Search results for: dynamic monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6909

Search results for: dynamic monitoring

4839 Optimal Trajectory Finding of IDP Ventilation Control with Outdoor Air Information and Indoor Health Risk Index

Authors: Minjeong Kim, Seungchul Lee, Iman Janghorban Esfahani, Jeong Tai Kim, ChangKyoo Yoo

Abstract:

A trajectory of set-point of ventilation control systems plays an important role for efficient ventilation inside subway stations since it affects the level of indoor air pollutants and ventilation energy consumption. To maintain indoor air quality (IAQ) at a comfortable range with lower ventilation energy consumption, the optimal trajectory of the ventilation control system needs to be determined. The concentration of air pollutants inside the station shows a diurnal variation in accordance with the variations in the number of passengers and subway frequency. To consider the diurnal variation of IAQ, an iterative dynamic programming (IDP) that searches for a piecewise control policy by separating whole duration into several stages is used. When outdoor air is contaminated by pollutants, it enters the subway station through the ventilation system, which results in the deteriorated IAQ and adverse effects on passenger health. In this study, to consider the influence of outdoor air quality (OAQ), a new performance index of the IDP with the passenger health risk and OAQ is proposed. This study was carried out for an underground subway station at Seoul Metro, Korea. The optimal set-points of the ventilation control system are determined every 3 hours, then, the ventilation controller adjusts the ventilation fan speed according to the optimal set-point changes. Compared to manual ventilation system which is operated irrespective of the OAQ, the IDP-based ventilation control system saves 3.7% of the energy consumption. Compared to the fixed set-point controller which is operated irrespective of the IAQ diurnal variation, the IDP-based controller shows better performance with a 2% decrease in energy consumption, maintaining the comfortable IAQ range inside the station.

Keywords: indoor air quality, iterative dynamic algorithm, outdoor air information, ventilation control system

Procedia PDF Downloads 502
4838 Mapping Intertidal Changes Using Polarimetry and Interferometry Techniques

Authors: Khalid Omari, Rene Chenier, Enrique Blondel, Ryan Ahola

Abstract:

Northern Canadian coasts have vulnerable and very dynamic intertidal zones with very high tides occurring in several areas. The impact of climate change presents challenges not only for maintaining this biodiversity but also for navigation safety adaptation due to the high sediment mobility in these coastal areas. Thus, frequent mapping of shorelines and intertidal changes is of high importance. To help in quantifying the changes in these fragile ecosystems, remote sensing provides practical monitoring tools at local and regional scales. Traditional methods based on high-resolution optical sensors are often used to map intertidal areas by benefiting of the spectral response contrast of intertidal classes in visible, near and mid-infrared bands. Tidal areas are highly reflective in visible bands mainly because of the presence of fine sand deposits. However, getting a cloud-free optical data that coincide with low tides in intertidal zones in northern regions is very difficult. Alternatively, the all-weather capability and daylight-independence of the microwave remote sensing using synthetic aperture radar (SAR) can offer valuable geophysical parameters with a high frequency revisit over intertidal zones. Multi-polarization SAR parameters have been used successfully in mapping intertidal zones using incoherence target decomposition. Moreover, the crustal displacements caused by ocean tide loading may reach several centimeters that can be detected and quantified across differential interferometric synthetic aperture radar (DInSAR). Soil moisture change has a significant impact on both the coherence and the backscatter. For instance, increases in the backscatter intensity associated with low coherence is an indicator for abrupt surface changes. In this research, we present primary results obtained following our investigation of the potential of the fully polarimetric Radarsat-2 data for mapping an inter-tidal zone located on Tasiujaq on the south-west shore of Ungava Bay, Quebec. Using the repeat pass cycle of Radarsat-2, multiple seasonal fine quad (FQ14W) images are acquired over the site between 2016 and 2018. Only 8 images corresponding to low tide conditions are selected and used to build an interferometric stack of data. The observed displacements along the line of sight generated using HH and VV polarization are compared with the changes noticed using the Freeman Durden polarimetric decomposition and Touzi degree of polarization extrema. Results show the consistency of both approaches in their ability to monitor the changes in intertidal zones.

Keywords: SAR, degree of polarization, DInSAR, Freeman-Durden, polarimetry, Radarsat-2

Procedia PDF Downloads 138
4837 Gammarus: Asellus Ratio as an Index of Organic Pollution: A Case Study in Markeaton, Kedleston Hall, and Allestree Park Lakes Derby, UK

Authors: Usman Bawa

Abstract:

Macro-invertebrates have been used to monitor organic pollution in rivers and streams. Several biotic indices based on macro-invertebrates have been developed over the years including the Biological Monitoring Working Party (BMWP). A new biotic index, the Gammarus:Asellus ratio has been recently proposed as an index of organic pollution. This study tested the validity of the Gammarus:Asellus ratio as an index of organic pollution, by examining the relationship between the Gammarus:Asellus ratio and physical-chemical parameters, and other biotic indices such as BMWP and, Average Score Per Taxon (ASPT) from lakes and streams at Markeaton Park, Allestree Park, and Kedleston Hall, Derbyshire. Macro invertebrates were sampled using the standard five-minute kick sampling techniques physical and chemical environmental variables were obtained based on standard sampling techniques. Eighteen sites were sampled, six sites from Markeaton Park (three sites across the stream and three sites across the lake). Six sites each were also sampled from Allestree Park and Kedleston Hall lakes. The Gammarus:Asellus ratio showed an opposite significant positive correlations with parameters indicative of organic pollution such as the level of nitrates, phosphates, and calcium and also revealed a negatively significant correlations with other biotic indices (BMWP/ASPT). The BMWP score correlated positively significantly with some water quality parameters such as dissolved oxygen and flow rate, but revealed no correlations with other chemical environmental variables. The BMWP score was significantly higher in the stream than the lake in Markeaton Park, also The ASPT scores appear to be significantly higher in the upper Lakes than the middle and lower lakes. This study has further strengthened the use of BMWP/ASPT score as an index of organic pollution. But, additional application is required to validate the use of Gammarus:Asellus as a rapid bio monitoring tool.

Keywords: Asellus, biotic index, Gammarus, macro invertebrates, organic pollution

Procedia PDF Downloads 347
4836 Evaluation of Static Modulus of Elasticity Depending on Concrete Compressive Strength

Authors: Klara Krizova, Rudolf Hela

Abstract:

The paper is focused on monitoring of dependencies of different composition concretes on elastic modulus values. To obtain a summary of elastic modulus development independence of concrete composition design variability was the objective of the experiment. Essential part of this work was initiated as a reaction to building practice when questions of elastic moduli arose at the same time and which mostly did not obtain the required and expected values from concrete constructions. With growing interest in this theme the elastic modulus questions have been developing further.

Keywords: concrete, compressive strength, modulus of elasticity, EuroCode 2

Procedia PDF Downloads 456
4835 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning

Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds is not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.

Keywords: structural healthcare monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation

Procedia PDF Downloads 434
4834 Audit and Assurance Program for AI-Based Technologies

Authors: Beatrice Arthur

Abstract:

The rapid development of artificial intelligence (AI) has transformed various industries, enabling faster and more accurate decision-making processes. However, with these advancements come increased risks, including data privacy issues, systemic biases, and challenges related to transparency and accountability. As AI technologies become more integrated into business processes, there is a growing need for comprehensive auditing and assurance frameworks to manage these risks and ensure ethical use. This paper provides a literature review on AI auditing and assurance programs, highlighting the importance of adapting traditional audit methodologies to the complexities of AI-driven systems. Objective: The objective of this review is to explore current AI audit practices and their role in mitigating risks, ensuring accountability, and fostering trust in AI systems. The study aims to provide a structured framework for developing audit programs tailored to AI technologies while also investigating how AI impacts governance, risk management, and regulatory compliance in various sectors. Methodology: This research synthesizes findings from academic publications and industry reports from 2014 to 2024, focusing on the intersection of AI technologies and IT assurance practices. The study employs a qualitative review of existing audit methodologies and frameworks, particularly the COBIT 2019 framework, to understand how audit processes can be aligned with AI governance and compliance standards. The review also considers real-time auditing as an emerging necessity for influencing AI system design during early development stages. Outcomes: Preliminary findings indicate that while AI auditing is still in its infancy, it is rapidly gaining traction as both a risk management strategy and a potential driver of business innovation. Auditors are increasingly being called upon to develop controls that address the ethical and operational risks posed by AI systems. The study highlights the need for continuous monitoring and adaptable audit techniques to handle the dynamic nature of AI technologies. Future Directions: Future research will explore the development of AI-specific audit tools and real-time auditing capabilities that can keep pace with evolving technologies. There is also a need for cross-industry collaboration to establish universal standards for AI auditing, particularly in high-risk sectors like healthcare and finance. Further work will involve engaging with industry practitioners and policymakers to refine the proposed governance and audit frameworks. Funding/Support Acknowledgements: This research is supported by the Information Systems Assurance Management Program at Concordia University of Edmonton.

Keywords: AI auditing, assurance, risk management, governance, COBIT 2019, transparency, accountability, machine learning, compliance

Procedia PDF Downloads 26
4833 Dynamic Thin Film Morphology near the Contact Line of a Condensing Droplet: Nanoscale Resolution

Authors: Abbasali Abouei Mehrizi, Hao Wang

Abstract:

The thin film region is so important in heat transfer process due to its low thermal resistance. On the other hand, the dynamic contact angle is crucial boundary condition in numerical simulations. While different modeling contains different assumption of the microscopic contact angle, none of them has experimental evidence for their assumption, and the contact line movement mechanism still remains vague. The experimental investigation in complete wetting is more popular than partial wetting, especially in nanoscale resolution when there is sharp variation in thin film profile in partial wetting. In the present study, an experimental investigation of water film morphology near the triple phase contact line during the condensation is performed. The state-of-the-art tapping-mode atomic force microscopy (TM-AFM) was used to get the high-resolution film profile goes down to 2 nm from the contact line. The droplet was put in saturated chamber. The pristine silicon wafer was used as a smooth substrate. The substrate was heated by PI film heater. So the chamber would be over saturated by droplet evaporation. By turning off the heater, water vapor gradually started condensing on the droplet and the droplet advanced. The advancing speed was less than 20 nm/s. The dominant results indicate that in contrast to nonvolatile liquid, the film profile goes down straightly to the surface till 2 nm from the substrate. However, small bending has been observed below 20 nm, occasionally. So, it can be claimed that for the low condensation rate the microscopic contact angle equals to the optically detectable macroscopic contact angle. This result can be used to simplify the heat transfer modeling in partial wetting. The experimental result of the equality of microscopic and macroscopic contact angle can be used as a solid evidence for using this boundary condition in numerical simulation.

Keywords: advancing, condensation, microscopic contact angle, partial wetting

Procedia PDF Downloads 298
4832 Innovation in the Provision of Medical Services in the Field of Qualified Sports and Services Related to the Therapy of Metabolism Disorders and the Treatment of Obesity

Authors: Jerzy Slowik, Elzbieta Grochowska-Niedworok

Abstract:

The analysis of the market needs and trends in both treatment and prophylaxis shows the growing need to implement comprehensive solutions that would enable safe contact of the beneficiaries with the therapeutic and diagnostic support group. Based on the evaluation of the medical and sports industry services market, projects co-financed by the EFRR in the form of comprehensive care systems using IT tools for patients under treatment in the field of obesity and metabolism using the system were implemented under the Regional Operational Program of the Silesian Voivodeship for 2014-2020. SFAO 1.0 (Support for the Fight Against Obesity) number of the WND-RPSL project. 01.02.00-24-06EA / 16) as well as for competitors in qualified sports SK system (qualified sports) project number WND-RPSL. 01.02.00-24-0630 / 17-002. The service provided in accordance with SFAO 1.0 has shown a wide range of therapy possibilities - from monitoring the body's reactions during sports activities of healthy people to remote care for sick patients. As a result of the introduction of an innovative service, it was possible to increase the effectiveness of the therapy, which was manifested in the reduction of the starting doses of drugs by 10%, improvement of the efficiency of the respiratory and blood circulation system, and a 10% increase in bone density. Innovation in the provision of medical services in the field of qualified sports SK was a response to the needs of the athletes and their parents, coaches, physiotherapists, dieticians, and doctors who take care of people actively practicing qualified sports. The creation of the platform made it possible to constantly monitor the trainers necessary for both the proper training process and the control over the health of patients. Monitoring the patient's health by a specialized team in the field of various specialties allows for the proper targeting of the treatment and training process due to the increase in the availability of medical counseling. Specialists taking care of the patient can provide additional advice and modify the medical treatment of the patient on an ongoing basis, which is why we are dealing with a holistic approach.

Keywords: innovation of medical services, sport, obesity, innovation

Procedia PDF Downloads 128
4831 Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake

Authors: V. Markogianni, D. Kalivas, G. Petropoulos, E. Dimitriou

Abstract:

Lake water quality monitoring in combination with the use of earth observation products constitutes a major component in many water quality monitoring programs. Landsat 8 images of Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were used in order to explore the possibility of Landsat 8 to estimate water quality parameters and particularly CDOM absorption at specific wavelengths, chlorophyll-a and nutrient concentrations in this oligotrophic freshwater body, characterized by inexistent quantitative, temporal and spatial variability. Water samples have been collected at 22 different stations, on late August of 2014 and the satellite image of the same date was used to statistically correlate the in-situ measurements with various combinations of Landsat 8 bands in order to develop algorithms that best describe those relationships and calculate accurately the aforementioned water quality components. Optimal models were applied to the image of late October of 2013 and the validation of the results was conducted through their comparison with the respective available in-situ data of 2013. Initial results indicated the limited ability of the Landsat 8 sensor to accurately estimate water quality components in an oligotrophic waterbody. As resulted by the validation process, ammonium concentrations were proved to be the most accurately estimated component (R = 0.7), followed by chl-a concentration (R = 0.5) and the CDOM absorption at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were measured as lower than the detection limit of the instrument used, hence no statistical elaboration was conducted. On the other hand, multiple linear regression among reflectance measures and total phosphorus concentrations resulted in low and statistical insignificant correlations. Our results were concurrent with other studies in international literature, indicating that estimations for eutrophic and mesotrophic lakes are more accurate than oligotrophic, owing to the lack of suspended particles that are detectable by satellite sensors. Nevertheless, although those predictive models, developed and applied to Trichonis oligotrophic lake are less accurate, may still be useful indicators of its water quality deterioration.

Keywords: landsat 8, oligotrophic lake, remote sensing, water quality

Procedia PDF Downloads 397
4830 Study on Optimal Control Strategy of PM2.5 in Wuhan, China

Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun

Abstract:

In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.

Keywords: grey relational degree, multiple linear regression, membership function, nonlinear programming

Procedia PDF Downloads 301
4829 IT System in the Food Supply Chain Safety, Application in SMEs Sector

Authors: Mohsen Shirani, Micaela Demichela

Abstract:

Food supply chain is one of the most complex supply chain networks due to its perishable nature and customer oriented products, and food safety is the major concern for this industry. IT system could help to minimize the production and consumption of unsafe food by controlling and monitoring the entire system. However, there have been many issues in adoption of IT system in this industry specifically within SMEs sector. With this regard, this study presents a novel approach to use IT and tractability systems in the food supply chain, using application of RFID and central database.

Keywords: food supply chain, IT system, safety, SME

Procedia PDF Downloads 479
4828 Pervasive Computing: Model to Increase Arable Crop Yield through Detection Intrusion System (IDS)

Authors: Idowu Olugbenga Adewumi, Foluke Iyabo Oluwatoyinbo

Abstract:

Presently, there are several discussions on the food security with increase in yield of arable crop throughout the world. This article, briefly present research efforts to create digital interfaces to nature, in particular to area of crop production in agriculture with increase in yield with interest on pervasive computing. The approach goes beyond the use of sensor networks for environmental monitoring but also by emphasizing the development of a system architecture that detect intruder (Intrusion Process) which reduce the yield of the farmer at the end of the planting/harvesting period. The objective of the work is to set a model for setting up the hand held or portable device for increasing the quality and quantity of arable crop. This process incorporates the use of infrared motion image sensor with security alarm system which can send a noise signal to intruder on the farm. This model of the portable image sensing device in monitoring or scaring human, rodent, birds and even pests activities will reduce post harvest loss which will increase the yield on farm. The nano intelligence technology was proposed to combat and minimize intrusion process that usually leads to low quality and quantity of produce from farm. Intranet system will be in place with wireless radio (WLAN), router, server, and client computer system or hand held device e.g PDAs or mobile phone. This approach enables the development of hybrid systems which will be effective as a security measure on farm. Since, precision agriculture has developed with the computerization of agricultural production systems and the networking of computerized control systems. In the intelligent plant production system of controlled greenhouses, information on plant responses, measured by sensors, is used to optimize the system. Further work must be carry out on modeling using pervasive computing environment to solve problems of agriculture, as the use of electronics in agriculture will attracts more youth involvement in the industry.

Keywords: pervasive computing, intrusion detection, precision agriculture, security, arable crop

Procedia PDF Downloads 406
4827 Alternative Method of Determining Seismic Loads on Buildings Without Response Spectrum Application

Authors: Razmik Atabekyan, V. Atabekyan

Abstract:

This article discusses a new alternative method for determination of seismic loads on buildings, based on resistance of structures to deformations of vibrations. The basic principles for determining seismic loads by spectral method were developed in 40… 50ies of the last century and further have been improved to pursuit true assessments of seismic effects. The base of the existing methods to determine seismic loads is response spectrum or dynamicity coefficient β (norms of RF), which are not definitively established. To this day there is no single, universal method for the determination of seismic loads and when trying to apply the norms of different countries, significant discrepancies between the results are obtained. On the other hand there is a contradiction of the results of macro seismic surveys of strong earthquakes with the principle of the calculation based on accelerations. It is well-known, on soft soils there is an increase of destructions (mainly due to large displacements), even though the accelerations decreases. Obviously, the seismic impacts are transmitted to the building through foundation, but paradoxically, the existing methods do not even include foundation data. Meanwhile acceleration of foundation of the building can differ several times from the acceleration of the ground. During earthquakes each building has its own peculiarities of behavior, depending on the interaction between the soil and the foundations, their dynamic characteristics and many other factors. In this paper we consider a new, alternative method of determining the seismic loads on buildings, without the use of response spectrum. The following main conclusions: 1) Seismic loads are revealed at the foundation level, which leads to redistribution and reduction of seismic loads on structures. 2) The proposed method is universal and allows determine the seismic loads without the use of response spectrum and any implicit coefficients. 3) The possibility of taking into account important factors such as the strength characteristics of the soils, the size of the foundation, the angle of incidence of the seismic ray and others. 4) Existing methods can adequately determine the seismic loads on buildings only for first form of vibrations, at an average soil conditions.

Keywords: seismic loads, response spectrum, dynamic characteristics of buildings, momentum

Procedia PDF Downloads 505
4826 Rheological Study of Natural Sediments: Application in Filling of Estuaries

Authors: S. Serhal, Y. Melinge, D. Rangeard, F. Hage Chehadeh

Abstract:

Filling of estuaries is an international problem that can cause economic and environmental damage. This work aims the study of the rheological structuring mechanisms of natural sedimentary liquid-solid mixture in estuaries in order to better understand their filling. The estuary of the Rance river, located in Brittany, France is particularly targeted by the study. The aim is to provide answers on the rheological behavior of natural sediments by detecting structural factors influencing the rheological parameters. So we can better understand the fillings estuarine areas and especially consider sustainable solutions of ‘cleansing’ of these areas. The sediments were collected from the trap of Lyvet in Rance estuary. This trap was created by the association COEUR (Comité Opérationnel des Elus et Usagers de la Rance) in 1996 in order to facilitate the cleansing of the estuary. It creates a privileged area for the deposition of sediments and consequently makes the cleansing of the estuary easier. We began our work with a preliminary study to establish the trend of the rheological behavior of the suspensions and to specify the dormant phase which precedes the beginning of the biochemical reactivity of the suspensions. Then we highlight the visco-plastic character at younger age using the Kinexus rheometer, plate-plate geometry. This rheological behavior of suspensions is represented by the Bingham model using dynamic yield stress and viscosity which can be a function of volume fraction, granular extent, and chemical reactivity. The evolution of the viscosity as a function of the solid volume fraction is modeled by the Krieger-Dougherty model. On the other hand, the analysis of the dynamic yield stress showed a fairly functional link with the solid volume fraction.

Keywords: estuaries, rheological behavior, sediments, Kinexus rheometer, Bingham model, viscosity, yield stress

Procedia PDF Downloads 160
4825 Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame

Authors: Keyvan Ramin

Abstract:

The geometric nonlinearity of Off-Diagonal Bracing System (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three-dimensional finite element modeling. Non-linear static analysis is considered to obtain performance level and seismic behavior, and then the response modification factors calculated from each model’s pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan, and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behavior and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.

Keywords: FEM, seismic behaviour, pushover analysis, geometric nonlinearity, time history analysis, equivalent viscous damping, passive control, crack investigation, hysteresis curve

Procedia PDF Downloads 378
4824 Slope Stability Analysis and Evaluation of Road Cut Slope in Case of Goro to Abagada Road, Adama

Authors: Ezedin Geta Seid

Abstract:

Slope failures are among the common geo-environmental natural hazards in the hilly and mountainous terrain of the world causing damages to human life and destruction of infrastructures. In Ethiopia, the demand for the construction of infrastructures, especially highways and railways, has increased to connect the developmental centers. However, the failure of roadside slopes formed due to the difficulty of geographical locations is the major difficulty for this development. As a result, a comprehensive site-specific investigation of destabilizing agents and a suitable selection of slope profiles are needed during design. Hence, this study emphasized the stability analysis and performance evaluation of slope profiles (single slope, multi-slope, and benched slope). The analysis was conducted for static and dynamic loading conditions using limit equilibrium (slide software) and finite element method (Praxis software). The analysis results in selected critical sections show that the slope is marginally stable, with FS varying from 1.2 to 1.5 in static conditions, and unstable with FS below 1 in dynamic conditions. From the comparison of analysis methods, the finite element method provides more valuable information about the failure surface of a slope than limit equilibrium analysis. Performance evaluation of geometric profiles shows that geometric modification provides better and more economical slope stability. Benching provides significant stability for cut slopes (i.e., the use of 2m and 3m bench improves the factor of safety by 7.5% and 12% from a single slope profile). The method is more effective on steep slopes. Similarly, the use of a multi-slope profile improves the stability of the slope in stratified soil with varied strength. The performance is more significant when it is used in combination with benches. The study also recommends drainage control and slope reinforcement as a remedial measure for cut slopes.

Keywords: slope failure, slope profile, bench slope, multi slope

Procedia PDF Downloads 34
4823 Sediment Transport Monitoring in the Port of Veracruz Expansion Project

Authors: Francisco Liaño-Carrera, José Isaac Ramírez-Macías, David Salas-Monreal, Mayra Lorena Riveron-Enzastiga, Marcos Rangel-Avalos, Adriana Andrea Roldán-Ubando

Abstract:

The construction of most coastal infrastructure developments around the world are usually made considering wave height, current velocities and river discharges; however, little effort has been paid to surveying sediment transport during dredging or the modification to currents outside the ports or marinas during and after the construction. This study shows a complete survey during the construction of one of the largest ports of the Gulf of Mexico. An anchored Acoustic Doppler Current Velocity profiler (ADCP), a towed ADCP and a combination of model outputs were used at the Veracruz port construction in order to describe the hourly sediment transport and current modifications in and out of the new port. Owing to the stability of the system the new port was construction inside Vergara Bay, a low wave energy system with a tidal range of up to 0.40 m. The results show a two-current system pattern within the bay. The north side of the bay has an anticyclonic gyre, while the southern part of the bay shows a cyclonic gyre. Sediment transport trajectories were made every hour using the anchored ADCP, a numerical model and the weekly data obtained from the towed ADCP within the entire bay. The sediment transport trajectories were carefully tracked since the bay is surrounded by coral reef structures which are sensitive to sedimentation rate and water turbidity. The survey shows that during dredging and rock input used to build the wave breaker sediments were locally added (< 2500 m2) and local currents disperse it in less than 4 h. While the river input located in the middle of the bay and the sewer system plant may add more than 10 times this amount during a rainy day or during the tourist season. Finally, the coastal line obtained seasonally with a drone suggests that the southern part of the bay has not been modified by the construction of the new port located in the northern part of the bay, owing to the two subsystem division of the bay.

Keywords: Acoustic Doppler Current Profiler, construction around coral reefs, dredging, port construction, sediment transport monitoring,

Procedia PDF Downloads 228
4822 Inverse Problem Method for Microwave Intrabody Medical Imaging

Authors: J. Chamorro-Servent, S. Tassani, M. A. Gonzalez-Ballester, L. J. Roca, J. Romeu, O. Camara

Abstract:

Electromagnetic and microwave imaging (MWI) have been used in medical imaging in the last years, being the most common applications of breast cancer and stroke detection or monitoring. In those applications, the subject or zone to observe is surrounded by a number of antennas, and the Nyquist criterium can be satisfied. Additionally, the space between the antennas (transmitting and receiving the electromagnetic fields) and the zone to study can be prepared in a homogeneous scenario. However, this may differ in other cases as could be intracardiac catheters, stomach monitoring devices, pelvic organ systems, liver ablation monitoring devices, or uterine fibroids’ ablation systems. In this work, we analyzed different MWI algorithms to find the most suitable method for dealing with an intrabody scenario. Due to the space limitations usually confronted on those applications, the device would have a cylindrical configuration of a maximum of eight transmitters and eight receiver antennas. This together with the positioning of the supposed device inside a body tract impose additional constraints in order to choose a reconstruction method; for instance, it inhabitants the use of well-known algorithms such as filtered backpropagation for diffraction tomography (due to the unusual configuration with probes enclosed by the imaging region). Finally, the difficulty of simulating a realistic non-homogeneous background inside the body (due to the incomplete knowledge of the dielectric properties of other tissues between the antennas’ position and the zone to observe), also prevents the use of Born and Rytov algorithms due to their limitations with a heterogeneous background. Instead, we decided to use a time-reversed algorithm (mostly used in geophysics) due to its characteristics of ignoring heterogeneities in the background medium, and of focusing its generated field onto the scatters. Therefore, a 2D time-reversed finite difference time domain was developed based on the time-reversed approach for microwave breast cancer detection. Simultaneously an in-silico testbed was also developed to compare ground-truth dielectric properties with corresponding microwave imaging reconstruction. Forward and inverse problems were computed varying: the frequency used related to a small zone to observe (7, 7.5 and 8 GHz); a small polyp diameter (5, 7 and 10 mm); two polyp positions with respect to the closest antenna (aligned or disaligned); and the (transmitters-to-receivers) antenna combination used for the reconstruction (1-1, 8-1, 8-8 or 8-3). Results indicate that when using the existent time-reversed method for breast cancer here for the different combinations of transmitters and receivers, we found false positives due to the high degrees of freedom and unusual configuration (and the possible violation of Nyquist criterium). Those false positives founded in 8-1 and 8-8 combinations, highly reduced with the 1-1 and 8-3 combination, being the 8-3 configuration de most suitable (three neighboring receivers at each time). The 8-3 configuration creates a region-of-interest reduced problem, decreasing the ill-posedness of the inverse problem. To conclude, the proposed algorithm solves the main limitations of the described intrabody application, successfully detecting the angular position of targets inside the body tract.

Keywords: FDTD, time-reversed, medical imaging, microwave imaging

Procedia PDF Downloads 127
4821 Research and Implementation of Cross-domain Data Sharing System in Net-centric Environment

Authors: Xiaoqing Wang, Jianjian Zong, Li Li, Yanxing Zheng, Jinrong Tong, Mao Zhan

Abstract:

With the rapid development of network and communication technology, a great deal of data has been generated in different domains of a network. These data show a trend of increasing scale and more complex structure. Therefore, an effective and flexible cross-domain data-sharing system is needed. The Cross-domain Data Sharing System(CDSS) in a net-centric environment is composed of three sub-systems. The data distribution sub-system provides data exchange service through publish-subscribe technology that supports asynchronism and multi-to-multi communication, which adapts to the needs of the dynamic and large-scale distributed computing environment. The access control sub-system adopts Attribute-Based Access Control(ABAC) technology to uniformly model various data attributes such as subject, object, permission and environment, which effectively monitors the activities of users accessing resources and ensures that legitimate users get effective access control rights within a legal time. The cross-domain access security negotiation subsystem automatically determines the access rights between different security domains in the process of interactive disclosure of digital certificates and access control policies through trust policy management and negotiation algorithms, which provides an effective means for cross-domain trust relationship establishment and access control in a distributed environment. The CDSS’s asynchronous,multi-to-multi and loosely-coupled communication features can adapt well to data exchange and sharing in dynamic, distributed and large-scale network environments. Next, we will give CDSS new features to support the mobile computing environment.

Keywords: data sharing, cross-domain, data exchange, publish-subscribe

Procedia PDF Downloads 125
4820 Fragility Analysis of a Soft First-Story Building in Mexico City

Authors: Rene Jimenez, Sonia E. Ruiz, Miguel A. Orellana

Abstract:

On 09/19/2017, a Mw = 7.1 intraslab earthquake occurred in Mexico causing the collapse of about 40 buildings. Many of these were 5- or 6-story buildings with soft first story; so, it is desirable to perform a structural fragility analysis of typical structures representative of those buildings and to propose a reliable structural solution. Here, a typical 5-story building constituted by regular R/C moment-resisting frames in the first story and confined masonry walls in the upper levels, similar to the collapsed structures on the 09/19/2017 Mexico earthquake, is analyzed. Three different structural solutions of the 5-story building are considered: S1) it is designed in accordance with the Mexico City Building Code-2004; S2) then, the column dimensions of the first story corresponding to S1 are reduced, and S3) viscous dampers are added at the first story of solution S2. A number of dynamic incremental analyses are performed for each structural solution, using a 3D structural model. The hysteretic behavior model of the masonry was calibrated with experiments performed at the Laboratory of Structures at UNAM. Ten seismic ground motions are used to excite the structures; they correspond to ground motions recorded in intermediate soil of Mexico City with a dominant period around 1s, where the structures are located. The fragility curves of the buildings are obtained for different values of the maximum inter-story drift demands. Results show that solutions S1 and S3 give place to similar probabilities of exceedance of a given value of inter-story drift for the same seismic intensity, and that solution S2 presents a higher probability of exceedance for the same seismic intensity and inter-story drift demand. Therefore, it is concluded that solution S3 (which corresponds to the building with soft first story and energy dissipation devices) can be a reliable solution from the structural point of view.

Keywords: demand hazard analysis, fragility curves, incremental dynamic analyzes, soft-first story, structural capacity

Procedia PDF Downloads 178
4819 In Silico Exploration of Quinazoline Derivatives as EGFR Inhibitors for Lung Cancer: A Multi-Modal Approach Integrating QSAR-3D, ADMET, Molecular Docking, and Molecular Dynamics Analyses

Authors: Mohamed Moussaoui

Abstract:

A series of thirty-one potential inhibitors targeting the epidermal growth factor receptor kinase (EGFR), derived from quinazoline, underwent 3D-QSAR analysis using CoMFA and CoMSIA methodologies. The training and test sets of quinazoline derivatives were utilized to construct and validate the QSAR models, respectively, with dataset alignment performed using the lowest energy conformer of the most active compound. The best-performing CoMFA and CoMSIA models demonstrated impressive determination coefficients, with R² values of 0.981 and 0.978, respectively, and Leave One Out cross-validation determination coefficients, Q², of 0.645 and 0.729, respectively. Furthermore, external validation using a test set of five compounds yielded predicted determination coefficients, R² test, of 0.929 and 0.909 for CoMFA and CoMSIA, respectively. Building upon these promising results, eighteen new compounds were designed and assessed for drug likeness and ADMET properties through in silico methods. Additionally, molecular docking studies were conducted to elucidate the binding interactions between the selected compounds and the enzyme. Detailed molecular dynamics simulations were performed to analyze the stability, conformational changes, and binding interactions of the quinazoline derivatives with the EGFR kinase. These simulations provided deeper insights into the dynamic behavior of the compounds within the active site. This comprehensive analysis enhances the understanding of quinazoline derivatives as potential anti-cancer agents and provides valuable insights for lead optimization in the early stages of drug discovery, particularly for developing highly potent anticancer therapeutics

Keywords: 3D-QSAR, CoMFA, CoMSIA, ADMET, molecular docking, quinazoline, molecular dynamic, egfr inhibitors, lung cancer, anticancer

Procedia PDF Downloads 50
4818 Gas Flow, Time, Distance Dynamic Modelling

Authors: A. Abdul-Ameer

Abstract:

The equations governing the distance, pressure- volume flow relationships for the pipeline transportation of gaseous mixtures, are considered. A derivation based on differential calculus, for an element of this system model, is addressed. Solutions, yielding the input- output response following pressure changes, are reviewed. The technical problems associated with these analytical results are identified. Procedures resolving these difficulties providing thereby an attractive, simple, analysis route are outlined. Computed responses, validating thereby calculated predictions, are presented.

Keywords: pressure, distance, flow, dissipation, models

Procedia PDF Downloads 476
4817 Rapid and Sensitive Detection: Biosensors as an Innovative Analytical Tools

Authors: Sylwia Baluta, Joanna Cabaj, Karol Malecha

Abstract:

The evolution of biosensors was driven by the need for faster and more versatile analytical methods for application in important areas including clinical, diagnostics, food analysis or environmental monitoring, with minimum sample pretreatment. Rapid and sensitive neurotransmitters detection is extremely important in modern medicine. These compounds mainly occur in the brain and central nervous system of mammals. Any changes in the neurotransmitters concentration may lead to many diseases, such as Parkinson’s or schizophrenia. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements.

Keywords: adrenaline, biosensor, dopamine, laccase, tyrosinase

Procedia PDF Downloads 144
4816 Bridge Damage Detection and Stiffness Reduction Using Vibration Data: Experimental Investigation on a Small Scale Steel Bridge

Authors: Mirco Tarozzi, Giacomo Pignagnoli, Andrea Benedetti

Abstract:

The design of planning maintenance of civil structures often requires the evaluation of their level of safety in order to be able to choose which structure, and in which measure, it needs a structural retrofit. This work deals with the evaluation of the stiffness reduction of a scaled steel deck due to the presence of localized damages. The dynamic tests performed on it have shown the variability of its main frequencies linked to the gradual reduction of its rigidity. This deck consists in a steel grillage of four secondary beams and three main beams linked to a concrete slab. This steel deck is 6 m long and 3 m wide and it rests on two abutments made of concrete. By processing the signals of the accelerations due to a random excitation of the deck, the main natural frequencies of this bridge have been extracted. In order to assign more reliable parameters to the numerical model of the deck, some load tests have been performed and the mechanical property of the materials and the supports have been obtained. The two external beams have been cut at one third of their length and the structural strength has been restored by the design of a bolted plate. The gradual loss of the bolts and the plates removal have made the simulation of localized damage possible. In order to define the relationship between frequency variation and loss in stiffness, the identification of its natural frequencies has been performed, before and after the occurrence of the damage, corresponding to each step. The study of the relationship between stiffness losses and frequency shifts has been reported in this paper: the square of the frequency variation due to the presence of the damage is proportional to the ratio between the rigidities. This relationship can be used to quantify the loss in stiffness of a real scale bridge in an efficient way.

Keywords: damage detection, dynamic test, frequency shifts, operational modal analysis, steel bridge

Procedia PDF Downloads 161
4815 Diagnostic Contribution of the MMSE-2:EV in the Detection and Monitoring of the Cognitive Impairment: Case Studies

Authors: Cornelia-Eugenia Munteanu

Abstract:

The goal of this paper is to present the diagnostic contribution that the screening instrument, Mini-Mental State Examination-2: Expanded Version (MMSE-2:EV), brings in detecting the cognitive impairment or in monitoring the progress of degenerative disorders. The diagnostic signification is underlined by the interpretation of the MMSE-2:EV scores, resulted from the test application to patients with mild and major neurocognitive disorders. The original MMSE is one of the most widely used screening tools for detecting the cognitive impairment, in clinical settings, but also in the field of neurocognitive research. Now, the practitioners and researchers are turning their attention to the MMSE-2. To enhance its clinical utility, the new instrument was enriched and reorganized in three versions (MMSE-2:BV, MMSE-2:SV and MMSE-2:EV), each with two forms: blue and red. The MMSE-2 was adapted and used successfully in Romania since 2013. The cases were selected from current practice, in order to cover vast and significant neurocognitive pathology: mild cognitive impairment, Alzheimer’s disease, vascular dementia, mixed dementia, Parkinson’s disease, conversion of the mild cognitive impairment into Alzheimer’s disease. The MMSE-2:EV version was used: it was applied one month after the initial assessment, three months after the first reevaluation and then every six months, alternating the blue and red forms. Correlated with age and educational level, the raw scores were converted in T scores and then, with the mean and the standard deviation, the z scores were calculated. The differences of raw scores between the evaluations were analyzed from the point of view of statistic signification, in order to establish the progression in time of the disease. The results indicated that the psycho-diagnostic approach for the evaluation of the cognitive impairment with MMSE-2:EV is safe and the application interval is optimal. The alternation of the forms prevents the learning phenomenon. The diagnostic accuracy and efficient therapeutic conduct derive from the usage of the national test norms. In clinical settings with a large flux of patients, the application of the MMSE-2:EV is a safe and fast psycho-diagnostic solution. The clinicians can draw objective decisions and for the patients: it doesn’t take too much time and energy, it doesn’t bother them and it doesn’t force them to travel frequently.

Keywords: MMSE-2, dementia, cognitive impairment, neuropsychology

Procedia PDF Downloads 515
4814 Assessment of Multi-Domain Energy Systems Modelling Methods

Authors: M. Stewart, Ameer Al-Khaykan, J. M. Counsell

Abstract:

Emissions are a consequence of electricity generation. A major option for low carbon generation, local energy systems featuring Combined Heat and Power with solar PV (CHPV) has significant potential to increase energy performance, increase resilience, and offer greater control of local energy prices while complementing the UK’s emissions standards and targets. Recent advances in dynamic modelling and simulation of buildings and clusters of buildings using the IDEAS framework have successfully validated a novel multi-vector (simultaneous control of both heat and electricity) approach to integrating the wide range of primary and secondary plant typical of local energy systems designs including CHP, solar PV, gas boilers, absorption chillers and thermal energy storage, and associated electrical and hot water networks, all operating under a single unified control strategy. Results from this work indicate through simulation that integrated control of thermal storage can have a pivotal role in optimizing system performance well beyond the present expectations. Environmental impact analysis and reporting of all energy systems including CHPV LES presently employ a static annual average carbon emissions intensity for grid supplied electricity. This paper focuses on establishing and validating CHPV environmental performance against conventional emissions values and assessment benchmarks to analyze emissions performance without and with an active thermal store in a notional group of non-domestic buildings. Results of this analysis are presented and discussed in context of performance validation and quantifying the reduced environmental impact of CHPV systems with active energy storage in comparison with conventional LES designs.

Keywords: CHPV, thermal storage, control, dynamic simulation

Procedia PDF Downloads 244
4813 Integration of Gravity and Seismic Methods in the Geometric Characterization of a Dune Reservoir: Case of the Zouaraa Basin, NW Tunisia

Authors: Marwa Djebbi, Hakim Gabtni

Abstract:

Gravity is a continuously advancing method that has become a mature technology for geological studies. Increasingly, it has been used to complement and constrain traditional seismic data and even used as the only tool to get information of the sub-surface. In fact, in some regions the seismic data, if available, are of poor quality and hard to be interpreted. Such is the case for the current study area. The Nefza zone is part of the Tellian fold and thrust belt domain in the north west of Tunisia. It is essentially made of a pile of allochthonous units resulting from a major Neogene tectonic event. Its tectonic and stratigraphic developments have always been subject of controversies. Considering the geological and hydrogeological importance of this area, a detailed interdisciplinary study has been conducted integrating geology, seismic and gravity techniques. The interpretation of Gravity data allowed the delimitation of the dune reservoir and the identification of the regional lineaments contouring the area. It revealed the presence of three gravity lows that correspond to the dune of Zouara and Ouchtata separated along with a positive gravity axis espousing the Ain Allega_Aroub Er Roumane axe. The Bouguer gravity map illustrated the compartmentalization of the Zouara dune into two depressions separated by a NW-SE anomaly trend. This constitution was confirmed by the vertical derivative map which showed the individualization of two depressions with slightly different anomaly values. The horizontal gravity gradient magnitude was performed in order to determine the different geological features present in the studied area. The latest indicated the presence of NE-SW parallel folds according to the major Atlasic direction. Also, NW-SE and EW trends were identified. The maxima tracing confirmed this direction by the presence of NE-SW faults, mainly the Ghardimaou_Cap Serrat accident. The quality of the available seismic sections and the absence of borehole data in the region, except few hydraulic wells that been drilled and showing the heterogeneity of the substratum of the dune, required the process of gravity modeling of this challenging area that necessitates to be modeled for the geometrical characterization of the dune reservoir and determine the different stratigraphic series underneath these deposits. For more detailed and accurate results, the scale of study will be reduced in coming research. A more concise method will be elaborated; the 4D microgravity survey. This approach is considered as an expansion of gravity method and its fourth dimension is time. It will allow a continuous and repeated monitoring of fluid movement in the subsurface according to the micro gal (μgall) scale. The gravity effect is a result of a monthly variation of the dynamic groundwater level which correlates with rainfall during different periods.

Keywords: 3D gravity modeling, dune reservoir, heterogeneous substratum, seismic interpretation

Procedia PDF Downloads 302
4812 Research Trends in Using Virtual Reality for the Analysis and Treatment of Lower-Limb Musculoskeletal Injury of Athletes: A Literature Review

Authors: Hannah K. M. Tang, Muhammad Ateeq, Mark J. Lake, Badr Abdullah, Frederic A. Bezombes

Abstract:

There is little research applying virtual reality (VR) to the treatment of musculoskeletal injury in athletes. This is despite their prevalence, and the implications for physical and psychological health. Nevertheless, developments of wireless VR headsets better facilitate dynamic movement in VR environments (VREs), and more research is expected in this emerging field. This systematic review identified publications that used VR interventions for the analysis or treatment of lower-limb musculoskeletal injury of athletes. It established a search protocol, and through narrative discussion, identified existing trends. Database searches encompassed four term sets: 1) VR systems; 2) musculoskeletal injuries; 3) sporting population; 4) movement outcome analysis. Overall, a total of 126 publications were identified through database searching, and twelve were included in the final analysis and discussion. Many of the studies were pilot and proof of concept work. Seven of the twelve publications were observational studies. However, this may provide preliminary data from which clinical trials will branch. If specified, the focus of the literature was very narrow, with very similar population demographics and injuries. The trends in the literature findings emphasised the role of VR and attentional focus, the strategic manipulation of movement outcomes, and the transfer of skill to the real-world. Causal inferences may have been undermined by flaws, as most studies were limited by the practicality of conducting a two-factor clinical-VR-based study. In conclusion, by assessing the exploratory studies, and combining this with the use of numerous developments, techniques, and tools, a novel application could be established to utilise VR with dynamic movement, for the effective treatment of specific musculoskeletal injuries of athletes.

Keywords: athletes, lower-limb musculoskeletal injury, rehabilitation, return-to-sport, virtual reality

Procedia PDF Downloads 235
4811 Design and Development of an Optimal Fault Tolerant 3 Degree of Freedom Robotic Manipulator

Authors: Ramish, Farhan Khalique Awan

Abstract:

Kinematic redundancy within the manipulators presents extended dexterity and manipulability to the manipulators. Redundant serial robotic manipulators are very popular in industries due to its competencies to keep away from singularities during normal operation and fault tolerance because of failure of one or more joints. Such fault tolerant manipulators are extraordinarily beneficial in applications where human interference for repair and overhaul is both impossible or tough; like in case of robotic arms for space programs, nuclear applications and so on. The design of this sort of fault tolerant serial 3 DoF manipulator is presented in this paper. This work was the extension of the author’s previous work of designing the simple 3R serial manipulator. This work is the realization of the previous design with optimizing the link lengths for incorporating the feature of fault tolerance. Various measures have been followed by the researchers to quantify the fault tolerance of such redundant manipulators. The fault tolerance in this work has been described in terms of the worst-case measure of relative manipulability that is, in fact, a local measure of optimization that works properly for certain configuration of the manipulators. An optimum fault tolerant Jacobian matrix has been determined first based on prescribed null space properties after which the link parameters have been described to meet the given Jacobian matrix. A solid model of the manipulator was then developed to realize the mathematically rigorous design. Further work was executed on determining the dynamic properties of the fault tolerant design and simulations of the movement for various trajectories have been carried out to evaluate the joint torques. The mathematical model of the system was derived via the Euler-Lagrange approach after which the same has been tested using the RoboAnalyzer© software. The results have been quite in agreement. From the CAD model and dynamic simulation data, the manipulator was fabricated in the workshop and Advanced Machining lab of NED University of Engineering and Technology.

Keywords: fault tolerant, Graham matrix, Jacobian, kinematics, Lagrange-Euler

Procedia PDF Downloads 223
4810 The Causality between Corruption and Economic Growth in MENA Countries: A Dynamic Panel-Data Analysis

Authors: Nour Mohamad Fayad

Abstract:

Complex and extensively researched, the impact of corruption on economic growth seems to be intricate. Many experts believe that corruption reduces economic development. However, counterarguments have suggested that corruption either promotes growth and development or has no significant impact on economic performance. Clearly, there is no consensus in the economics literature regarding the possible relationship between corruption and economic development. Corruption's complex and clandestine nature, which makes it difficult to define and measure, is one of the obstacles that must be overcome when investigating its effect on an economy. In an attempt to contribute to the ongoing debate, this study examines the impact of corruption on economic growth in the Middle East and North Africa (MENA) region between 2000 and 2021 using a Customized Corruption Index-CCI and panel data on MENA countries. These countries were selected because they are understudied in the economic literature, and despite the World Bank's recent emphasis on corruption in the developing world, the MENA countries have received little attention. The researcher used Cobb-Douglas functional form to test corruption in MENA using a customized index known as Customized Corruption Index-CCI to track corruption over almost 20 years, then used the dynamic panel data. The findings indicate that there is a positive correlation between corruption and economic growth, but this is not consistent across all MENA nations. First, the relatively recent lack of data from MENA nations. This issue is related to the inaccessibility of data for many MENA countries, particularly regarding the returns on resources, private malfeasance, and other variables in Gulf countries. In addition, the researcher encountered several restrictions, such as electricity and internet outages, due to the fact that he is from Lebanon, a country whose citizens have endured difficult living conditions since the Lebanese crisis began in 2019. Demonstrating a customized index known as Customized Corruption Index-CCI that suits the characteristics of MENA countries to peculiarly measure corruption in this region, the outcome of the Customized Corruption Index-CCI is then compared to the Corruption Perception Index-CPI and Control of Corruption from World Governance Indicator-CC from WGI.

Keywords: corruption, economic growth, corruption measurements, empirical review, impact of corruption

Procedia PDF Downloads 75