts of products and services, transport, environmental investments, screening of new suppliers and supply chain impacts. The top Social indicators disclosed were new employee hires, rates of injury, freedom of association in operations, child labour and forced labour. Lesser disclosure rates were reported for employee training, composition of governance bodies and employees, political contributions, corruption and fines for non-compliance. The reporting on most other Social indicators was found to be poor. In addition, most companies give only a brief explanation on how material issues are defined, identified and ranked. Data on the identification of key stakeholders and the degree and nature of engagement for determining issues and their weightings is also lacking. Generally, little to no data is provided on the algorithms used to score an issue. Research indicates that most companies lack a rigorous and thorough methodology to systematically determine the material issues of sustainability reporting in accordance with company and stakeholder needs.Keywords: identification of key stakeholders, material issues, sustainability reporting, transparency
Procedia PDF Downloads 30669 Nigerian Football System: Examining Micro-Level Practices against a Global Model for Integrated Development of Mass and Elite Sport
Authors: Iorwase Derek Kaka’an, Peter Smolianov, Steven Dion, Christopher Schoen, Jaclyn Norberg, Charles Gabriel Iortimah
Abstract:
This study examines the current state of football in Nigeria to identify the country's practices, which could be useful internationally, and to determine areas for improvement. Over 200 sources of literature on sport delivery systems in successful sports nations were analyzed to construct a globally applicable model of elite football integrated with mass participation, comprising of the following three levels: macro (socio-economic, cultural, legislative, and organizational), meso (infrastructures, personnel, and services enabling sports programs) and micro level (operations, processes, and methodologies for the development of individual athletes). The model has received scholarly validation and has shown to be a framework for program analysis that is not culturally bound. It has recently been utilized for further understanding such sports systems as US rugby, tennis, soccer, swimming, and volleyball, as well as Dutch and Russian swimming. A questionnaire was developed using the above-mentioned model. Survey questions were validated by 12 experts including academicians, executives from sports governing bodies, football coaches, and administrators. To identify best practices and determine areas for improvement of football in Nigeria, 116 coaches completed the questionnaire. Useful exemplars and possible improvements were further identified through semi-structured discussions with 10 Nigerian football administrators and experts. Finally, a content analysis of the Nigeria Football Federation's website and organizational documentation was conducted. This paper focuses on the micro level of Nigerian football delivery, particularly talent search and development as well as advanced athlete preparation and support. Results suggested that Nigeria could share such progressive practices as the provision of football programs in all schools and full-time coaches paid by governments based on the level of coach education. Nigerian football administrators and coaches could provide better football services affordable for all, where success in mass and elite sports is guided by science focused on athletes' needs. Better implemented could be international best practices such as lifelong guidelines for health and excellence of everyone and integration of fitness tests into player development and ranking as done in best Dutch, English, French, Russian, Spanish, and other European clubs; integration of educational and competitive events for elite and developing athletes as well as fans as done at the 2018 World Cup Russia; and academies with multi-stage athlete nurturing as done by Ajax in Africa as well as Barcelona FC and other top clubs expanding across the world. The methodical integration of these practices into the balanced development of mass and elite football will help contribute to international sports success as well as national health, education, crime control, and social harmony in Nigeria.Keywords: football, high performance, mass participation, Nigeria, sport development
Procedia PDF Downloads 6968 The Development of Assessment Criteria Framework for Sustainable Healthcare Buildings in China
Authors: Chenyao Shen, Jie Shen
Abstract:
The rating system provides an effective framework for assessing building environmental performance and integrating sustainable development into building and construction processes; as it can be used as a design tool by developing appropriate sustainable design strategies and determining performance measures to guide the sustainable design and decision-making processes. Healthcare buildings are resource (water, energy, etc.) intensive. To maintain high-cost operations and complex medical facilities, they require a great deal of hazardous and non-hazardous materials, stringent control of environmental parameters, and are responsible for producing polluting emission. Compared with other types of buildings, the impact of healthcare buildings on the full cycle of the environment is particularly large. With broad recognition among designers and operators that energy use can be reduced substantially, many countries have set up their own green rating systems for healthcare buildings. There are four main green healthcare building evaluation systems widely acknowledged in the world - Green Guide for Health Care (GGHC), which was jointly organized by the United States HCWH and CMPBS in 2003; BREEAM Healthcare, issued by the British Academy of Building Research (BRE) in 2008; the Green Star-Healthcare v1 tool, released by the Green Building Council of Australia (GBCA) in 2009; and LEED Healthcare 2009, released by the United States Green Building Council (USGBC) in 2011. In addition, the German Association of Sustainable Building (DGNB) has also been developing the German Sustainable Building Evaluation Criteria (DGNB HC). In China, more and more scholars and policy makers have recognized the importance of assessment of sustainable development, and have adapted some tools and frameworks. China’s first comprehensive assessment standard for green building (the GBTs) was issued in 2006 (lately updated in 2014), promoting sustainability in the built-environment and raise awareness of environmental issues among architects, engineers, contractors as well as the public. However, healthcare building was not involved in the evaluation system of GBTs because of its complex medical procedures, strict requirements of indoor/outdoor environment and energy consumption of various functional rooms. Learn from advanced experience of GGHC, BREEAM, and LEED HC above, China’s first assessment criteria for green hospital/healthcare buildings was finally released in December 2015. Combined with both quantitative and qualitative assessment criteria, the standard highlight the differences between healthcare and other public buildings in meeting the functional needs for medical facilities and special groups. This paper has focused on the assessment criteria framework for sustainable healthcare buildings, for which the comparison of different rating systems is rather essential. Descriptive analysis is conducted together with the cross-matrix analysis to reveal rich information on green assessment criteria in a coherent manner. The research intends to know whether the green elements for healthcare buildings in China are different from those conducted in other countries, and how to improve its assessment criteria framework.Keywords: assessment criteria framework, green building design, healthcare building, building performance rating tool
Procedia PDF Downloads 14667 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery
Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong
Abstract:
The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition
Procedia PDF Downloads 28566 Resolving Urban Mobility Issues through Network Restructuring of Urban Mass Transport
Authors: Aditya Purohit, Neha Bansal
Abstract:
Unplanned urbanization and multidirectional sprawl of the cities have resulted in increased motorization and deteriorating transport conditions like traffic congestion, longer commuting, pollution, increased carbon footprint, and above all increased fatalities. In order to overcome these problems, various practices have been adopted including– promoting and implementing mass transport; traffic junction channelization; smart transport etc. However, these methods are found to be primarily focusing on vehicular mobility rather than people accessibility. With this research gap, this paper tries to resolve the mobility issues for Ahmedabad city in India, which being the economic capital Gujarat state has a huge commuter and visitor inflow. This research aims to resolve the traffic congestion and urban mobility issues focusing on Gujarat State Regional Transport Corporation (GSRTC) for the city of Ahmadabad by analyzing the existing operations and network structure of GSRTC followed by finding possibilities of integrating it with other modes of urban transport. The network restructuring (NR) methodology is used with appropriate variations, based on commuter demand and growth pattern of the city. To do these ‘scenarios’ based on priority issues (using 12 parameters) and their best possible solution, are established after route network analysis for 2700 population sample of 20 traffic junctions/nodes across the city. Approximately 5% sample (of passenger inflow) at each node is considered using random stratified sampling technique two scenarios are – Scenario 1: Resolving mobility issues by use of Special Purpose Vehicle (SPV) in joint venture to GSRTC and Private Operators for establishing feeder service, which shall provide a transfer service for passenger for movement from inner city area to identified peripheral terminals; and Scenario 2: Augmenting existing mass transport services such as BRTS and AMTS for using them as feeder service to the identified peripheral terminals. Each of these has now been analyzed for the best suitability/feasibility in network restructuring. A desire-line diagram is constructed using this analysis which indicated that on an average 62% of designated GSRTC routes are overlapping with mass transportation service routes of BRTS and AMTS in the city. This has resulted in duplication of bus services causing traffic congestion especially in the Central Bus Station (CBS). Terminating GSRTC services on the periphery of the city is found to be the best restructuring network proposal. This limits the GSRTC buses at city fringe area and prevents them from entering into the city core areas. These end-terminals of GSRTC are integrated with BRTS and AMTS services which help in segregating intra-state and inter-state bus services. The research concludes that absence of integrated multimodal transport network resulted in complexity of transport access to the commuters. As a further scope of research comparing and understanding of value of access time in total travel time and its implication on generalized cost on trip and how it varies city wise may be taken up.Keywords: mass transportation, multi-modal integration, network restructuring, travel behavior, urban transport
Procedia PDF Downloads 19665 “laws Drifting Off While Artificial Intelligence Thriving” – A Comparative Study with Special Reference to Computer Science and Information Technology
Authors: Amarendar Reddy Addula
Abstract:
Definition of Artificial Intelligence: Artificial intelligence is the simulation of mortal intelligence processes by machines, especially computer systems. Explicit operations of AI comprise expert systems, natural language processing, and speech recognition, and machine vision. Artificial Intelligence (AI) is an original medium for digital business, according to a new report by Gartner. The last 10 times represent an advance period in AI’s development, prodded by the confluence of factors, including the rise of big data, advancements in cipher structure, new machine literacy ways, the materialization of pall computing, and the vibrant open- source ecosystem. Influence of AI to a broader set of use cases and druggies and its gaining fashionability because it improves AI’s versatility, effectiveness, and rigidity. Edge AI will enable digital moments by employing AI for real- time analytics closer to data sources. Gartner predicts that by 2025, further than 50 of all data analysis by deep neural networks will do at the edge, over from lower than 10 in 2021. Responsible AI is a marquee term for making suitable business and ethical choices when espousing AI. It requires considering business and societal value, threat, trust, translucency, fairness, bias mitigation, explainability, responsibility, safety, sequestration, and nonsupervisory compliance. Responsible AI is ever more significant amidst growing nonsupervisory oversight, consumer prospects, and rising sustainability pretensions. Generative AI is the use of AI to induce new vestiges and produce innovative products. To date, generative AI sweats have concentrated on creating media content similar as photorealistic images of people and effects, but it can also be used for law generation, creating synthetic irregular data, and designing medicinals and accoutrements with specific parcels. AI is the subject of a wide- ranging debate in which there's a growing concern about its ethical and legal aspects. Constantly, the two are varied and nonplussed despite being different issues and areas of knowledge. The ethical debate raises two main problems the first, abstract, relates to the idea and content of ethics; the alternate, functional, and concerns its relationship with the law. Both set up models of social geste, but they're different in compass and nature. The juridical analysis is grounded on anon-formalistic scientific methodology. This means that it's essential to consider the nature and characteristics of the AI as a primary step to the description of its legal paradigm. In this regard, there are two main issues the relationship between artificial and mortal intelligence and the question of the unitary or different nature of the AI. From that theoretical and practical base, the study of the legal system is carried out by examining its foundations, the governance model, and the nonsupervisory bases. According to this analysis, throughout the work and in the conclusions, International Law is linked as the top legal frame for the regulation of AI.Keywords: artificial intelligence, ethics & human rights issues, laws, international laws
Procedia PDF Downloads 9364 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance
Authors: Ammar Alali, Mahmoud Abughaban
Abstract:
Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe
Procedia PDF Downloads 22563 Implementation of Performance Management and Development System: The Case of the Eastern Cape Provincial Department of Health, South Africa
Authors: Thanduxolo Elford Fana
Abstract:
Rationale and Purpose: Performance management and development system are central to effective and efficient service delivery, especially in highly labour intensive sectors such as South African public health. Performance management and development systems seek to ensure that good employee performance is rewarded accordingly, while those who underperform are developed so that they can reach their full potential. An effective and efficiently implemented performance management system motivates and improves employee engagement. The purpose of this study is to examine the implementation of the performance management and development system and the challenges that are encountered during its implementation in the Eastern Cape Provincial Department of Health. Methods: A qualitative research approach and a case study design was adopted in this study. The primary data were collected through observations, focus group discussions with employees, a group interview with shop stewards, and in-depth interviews with supervisors and managers, from April 2019 to September 2019. There were 45 study participants. In-depth interviews were held with 10 managers at facility level, which included chief executive officer, chief medical officer, assistant director’s in human resources management, patient admin, operations, finance, and two area manager and two operation managers nursing. A group interview was conducted with five shop stewards and an in-depth interview with one shop steward from the group. Five focus group discussions were conducted with clinical and non-clinical staff. The focus group discussions were supplemented with an in-depth interview with one person from each group in order to counter the group effect. Observations included moderation committee, contracting, and assessment meetings. Findings: The study shows that the performance management and development system was not properly implemented. There was non-compliance to performance management and development system policy guidelines in terms of time lines for contracting, evaluation, payment of incentives to good performers, and management of poor performance. The study revealed that the system is ineffective in raising the performance of employees and unable to assist employees to grow. The performance bonuses were no longer paid to qualifying employees. The study also revealed that lack of capacity and commitment, poor communication, constant policy changes, financial constraints, weak and highly bureaucratic management structures, union interference were challenges that were encountered during the implementation of the performance management and development system. Lastly, employees and supervisors were rating themselves three irrespective of how well or bad they performed. Conclusion: Performance management is regarded as vital to improved performance of the health workforce and healthcare service delivery among populations. Effective implementation of performance management and development system depends on well-capacitated and unbiased management at facility levels. Therefore, there is an urgent need to improve communication, link performance management to rewards, and capacitate staff on performance management and development system, as it is key to improved public health sector outcomes or performance.Keywords: challenges, implementation, performance management and development system, public hospital
Procedia PDF Downloads 13562 The Influence of Human Movement on the Formation of Adaptive Architecture
Authors: Rania Raouf Sedky
Abstract:
Adaptive architecture relates to buildings specifically designed to adapt to their residents and their environments. To design a biologically adaptive system, we can observe how living creatures in nature constantly adapt to different external and internal stimuli to be a great inspiration. The issue is not just how to create a system that is capable of change but also how to find the quality of change and determine the incentive to adapt. The research examines the possibilities of transforming spaces using the human body as an active tool. The research also aims to design and build an effective dynamic structural system that can be applied on an architectural scale and integrate them all into the creation of a new adaptive system that allows us to conceive a new way to design, build and experience architecture in a dynamic manner. The main objective was to address the possibility of a reciprocal transformation between the user and the architectural element so that the architecture can adapt to the user, as the user adapts to architecture. The motivation is the desire to deal with the psychological benefits of an environment that can respond and thus empathize with human emotions through its ability to adapt to the user. Adaptive affiliations of kinematic structures have been discussed in architectural research for more than a decade, and these issues have proven their effectiveness in developing kinematic structures, responsive and adaptive, and their contribution to 'smart architecture'. A wide range of strategies have been used in building complex kinetic and robotic systems mechanisms to achieve convertibility and adaptability in engineering and architecture. One of the main contributions of this research is to explore how the physical environment can change its shape to accommodate different spatial displays based on the movement of the user’s body. The main focus is on the relationship between materials, shape, and interactive control systems. The intention is to develop a scenario where the user can move, and the structure interacts without any physical contact. The soft form of shifting language and interaction control technology will provide new possibilities for enriching human-environmental interactions. How can we imagine a space in which to construct and understand its users through physical gestures, visual expressions, and response accordingly? How can we imagine a space whose interaction depends not only on preprogrammed operations but on real-time feedback from its users? The research also raises some important questions for the future. What would be the appropriate structure to show physical interaction with the dynamic world? This study concludes with a strong belief in the future of responsive motor structures. We imagine that they are developing the current structure and that they will radically change the way spaces are tested. These structures have obvious advantages in terms of energy performance and the ability to adapt to the needs of users. The research highlights the interface between remote sensing and a responsive environment to explore the possibility of an interactive architecture that adapts to and responds to user movements. This study ends with a strong belief in the future of responsive motor structures. We envision that it will improve the current structure and that it will bring a fundamental change to the way in which spaces are tested.Keywords: adaptive architecture, interactive architecture, responsive architecture, tensegrity
Procedia PDF Downloads 15561 Impact of the COVID-19 Pandemic and Social Isolation on the Clients’ Experiences in Counselling and their Access to Services: Perspectives of Violence Against Women Program Staff - A Qualitative Study
Authors: Habiba Nahzat, Karen Crow, Lisa Manuel, Maria Huijbregts
Abstract:
Background and Rationale: The World Health Organization (WHO) declared COVID-19 a pandemic on March 11, 2020. Shortly after, the Ontario provincial and Toronto municipal governments also released multiple directives that led to the mass closure of businesses both in the public and private sectors. Recent research has identified connections between Intimate Partner Violence (IPV) and COVID-19 related stressors - especially because of lockdown and social isolation measures. Psychological impacts of lengthy seclusion coupled with disconnection from extended family and diminished support services can take a toll on families at risk and may increase mental health issues and the prevalence of IPV. Research Question: Thus, the purpose of the study was to understand the perspective of the Violence Against Women (VAW) program staff on the impact of the COVID-19 pandemic; we especially wanted to understand staff views of restrictions on clients’ counseling experiences and the ability to access services in general. The study also aimed to examine VAW program staff experiences regarding remote work and explore how the pandemic restriction measures affected the ability of their program operations to support their clients and each other. Method: A cross-sectional, descriptive qualitative study was conducted with a purposive sample of 9 VAW program staff – eight VAW counselors and one VAW manager. Prior to data collection, program staff collaborated in the development of the study purpose, interview questions and methodology. Ethics approval was obtained from the sponsoring organization’s Research Ethics Board. In-depth individual interviews were conducted with study participants using a semi-structured interview questionnaire. Brief demographic information was also collected prior to the interview. Descriptive statistics were used to analyze quantitative data and qualitative data was analyzed by thematic content analysis. Results: Findings from this study indicate that the COVID-19 pandemic restrictions had an adverse impact on clients seeking VAW services based on VAW staff perspectives. Program staff reported a perceived increase in abuse among women, especially in emotional and financial abuse and experiences of isolation and trauma. Findings further highlight the challenges women experienced when trying to access services in general as well as counseling and legal services. This was perceived to be more prominent among newcomers and marginalized women. The study also revealed client and staff challenges when participating in virtual counseling, their innovations and clients’ creativity in accessing needed counseling and how staff over time adapted to providing virtual support during the pandemic. Conclusion and Next Steps: This study builds upon existing evidence on the impact of COVID-19 restrictions on VAW and may inform future research to better understand the association between the COVID-19 pandemic restrictions and VAW on a broader scale and to inform and support possible short-term and long-term changes in the client experience and counselling practice.Keywords: COVID-19, pandemic, virtual, violence against women (VAW)
Procedia PDF Downloads 18960 Sustainability in Higher Education: A Case of Transition Management from a Private University in Turkey (Ongoing Study)
Authors: Ayse Collins
Abstract:
The Agenda 2030 puts Higher Education Institutions (HEIs) in the situation where they should emphasize ways to promote sustainability accordingly. However, it is still unclear: a) how sustainability is understood, and b) which actions have been taken in both discourse and practice by HEIs regarding the three pillars of sustainability, society, environment, and economy. There are models of sustainable universities developed by different authors from different countries; For Example, The Global Reporting Initiative (GRI) methodology which offers a variety of indicators to diagnose performance. However, these models have never been developed for universities in particular. Any model, in this sense, cannot be completed adequately without defining the appropriate tools to measure, analyze and control the performance of initiatives. There is a need to conduct researches in different universities from different countries to understand where we stand in terms of sustainable higher education. Therefore, this study aims at exploring the actions taken by a university in Ankara, Turkey, since Agenda 2030 should consider localizing its objectives and targets according to a certain geography. This university just announced 2021-2022 as “Sustainability Year.” Therefore, this research is a multi-methodology longitudinal study and uses the theoretical framework of the organization and transition management (TM). It is designed to examine the activities as being strategic, tactical, operational, and reflexive in nature and covers the six main aspects: academic community, administrative staff, operations and services, teaching, research, and extension. The preliminary research will answer the role of the top university governance, perception of the stakeholders (students, instructors, administrative and support staff) regarding sustainability, and the level of achievement at the mid-evaluation and final, end of year evaluation. TM Theory is a multi-scale, multi-actor, process-oriented approach with the analytical framework to explore and promote change in social systems. Therefore, the stages and respective methodology for collecting data in this research is: Pre-development Stage: a) semi-structured interviews with university governance, c) open-ended survey with faculty, students, and administrative staff d) Semi-structured interviews with support staff, and e) analysis of current secondary data for sustainability. Take-off Stage: a) semi-structured interviews with university governance, faculty, students, administrative and support staff, b) analysis of secondary data. Breakthrough stabilization a) survey with all stakeholders at the university, b) secondary data analysis by using selected indicators for the first sustainability report for universities The findings from the predevelopment stage highlight how stakeholders, coming from different faculties, different disciplines with different identities and characteristics, face the sustainability challenge differently. Though similar sustainable development goals ((social, environmental, and economic) are set in the institution, there are differences across disciplines and among different stakeholders, which need to be considered to reach the optimum goal. It is believed that the results will help changes in HEIs organizational culture to embed sustainability values in their strategic planning, academic and managerial work by putting enough time and resources to be successful in coping with sustainability.Keywords: higher education, sustainability, sustainability auditing, transition management
Procedia PDF Downloads 10559 Finite Element Analysis of Human Tarsals, Meta Tarsals and Phalanges for Predicting probable location of Fractures
Authors: Irfan Anjum Manarvi, Fawzi Aljassir
Abstract:
Human bones have been a keen area of research over a long time in the field of biomechanical engineering. Medical professionals, as well as engineering academics and researchers, have investigated various bones by using medical, mechanical, and materials approaches to discover the available body of knowledge. Their major focus has been to establish properties of these and ultimately develop processes and tools either to prevent fracture or recover its damage. Literature shows that mechanical professionals conducted a variety of tests for hardness, deformation, and strain field measurement to arrive at their findings. However, they considered these results accuracy to be insufficient due to various limitations of tools, test equipment, difficulties in the availability of human bones. They proposed the need for further studies to first overcome inaccuracies in measurement methods, testing machines, and experimental errors and then carry out experimental or theoretical studies. Finite Element analysis is a technique which was developed for the aerospace industry due to the complexity of design and materials. But over a period of time, it has found its applications in many other industries due to accuracy and flexibility in selection of materials and types of loading that could be theoretically applied to an object under study. In the past few decades, the field of biomechanical engineering has also started to see its applicability. However, the work done in the area of Tarsals, metatarsals and phalanges using this technique is very limited. Therefore, present research has been focused on using this technique for analysis of these critical bones of the human body. This technique requires a 3-dimensional geometric computer model of the object to be analyzed. In the present research, a 3d laser scanner was used for accurate geometric scans of individual tarsals, metatarsals, and phalanges from a typical human foot to make these computer geometric models. These were then imported into a Finite Element Analysis software and a length refining process was carried out prior to analysis to ensure the computer models were true representatives of actual bone. This was followed by analysis of each bone individually. A number of constraints and load conditions were applied to observe the stress and strain distributions in these bones under the conditions of compression and tensile loads or their combination. Results were collected for deformations in various axis, and stress and strain distributions were observed to identify critical locations where fracture could occur. A comparative analysis of failure properties of all the three types of bones was carried out to establish which of these could fail earlier which is presented in this research. Results of this investigation could be used for further experimental studies by the academics and researchers, as well as industrial engineers, for development of various foot protection devices or tools for surgical operations and recovery treatment of these bones. Researchers could build up on these models to carryout analysis of a complete human foot through Finite Element analysis under various loading conditions such as walking, marching, running, and landing after a jump etc.Keywords: tarsals, metatarsals, phalanges, 3D scanning, finite element analysis
Procedia PDF Downloads 32658 Impact of Urban Migration on Caste: Rohinton Mistry’s a Fine Balance and Rural-to-Urban Caste Migration in India
Authors: Mohua Dutta
Abstract:
The primary aim of this research paper is to investigate the forced urban migration of Dalits in India who are fleeing caste persecution in rural areas. This paper examines the relationship between caste and rural-to-urban internal migration in India using a literary text, Rohinton Mistry’s A Fine Balance, highlighting the challenges faced by Dalits in rural areas that force them to migrate to urban areas. Despite the prevalence of such discussions in Dalit autobiographies written in vernacular languages, there is a lack of discussion regarding caste migration in Indian English Literature, including this present text, as evidenced by the existing critical interpretations of the novel, which this paper seeks to rectify. The primary research question is how urban migration affects caste system in India and why rural-to-urban caste migration occurs. The purpose of this paper is to better understand the reasons for Dalit migration, the challenges they face in rural and urban areas, and the lingering influence of caste in both rural and urban areas. The study reveals that the promise of mobility and emancipation provided by class operations drives rural-to-urban caste migration in India, but it also reveals that caste marginalization in rural areas is closely linked to class marginalization and other forms of subalternity in urban areas. Moreover, the caste system persists in urban areas as well, making Dalit migrants more vulnerable to social, political, and economic discrimination. The reason for this is that, despite changes in profession and urban migration, the trapped structure of caste capital and family networks exposes migrants to caste and class oppressions. To reach its conclusion, this study employs a variety of methodologies. Discourse analysis is used to investigate the current debates and narratives surrounding caste migration. Critical race theory, specifically intersectional theory and social constructivism, aids in comprehending the complexities of caste, class, and migration. Mistry's novel is subjected to textual analysis in order to identify and interpret references to caste migration. Secondary data, such as theoretical understanding of the caste system in operation and scholarly works on caste migration, are also used to support and strengthen the findings and arguments presented in the paper. The study concludes that rural-to-urban caste migration in India is primarily motivated by the promise of socioeconomic mobility and emancipation offered by urban spaces. However, the caste system persists in urban areas, resulting in the continued marginalisation and discrimination of Dalit migrants. The study also highlights the limitations of urban migration in providing true emancipation for Dalit migrants, as they remain trapped within caste and family network structures. Overall, the study raises awareness of the complexities surrounding caste migration and its impact on the lives of India's marginalised communities. This study contributes to the field of Migration Studies by shedding light on an often-overlooked issue: Dalit migration. It challenges existing literary critical interpretations by emphasising the significance of caste migration in Indian English Literature. The study also emphasises the interconnectedness of caste and class, broadening understanding of how these systems function in both rural and urban areas.Keywords: rural-to-urban caste migration in india, internal migration in india, caste system in india, dalit movement in india, rooster coop of caste and class, urban poor as subalterns
Procedia PDF Downloads 7157 Stakeholder Mapping and Requirements Identification for Improving Traceability in the Halal Food Supply Chain
Authors: Laila A. H. F. Dashti, Tom Jackson, Andrew West, Lisa Jackson
Abstract:
Traceability systems are important in the agri-food and halal food sectors for monitoring ingredient movements, tracking sources, and ensuring food integrity. However, designing a traceability system for the halal food supply chain is challenging due to diverse stakeholder requirements and complex needs. Existing literature on stakeholder mapping and identifying requirements for halal food supply chains is limited. To address this gap, a pilot study was conducted to identify the objectives, requirements, and recommendations of stakeholders in the Kuwaiti halal food industry. The study collected data through semi-structured interviews with an international halal food manufacturer based in Kuwait. The aim was to gain a deep understanding of stakeholders' objectives, requirements, processes, and concerns related to the design of a traceability system in the country's halal food sector. Traceability systems are being developed and tested in the agri-food and halal food sectors due to their ability to monitor ingredient movements, track sources, and detect potential issues related to food integrity. Designing a traceability system for the halal food supply chain poses significant challenges due to diverse stakeholder requirements and the complexity of their needs (including varying food ingredients, different sources, destinations, supplier processes, certifications, etc.). Achieving a halal food traceability solution tailored to stakeholders' requirements within the supply chain necessitates prior knowledge of these needs. Although attempts have been made to address design-related issues in traceability systems, literature on stakeholder mapping and identification of requirements specific to halal food supply chains is scarce. Thus, this pilot study aims to identify the objectives, requirements, and recommendations of stakeholders in the halal food industry. The paper presents insights gained from the pilot study, which utilized semi-structured interviews to collect data from a Kuwait-based international halal food manufacturer. The objective was to gain an in-depth understanding of stakeholders' objectives, requirements, processes, and concerns pertaining to the design of a traceability system in Kuwait's halal food sector. The stakeholder mapping results revealed that government entities, food manufacturers, retailers, and suppliers are key stakeholders in Kuwait's halal food supply chain. Lessons learned from this pilot study regarding requirement capture for traceability systems include the need to streamline communication, focus on communication at each level of the supply chain, leverage innovative technologies to enhance process structuring and operations and reduce halal certification costs. The findings also emphasized the limitations of existing traceability solutions, such as limited cooperation and collaboration among stakeholders, high costs of implementing traceability systems without government support, lack of clarity regarding product routes, and disrupted communication channels between stakeholders. These findings contribute to a broader research program aimed at developing a stakeholder requirements framework that utilizes "business process modelling" to establish a unified model for traceable stakeholder requirements.Keywords: supply chain, traceability system, halal food, stakeholders’ requirements
Procedia PDF Downloads 11156 Fully Autonomous Vertical Farm to Increase Crop Production
Authors: Simone Cinquemani, Lorenzo Mantovani, Aleksander Dabek
Abstract:
New technologies in agriculture are opening new challenges and new opportunities. Among these, certainly, robotics, vision, and artificial intelligence are the ones that will make a significant leap, compared to traditional agricultural techniques, possible. In particular, the indoor farming sector will be the one that will benefit the most from these solutions. Vertical farming is a new field of research where mechanical engineering can bring knowledge and know-how to transform a highly labor-based business into a fully autonomous system. The aim of the research is to develop a multi-purpose, modular, and perfectly integrated platform for crop production in indoor vertical farming. Activities will be based both on hardware development such as automatic tools to perform different activities on soil and plants, as well as research to introduce an extensive use of monitoring techniques based on machine learning algorithms. This paper presents the preliminary results of a research project of a vertical farm living lab designed to (i) develop and test vertical farming cultivation practices, (ii) introduce a very high degree of mechanization and automation that makes all processes replicable, fully measurable, standardized and automated, (iii) develop a coordinated control and management environment for autonomous multiplatform or tele-operated robots in environments with the aim of carrying out complex tasks in the presence of environmental and cultivation constraints, (iv) integrate AI-based algorithms as decision support system to improve quality production. The coordinated management of multiplatform systems still presents innumerable challenges that require a strongly multidisciplinary approach right from the design, development, and implementation phases. The methodology is based on (i) the development of models capable of describing the dynamics of the various platforms and their interactions, (ii) the integrated design of mechatronic systems able to respond to the needs of the context and to exploit the strength characteristics highlighted by the models, (iii) implementation and experimental tests performed to test the real effectiveness of the systems created, evaluate any weaknesses so as to proceed with a targeted development. To these aims, a fully automated laboratory for growing plants in vertical farming has been developed and tested. The living lab makes extensive use of sensors to determine the overall state of the structure, crops, and systems used. The possibility of having specific measurements for each element involved in the cultivation process makes it possible to evaluate the effects of each variable of interest and allows for the creation of a robust model of the system as a whole. The automation of the laboratory is completed with the use of robots to carry out all the necessary operations, from sowing to handling to harvesting. These systems work synergistically thanks to the knowledge of detailed models developed based on the information collected, which allows for deepening the knowledge of these types of crops and guarantees the possibility of tracing every action performed on each single plant. To this end, artificial intelligence algorithms have been developed to allow synergistic operation of all systems.Keywords: automation, vertical farming, robot, artificial intelligence, vision, control
Procedia PDF Downloads 3855 Heat Transfer Modeling of 'Carabao' Mango (Mangifera indica L.) during Postharvest Hot Water Treatments
Authors: Hazel James P. Agngarayngay, Arnold R. Elepaño
Abstract:
Mango is the third most important export fruit in the Philippines. Despite the expanding mango trade in world market, problems on postharvest losses caused by pests and diseases are still prevalent. Many disease control and pest disinfestation methods have been studied and adopted. Heat treatment is necessary to eliminate pests and diseases to be able to pass the quarantine requirements of importing countries. During heat treatments, temperature and time are critical because fruits can easily be damaged by over-exposure to heat. Modeling the process enables researchers and engineers to study the behaviour of temperature distribution within the fruit over time. Understanding physical processes through modeling and simulation also saves time and resources because of reduced experimentation. This research aimed to simulate the heat transfer mechanism and predict the temperature distribution in ‘Carabao' mangoes during hot water treatment (HWT) and extended hot water treatment (EHWT). The simulation was performed in ANSYS CFD Software, using ANSYS CFX Solver. The simulation process involved model creation, mesh generation, defining the physics of the model, solving the problem, and visualizing the results. Boundary conditions consisted of the convective heat transfer coefficient and a constant free stream temperature. The three-dimensional energy equation for transient conditions was numerically solved to obtain heat flux and transient temperature values. The solver utilized finite volume method of discretization. To validate the simulation, actual data were obtained through experiment. The goodness of fit was evaluated using mean temperature difference (MTD). Also, t-test was used to detect significant differences between the data sets. Results showed that the simulations were able to estimate temperatures accurately with MTD of 0.50 and 0.69 °C for the HWT and EHWT, respectively. This indicates good agreement between the simulated and actual temperature values. The data included in the analysis were taken at different locations of probe punctures within the fruit. Moreover, t-tests showed no significant differences between the two data sets. Maximum heat fluxes obtained at the beginning of the treatments were 394.15 and 262.77 J.s-1 for HWT and EHWT, respectively. These values decreased abruptly at the first 10 seconds and gradual decrease was observed thereafter. Data on heat flux is necessary in the design of heaters. If underestimated, the heating component of a certain machine will not be able to provide enough heat required by certain operations. Otherwise, over-estimation will result in wasting of energy and resources. This study demonstrated that the simulation was able to estimate temperatures accurately. Thus, it can be used to evaluate the influence of various treatment conditions on the temperature-time history in mangoes. When combined with information on insect mortality and quality degradation kinetics, it could predict the efficacy of a particular treatment and guide appropriate selection of treatment conditions. The effect of various parameters on heat transfer rates, such as the boundary and initial conditions as well as the thermal properties of the material, can be systematically studied without performing experiments. Furthermore, the use of ANSYS software in modeling and simulation can be explored in modeling various systems and processes.Keywords: heat transfer, heat treatment, mango, modeling and simulation
Procedia PDF Downloads 24654 A Proposal of a Strategic Framework for the Development of Smart Cities: The Argentinian Case
Authors: Luis Castiella, Mariano Rueda, Catalina Palacio
Abstract:
The world’s rapid urbanisation represents an excellent opportunity to implement initiatives that are oriented towards a country’s general development. However, this phenomenon has created considerable pressure on current urban models, pushing them nearer to a crisis. As a result, several factors usually associated with underdevelopment have been steadily rising. Moreover, actions taken by public authorities have not been able to keep up with the speed of urbanisation, which has impeded them from meeting the demands of society, responding with reactionary policies instead of with coordinated, organised efforts. In contrast, the concept of a Smart City which emerged around two decades ago, in principle, represents a city that utilises innovative technologies to remedy the everyday issues of the citizen, empowering them with the newest available technology and information. This concept has come to adopt a wider meaning, including human and social capital, as well as productivity, economic growth, quality of life, environment and participative governance. These developments have also disrupted the management of institutions such as academia, which have become key in generating scientific advancements that can solve pressing problems, and in forming a specialised class that is able to follow up on these breakthroughs. In this light, the Ministry of Modernisation of the Argentinian Nation has created a model that is rooted in the concept of a ‘Smart City’. This effort considered all the dimensions that are at play in an urban environment, with careful monitoring of each sub-dimensions in order to establish the government’s priorities and improving the effectiveness of its operations. In an attempt to ameliorate the overall efficiency of the country’s economic and social development, these focused initiatives have also encouraged citizen participation and the cooperation of the private sector: replacing short-sighted policies with some that are coherent and organised. This process was developed gradually. The first stage consisted in building the model’s structure; the second, at applying the method created on specific case studies and verifying that the mechanisms used respected the desired technical and social aspects. Finally, the third stage consists in the repetition and subsequent comparison of this experiment in order to measure the effects on the ‘treatment group’ over time. The first trial was conducted on 717 municipalities and evaluated the dimension of Governance. Results showed that levels of governmental maturity varied sharply with relation to size: cities with less than 150.000 people had a strikingly lower level of governmental maturity than cities with more than 150.000 people. With the help of this analysis, some important trends and target population were made apparent, which enabled the public administration to focus its efforts and increase its probability of being successful. It also permitted to cut costs, time, and create a dynamic framework in tune with the population’s demands, improving quality of life with sustained efforts to develop social and economic conditions within the territorial structure.Keywords: composite index, comprehensive model, smart cities, strategic framework
Procedia PDF Downloads 17653 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction
Authors: Yan Zhang
Abstract:
Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.Keywords: Internet of Things, machine learning, predictive maintenance, streaming data
Procedia PDF Downloads 383