Search results for: cross-validation support vector machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10114

Search results for: cross-validation support vector machine

8044 Development of an Advanced Power Ultrasonic-Assisted Drilling System

Authors: M. A. Moghaddas, M. Short, N. Wiley, A. Y. Yi, K. F. Graff

Abstract:

The application of ultrasonic vibrations to machining processes has a long history, ranging from slurry-based systems able to drill brittle materials, to more recent developments involving low power ultrasonics for high precision machining, with many of these at the research and laboratory stages. The focus of this development is the application of high levels of ultrasonic power (1,000’s of watts) to standard, heavy duty machine tools – drilling being the immediate focus, with developments in milling in progress – with the objective of dramatically increasing system productivity through faster feed rates, this benefit arising from the thrust force reductions obtained by power ultrasonic vibrations. The presentation will describe development of an advanced drilling system based on a special, acoustically designed, rugged drill module capable of functioning under heavy duty production conditions, and making use of standard tool holder means, and able to obtain thrust force reductions while maintaining or improving surface finish and drilling accuracy. The characterization of the system performance will be described, and results obtained in drilling several materials (Aluminum, Stainless steel, Titanium) presented.

Keywords: dimensional accuracy, machine tool, productivity, surface roughness, thrust force, ultrasonic vibrations, ultrasonic-assisted drilling

Procedia PDF Downloads 279
8043 Investigation of Perceived Parental Attitude (Perceived Parental Autonomy Support and Psychological Control) on Life Orientation: Considering the Moderating Effect of Perceived Body Dysmorphic Symptoms Among Adolescents and Young Adult Females

Authors: Mehwish Ishfaq, Aiman Kamran

Abstract:

This study aimed at impact of perceived parental attitude on life orientation with moderating role of body dysmorphic symptoms. Perceived parental attitude comprised of parental autonomy support & psychological control to their child for development of individuality, self-regulation, and bodily construction that includes cognitive, social, and affective development. This perceived parental attitude have significant relationship with life orientation on individual’s self. Data was collected from schools and universities residing in Islamabad and Rawalpindi and was also obtained through online survey. Instrument used to measure perceived parental attitude was Perceived Parental Autonomy Support Scale (PPASS). Through The Life Orientation Test (LOT-R) which was developed by Michael F. Scheier in 1994, level of optimism and pessimism was assessed. For measuring body dysmorphic disorder, the Body Dysmorphic Questionnaire (BDDQ) which was developed by Dr. Katherine A. Phillips in 2009, a screening scale was used. The present study includes a total sample size of (N= 100) females and was conducted through cross-sectional survey. The findings of current study suggested that perceived parental attitude showed negative relationship with life orientation and this relationship was moderated by body dysmorphic disorder symptoms in females. There was significant age difference in body dysmorphia, perceived parental attitude, and life orientation. Body dysmorphic symptoms were more common in females with age 20-29 (M= 1.33, S.D=1.91) as compared to 12-19 (M=1.16, S.D=1.95). Participants also reported that affected relationship with either parent caused problems in daily life, including school, public interactions and activities leading to low dispositional optimism in life orientation. This study gives us insight about maintaining factors for body dysmorphic disorder symptoms which is beneficial for therapeutic approaches.

Keywords: body dysmorphic disorder, perceived parental attitude, parental autonomy support, psychological control, dispositional optimism

Procedia PDF Downloads 18
8042 Medium-Scale Multi-Juice Extractor for Food Processing

Authors: Flordeliza L. Mercado, Teresito G. Aguinaldo, Helen F. Gavino, Victorino T. Taylan

Abstract:

Most fruits and vegetables are available in large quantities during peak season which are oftentimes marketed at low price and left to rot or fed to farm animals. The lack of efficient storage facilities, and the additional cost and unavailability of small machinery for food processing, results to low price and wastage. Incidentally, processed fresh fruits and vegetables are gaining importance nowadays and health conscious people are also into ‘juicing’. One way to reduce wastage and ensure an all-season availability of crop juices at reasonable costs is to develop equipment for effective extraction of juice. The study was conducted to design, fabricate and evaluate a multi-juice extractor using locally available materials, making it relatively cheaper and affordable for medium-scale enterprises. The study was also conducted to formulate juice blends using extracted juices and calamansi juice at different blending percentage, and evaluate its chemical properties and sensory attributes. Furthermore, the chemical properties of extracted meals were evaluated for future applications. The multi-juice extractor has an overall dimension of 963mm x 300mm x 995mm, a gross weight of 82kg and 5 major components namely; feeding hopper, extracting chamber, juice and meal outlet, transmission assembly, and frame. The machine performance was evaluated based on juice recovery, extraction efficiency, extraction rate, extraction recovery, and extraction loss considering type of crop as apple and carrot with three replications each and was analyzed using T-test. The formulated juice blends were subjected to sensory evaluation and data gathered were analyzed using Analysis of Variance appropriate for Complete Randomized Design. Results showed that the machine’s juice recovery (73.39%), extraction rate (16.40li/hr), and extraction efficiency (88.11%) for apple were significantly higher than for carrot while extraction recovery (99.88%) was higher for apple than for carrot. Extraction loss (0.12%) was lower for apple than for carrot, but was not significantly affected by crop. Based on adding percentage mark-up on extraction cost (Php 2.75/kg), the breakeven weight and payback period for a 35% mark-up is 4,710.69kg and 1.22 years, respectively and for a 50% mark-up, the breakeven weight is 3,492.41kg and the payback period is 0.86 year (10.32 months). Results on the sensory evaluation of juice blends showed that the type of juice significantly influenced all the sensory parameters while the blending percentage including their respective interaction, had no significant effect on all sensory parameters, making the apple-calamansi juice blend more preferred than the carrot-calamansi juice blend in terms of all the sensory parameter. The machine’s performance is higher for apple than for carrot and the cost analysis on the use of the machine revealed that it is financially viable with a payback period of 1.22 years (35% mark-up) and 0.86 year (50% mark-up) for machine cost, generating an income of Php 23,961.60 and Php 34,444.80 per year using 35% and 50% mark-up, respectively. The juice blends were of good qualities based on the values obtained in the chemical analysis and the extracted meal could also be used to produce another product based on the values obtained from proximate analysis.

Keywords: food processing, fruits and vegetables, juice extraction, multi-juice extractor

Procedia PDF Downloads 328
8041 Integrated Machine Learning Framework for At-Home Patients Personalized Risk Prediction Using Activities, Biometric, and Demographic Features

Authors: Claire Xu, Welton Wang, Manasvi Pinnaka, Anqi Pan, Michael Han

Abstract:

Hospitalizations account for one-third of the total health care spending in the US. Early risk detection and intervention can reduce this high cost and increase the satisfaction of both patients and physicians. Due to the lack of awareness of the potential arising risks in home environment, the opportunities for patients to seek early actions of clinical visits are dramatically reduced. This research aims to offer a highly personalized remote patients monitoring and risk assessment AI framework to identify the potentially preventable hospitalization for both acute as well as chronic diseases. A hybrid-AI framework is trained with data from clinical setting, patients surveys, as well as online databases. 20+ risk factors are analyzed ranging from activities, biometric info, demographic info, socio-economic info, hospitalization history, medication info, lifestyle info, etc. The AI model yields high performance of 87% accuracy and 88 sensitivity with 20+ features. This hybrid-AI framework is proven to be effective in identifying the potentially preventable hospitalization. Further, the high indicative features are identified by the models which guide us to a healthy lifestyle and early intervention suggestions.

Keywords: hospitalization prevention, machine learning, remote patient monitoring, risk prediction

Procedia PDF Downloads 245
8040 A Robotic “Puppet Master” Application to ASD Therapeutic Support

Authors: Sophie Sakka, Rénald Gaboriau

Abstract:

This paper describes a preliminary work aimed at setting a therapeutic support for autistic teenagers using three humanoid robots NAO shared by ASD (Autism Spectrum Disorder) subjects. The studied population had attended successfully a first year program, and were observed with a second year program using the robots. This paper focuses on the content and the effects of the second year program. The approach is based on a master puppet concept: the subjects program the robots, and use them as an extension for communication. Twenty sessions were organized, alternating ten preparatory sessions and ten robotics programming sessions. During the preparatory sessions, the subjects write a story to be played by the robots. During the robot programming sessions, the subjects program the motions to be realized to make the robot tell the story. The program was concluded by a public performance. The experiment involves five ASD teenagers aged 12-15, who had all attended the first year robotics training. As a result, a progress in voluntary and organized communication skills of the five subjects was observed, leading to improvements in social organization, focus, voluntary communication, programming, reading and writing abilities. The changes observed in the subjects general behavior took place in a short time, and could be observed from one robotics session to the next one. The approach allowed the subjects to draw the limits of their body with respect to the environment, and therefore helped them confronting the world with less anxiety.

Keywords: autism spectrum disorder, robot, therapeutic support, rob'autism

Procedia PDF Downloads 249
8039 Impact of Civil Engineering and Economic Growth in the Sustainability of the Environment: Case of Albania

Authors: Rigers Dodaj

Abstract:

Nowadays, the environment is a critical goal for civil engineers, human activity, construction projects, economic growth, and whole national development. Regarding the development of Albania's economy, people's living standards are increasing, and the requirements for the living environment are also increasing. Under these circumstances, environmental protection and sustainability this is the critical issue. The rising industrialization, urbanization, and energy demand affect the environment by emission of carbon dioxide gas (CO2), a significant parameter known to impact air pollution directly. Consequently, many governments and international organizations conducted policies and regulations to address environmental degradation in the pursuit of economic development, for instance in Albania, the CO2 emission calculated in metric tons per capita has increased by 23% in the last 20 years. This paper analyzes the importance of civil engineering and economic growth in the sustainability of the environment focusing on CO2 emission. The analyzed data are time series 2001 - 2020 (with annual frequency), based on official publications of the World Bank. The statistical approach with vector error correction model and time series forecasting model are used to perform the parameter’s estimations and long-run equilibrium. The research in this paper adds a new perspective to the evaluation of a sustainable environment in the context of carbon emission reduction. Also, it provides reference and technical support for the government toward green and sustainable environmental policies. In the context of low-carbon development, effectively improving carbon emission efficiency is an inevitable requirement for achieving sustainable economic and environmental protection. Also, the study reveals that civil engineering development projects impact greatly the environment in the long run, especially in areas of flooding, noise pollution, water pollution, erosion, ecological disorder, natural hazards, etc. The potential for reducing industrial carbon emissions in recent years indicates that reduction is becoming more difficult, it needs another economic growth policy and more civil engineering development, by improving the level of industrialization and promoting technological innovation in industrial low-carbonization.

Keywords: CO₂ emission, civil engineering, economic growth, environmental sustainability

Procedia PDF Downloads 91
8038 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 65
8037 Object Oriented Classification Based on Feature Extraction Approach for Change Detection in Coastal Ecosystem across Kochi Region

Authors: Mohit Modi, Rajiv Kumar, Manojraj Saxena, G. Ravi Shankar

Abstract:

Change detection of coastal ecosystem plays a vital role in monitoring and managing natural resources along the coastal regions. The present study mainly focuses on the decadal change in Kochi islands connecting the urban flatland areas and the coastal regions where sand deposits have taken place. With this, in view, the change detection has been monitored in the Kochi area to apprehend the urban growth and industrialization leading to decrease in the wetland ecosystem. The region lies between 76°11'19.134"E to 76°25'42.193"E and 9°52'35.719"N to 10°5'51.575"N in the south-western coast of India. The IRS LISS-IV satellite image has been processed using a rule-based algorithm to classify the LULC and to interpret the changes between 2005 & 2015. The approach takes two steps, i.e. extracting features as a single GIS vector layer using different parametric values and to dissolve them. The multi-resolution segmentation has been carried out on the scale ranging from 10-30. The different classes like aquaculture, agricultural land, built-up, wetlands etc. were extracted using parameters like NDVI, mean layer values, the texture-based feature with corresponding threshold values using a rule set algorithm. The objects obtained in the segmentation process were visualized to be overlaying the satellite image at a scale of 15. This layer was further segmented using the spectral difference segmentation rule between the objects. These individual class layers were dissolved in the basic segmented layer of the image and were interpreted in vector-based GIS programme to achieve higher accuracy. The result shows a rapid increase in an industrial area of 40% based on industrial area statistics of 2005. There is a decrease in wetlands area which has been converted into built-up. New roads have been constructed which are connecting the islands to urban areas as well as highways. The increase in coastal region has been visualized due to sand depositions. The outcome is well supported by quantitative assessments which will empower rich understanding of land use land cover change for appropriate policy intervention and further monitoring.

Keywords: land use land cover, multiresolution segmentation, NDVI, object based classification

Procedia PDF Downloads 189
8036 Structural Integrity Analysis of Baffle Former Assembly in Pressurized Water Reactors Considering Irradiation Aging

Authors: Jong-Sung Kim, Myung-Jo Jhung

Abstract:

BFA is one of the reactor internals components in PWR. The BFA has the intended functions to support fuel assembly, to keep structural integrity of upper/lower core support structures, and to secure reactor coolant flow path. Failure of the BFA may give rise to significant effect on reactor safety operation and stop. The BFA is subject to relatively high neutron irradiation dose due to location close to the core. Therefore, IASCC can occur on the BFA due to damage accumulation as operating year increases. In this study, IASCC susceptibility on the BFA was assessed via the FEA considering variations of mechanical material behaviors with neutron irradiation. As a result of the assessment, some points have susceptibility more than 0.2 to IASCC during design lifetime.

Keywords: baffle former assembly, finite element analysis, irradiation aging, nuclear power plant, pressurized water reactor

Procedia PDF Downloads 363
8035 Analysis of the Influence of Support Failure on the Dynamic Effect of Bridge Structure

Authors: Sun Fan, Wu Xiaoguang, Fang Miaomiao, Wei Chi

Abstract:

The degree of damage to the support is simulated by finite element software, and its influence on the static and dynamic effects of the bridge structure is analyzed. Four working conditions are selected for the study of bearing damage impact: the bearing is intact (condition 1), the bearing damage coefficient is 0.8 (condition 2), the bearing damage coefficient is 0.6 (condition 3), and the bearing damage coefficient is 0.4 (Working Condition 4). The effect value of the bridge structure under each working condition is calculated, and the simple-supported girder bridge and continuous girder bridge with typical spans are taken as examples to analyze the overall change of the bridge structure after the bearing completely fails.

Keywords: bridge bearing damage, dynamic response, finite element analysis, load conditions

Procedia PDF Downloads 235
8034 Care and Support for Infants and Toddlers with Special Needs

Authors: Florence A. Undiyaundeye, Aniashie Akpanke

Abstract:

Early identification of developmental disorders in infants and toddlers is critical for the well being of children. It is also an integral function of the primary care medical provider and the early care given in the home or crèche. This paper is focused at providing information on special need infants and toddlers and strategies to support them in developmental concern to cope with the challenges in and out of the classroom and to interact with their peers without stigmatization and inferiority complex. The target children are from birth through three years of age. There is a strong recommendation for developmental surveillance to be incorporated at every well child preventive care program in training and practical stage of formal school settings. The paper posits that any concerns raised during surveillance should be promptly addressed with standardized developmental screening by appropriate health service providers. In addition screening tests should be administered regularly at age 9+, 19+ and 30 months of these infants. The paper also establishes that the early identification of these developmental challenges of the infants and toddlers should lead to further developmental and medical evaluation, diagnosis and treatment, including early developmental school intervention, control and teaching and learning integration and inclusion for proper career build up. Children diagnosed with developmental disorders should be identified as children with special needs so that management is initiated and its underlying etiology may also drive a range of treatment of the child, to parents. Conselling and school integration as applicable to the child’s specific need and care for sustenance in societal functioning.

Keywords: care, special need, support, infants and toddlers, management and developmental disorders

Procedia PDF Downloads 389
8033 talk2all: A Revolutionary Tool for International Medical Tourism

Authors: Madhukar Kasarla, Sumit Fogla, Kiran Panuganti, Gaurav Jain, Abhijit Ramanujam, Astha Jain, Shashank Kraleti, Sharat Musham, Arun Chaudhury

Abstract:

Patients have often chosen to travel for care — making pilgrimages to academic meccas and state-of-the-art hospitals for sophisticated surgery. This culture is still persistent in the landscape of US healthcare, with hundred thousand of visitors coming to the shores of United States to seek the high quality of medical care. One of the major challenges in this form of medical tourism has been the language barrier. Thus, an Iraqi patient, with immediate needs of communicating the healthcare needs to the treating team in the hospital, may face huge barrier in effective patient-doctor communication, delaying care and even at times reducing the quality. To circumvent these challenges, we are proposing the use of a state-of-the-art tool, Talk2All, which can translate nearly one hundred international languages (and even sign language) in real time. The tool is an easy to download app and highly user friendly. It builds on machine learning principles to decode different languages in real time. We suggest that the use of Talk2All will tremendously enhance communication in the hospital setting, effectively breaking the language barrier. We propose that vigorous incorporation of Talk2All shall overcome practical challenges in international medical and surgical tourism.

Keywords: language translation, communication, machine learning, medical tourism

Procedia PDF Downloads 215
8032 Monitor Student Concentration Levels on Online Education Sessions

Authors: M. K. Wijayarathna, S. M. Buddika Harshanath

Abstract:

Monitoring student engagement has become a crucial part of the educational process and a reliable indicator of the capacity to retain information. As online learning classrooms are now more common these days, students' attention levels have become increasingly important, making it more difficult to check each student's concentration level in an online classroom setting. To profile student attention to various gradients of engagement, a study is a plan to conduct using machine learning models. Using a convolutional neural network, the findings and confidence score of the high accuracy model are obtained. In this research, convolutional neural networks are using to help discover essential emotions that are critical in defining various levels of participation. Students' attention levels were shown to be influenced by emotions such as calm, enjoyment, surprise, and fear. An improved virtual learning system was created as a result of these data, which allowed teachers to focus their support and advise on those students who needed it. Student participation has formed as a crucial component of the learning technique and a consistent predictor of a student's capacity to retain material in the classroom. Convolutional neural networks have a plan to implement the platform. As a preliminary step, a video of the pupil would be taken. In the end, researchers used a convolutional neural network utilizing the Keras toolkit to take pictures of the recordings. Two convolutional neural network methods are planned to use to determine the pupils' attention level. Finally, those predicted student attention level results plan to display on the graphical user interface of the System.

Keywords: HTML5, JavaScript, Python flask framework, AI, graphical user

Procedia PDF Downloads 106
8031 Alphabet Recognition Using Pixel Probability Distribution

Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay

Abstract:

Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.

Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix

Procedia PDF Downloads 392
8030 Fast-Tracking University Education for Youth Employment: Empirical Evidence from University Graduates in Rwanda

Authors: Fred Alinda, Marjorie Negesa, Gerald Karyeija

Abstract:

Like elsewhere in the world, youth unemployment remains a big problem more so to the most educated youth and female. In Rwanda, unemployment is estimated at 13.2% among youth graduates compared to 10.9% and 2.6 among secondary and primary graduates respectively. Though empirical evidence elsewhere associate youth unemployment with education level, relevance of skills and access to business support opportunities, mixed evidence still exist on the significance of these factors to youth employment. As youth employment strategies in countries like Rwanda continue to recognize the potential role university education can play to enhance employment, there is a need to understand the catalysts or barriers. This paper, therefore, draws empirical evidence from a survey on the influence of education qualification, skills relevance and access to business support opportunities on employment of the youth university graduates in Masaka sector, Rwanda. The analysis tested four hypotheses; access to university education significantly affects youth employment, Relevance of university education significantly contributes to youth employment; access to business support opportunities significantly contributes to youth employment, and significant gender differences exist in the employment of youth university graduates. A cross-section survey was used in lieu of the need to explore the prevailing status of youth employment and contributing factors across the sector. A questionnaire was used to collect data on a large sample of 269 youth to allow statistical analysis. This was beefed up with qualitative views of leaders and technical officials in the sector. The youth University graduates were selected using simple random sampling while the leaders and technical officials were selected purposively. Percentages were used to describe respondents in line with the variables under while a regression model for youth employment was fitted to determine the significant factors. The model results indicated a significant influence (p<0.05) of gender, education level and access to business support opportunities on employment of youth university graduates. This finding was also affirmed by the qualitative views of key informants. Qualitative views pointed to the fact that university education generally equipped the youth with skills that enabled their transition into employment mainly for a salary or wage. The skills were, however, deficient in technical and practical aspects. In addition, the youth generally lacked limited access to business support opportunities particularly guarantees for loans, business advisory, and grants for business as well as training in business skills that would help them gain salaried employment or transit into self-employment. The study findings bear an implication on the strategy for catalyzing youth employment through university education. The findings imply that university education should be embraced but with greater emphasis on or supplementation with specialized training in practical and technical skills as well as extending business support opportunities to the youth. This will accelerate the contribution of university education to youth employment.

Keywords: education, employment, self-employment, youth

Procedia PDF Downloads 260
8029 Frustration Measure for Dipolar Spin Ice and Spin Glass

Authors: Konstantin Nefedev, Petr Andriushchenko

Abstract:

Usually under the frustrated magnetics, it understands such materials, in which ones the interaction between located magnetic moments or spins has competing character, and can not to be satisfied simultaneously. The most well-known and simplest example of the frustrated system is antiferromagnetic Ising model on the triangle. Physically, the existence of frustrations means, that one cannot select all three pairs of spins anti-parallel in the basic unit of the triangle. In physics of the interacting particle systems, the vector models are used, which are constructed on the base of the pair-interaction law. Each pair interaction energy between one-component vectors can take two opposite in sign values, excluding the case of zero. Mathematically, the existence of frustrations in system means that it is impossible to have all negative energies of pair interactions in the Hamiltonian even in the ground state (lowest energy). In fact, the frustration is the excitation, which leaves in system, when thermodynamics does not work, i.e. at the temperature absolute zero. The origin of the frustration is the presence at least of one ''unsatisfied'' pair of interacted spins (magnetic moments). The minimal relative quantity of these excitations (relative quantity of frustrations in ground state) can be used as parameter of frustration. If the energy of the ground state is Egs, and summary energy of all energy of pair interactions taken with a positive sign is Emax, that proposed frustration parameter pf takes values from the interval [0,1] and it is defined as pf=(Egs+Emax)/2Emax. For antiferromagnetic Ising model on the triangle pf=1/3. We calculated the parameters of frustration in thermodynamic limit for different 2D periodical structures of Ising dipoles, which were on the ribs of the lattice and interact by means of the long-range dipolar interaction. For the honeycomb lattice pf=0.3415, triangular - pf=0.2468, kagome - pf=0.1644. All dependencies of frustration parameter from 1/N obey to the linear law. The given frustration parameter allows to consider the thermodynamics of all magnetic systems from united point of view and to compare the different lattice systems of interacting particle in the frame of vector models. This parameter can be the fundamental characteristic of frustrated systems. It has no dependence from temperature and thermodynamic states, in which ones the system can be found, such as spin ice, spin glass, spin liquid or even spin snow. It shows us the minimal relative quantity of excitations, which ones can exist in system at T=0.

Keywords: frustrations, parameter of order, statistical physics, magnetism

Procedia PDF Downloads 173
8028 The Effect of Arbitrary Support Conditions on the Static Behavior of Curved Beams Using the Finite Element Method

Authors: Hossein Mottaghi T., Amir R. Masoodi

Abstract:

This study presents a finite curved element for analyzing the static behavior of curved beams within the elastic range. The objective is to enhance accuracy while reducing the number of elements by incorporating first-order shear deformations of Timoshenko beams. Initially, finite element formulations are developed by considering polynomial initial functions for axial, shear, and rotational deformations for a three-node element. Subsequently, nodal interpolation functions for this element are derived, followed by the construction of the element stiffness matrix. To enable the utilization of the stiffness matrix in the static analysis of curved beams, the constructed matrix in the local coordinates of the element is transformed to the global coordinate system using the rotation matrix. A numerical benchmark example is investigated to assess the accuracy and effectiveness of this method. Moreover, the influence of spring stiffness on the rotation of the endpoint of a clamped beam is examined by substituting each support reaction of the beam with a spring. In the parametric study, the effect of the central angle of the beam on the rotation of the beam's endpoint in a cantilever beam under a concentrated load is examined. This research encompasses various mechanical, geometrical, and boundary configurations to evaluate the static characteristics of curved beams, thus providing valuable insights for their analysis and examination.

Keywords: curved beam, finite element method, first-order shear deformation theory, elastic support

Procedia PDF Downloads 82
8027 Exploring the Viability of Biogas Energy Potential in South Africa

Authors: Solomon Eghosa Uhunamure, Karabo Shale

Abstract:

Biogas technology has emerged as a promising solution for sustainable development, enhancing energy security while mitigating environmental hazards. Interest in biogas for household energy is growing due to its potential to address both energy and waste management challenges. To ensure biogas production contributes meaningfully to South Africa's future energy landscape, understanding public perceptions is essential for shaping effective policy measures. A household survey revealed that lower awareness of biogas correlates with reduced social and cultural acceptance, however, after providing basic information—such as a definition, a diagram, or one of two simple messages—support for biogas increased by 10% to 15% compared to the baseline. These findings highlight the critical role of awareness in building support for biogas as a key component of South Africa's decarbonization strategy.

Keywords: awareness, barriers, biogas, environmental benefits, South Africa

Procedia PDF Downloads 38
8026 Hardware in the Loop Platform for Virtual Commissioning: Case Study of a Hydraulic-Press Model Simulated in Real-Time

Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Ana Maria Macarulla

Abstract:

Hydraulic-press commissioning consumes a great amount of man-hours, due to the fact that it takes place several miles away from where it has been designed. This factor became exacerbated due to control designers’ lack of knowledge about which will be the final controller gains before they start working with it. Virtual commissioning has been postulated as an optimal solution to deal with this lack of knowledge. Here, a case study is presented in which a controller is set up against a real-time model based on a hydraulic-press. The press model is designed following manufacturer specifications and it is embedded in a real-time simulator. This methodology ensures that the model achieves similar responses as the real machine that would be placed on the industry. A deterministic communication protocol is in charge of the bidirectional information transmission between the real-time model and the controller. This platform allows the engineer to test and verify the final control responses with exactly the same hardware that is going to be installed in the hydraulic-press, in other words, realize a virtual commissioning of the electro-hydraulic actuator. The Hardware in the Loop (HiL) platform validates in laboratory conditions and harmless for the machine the control algorithms designed, which allows embedding them afterwards in the industrial environment without further modifications.

Keywords: deterministic communication protocol, electro-hydraulic actuator, hardware in the loop, real-time, virtual commissioning

Procedia PDF Downloads 147
8025 3D Dynamic Modeling of Transition Zones

Authors: Edina Koch, Péter Hudacsek

Abstract:

In railways transition zone is present at the boundaries of zones with different stiffness. When a train rides from an embankment onto a stiff structure, such as a bridge, tunnel or culvert, an abrupt change in the support stiffness occurs possibly inducing differential settlements. This in long term can yield to the degradation of the tracks and foundations in the transition zones. A number of techniques have been proposed or implemented to provide gradual stiffness transition at the problem zones, such as methods to ensure gradually changing pad stiffness, application of long sleepers or installation of auxiliary rails in the transition zone. Aim of the research presented in this paper is to analyze the 3D and the dynamic effects induced by the passing train over an area where significant difference in the support stiffness exists. The effects were analyzed for different arrangements associated with certain differential settlement mitigation strategies of the transition zones.

Keywords: culvert, dynamic load, HS small model, railway transition zone

Procedia PDF Downloads 293
8024 Characterization of WNK2 Role on Glioma Cells Vesicular Traffic

Authors: Viviane A. O. Silva, Angela M. Costa, Glaucia N. M. Hajj, Ana Preto, Aline Tansini, Martin Roffé, Peter Jordan, Rui M. Reis

Abstract:

Autophagy is a recycling and degradative system suggested to be a major cell death pathway in cancer cells. Autophagy pathway is interconnected with the endocytosis pathways sharing the same ultimate lysosomal destination. Lysosomes are crucial regulators of cell homeostasis, responsible to downregulate receptor signalling and turnover. It seems highly likely that derailed endocytosis can make major contributions to several hallmarks of cancer. WNK2, a member of the WNK (with-no-lysine [K]) subfamily of protein kinases, had been found downregulated by its promoter hypermethylation, and has been proposed to act as a specific tumour-suppressor gene in brain tumors. Although some contradictory studies indicated WNK2 as an autophagy modulator, its role in cancer cell death is largely unknown. There is also growing evidence for additional roles of WNK kinases in vesicular traffic. Aim: To evaluate the role of WNK2 in autophagy and endocytosis on glioma context. Methods: Wild-type (wt) A172 cells (WNK2 promoter-methylated), and A172 transfected either with an empty vector (Ev) or with a WNK2 expression vector, were used to assess the cellular basal capacities to promote autophagy, through western blot and flow-cytometry analysis. Additionally, we evaluated the effect of WNK2 on general endocytosis trafficking routes by immunofluorescence. Results: The re-expression of ectopic WNK2 did not interfere with autophagy-related protein light chain 3 (LC3-II) expression levels as well as did not promote mTOR signaling pathway alteration when compared with Ev or wt A172 cells. However, the restoration of WNK2 resulted in a marked increase (8 to 92,4%) of Acidic Vesicular Organelles formation (AVOs). Moreover, our results also suggest that WNK2 cells promotes delay in uptake and internalization rate of cholera toxin B and transferrin ligands. Conclusions: The restoration of WNK2 interferes in vesicular traffic during endocytosis pathway and increase AVOs formation. This results also suggest the role of WNK2 in growth factor receptor turnover related to cell growth and homeostasis and associates one more time, WNK2 silencing contribution in genesis of gliomas.

Keywords: autophagy, endocytosis, glioma, WNK2

Procedia PDF Downloads 370
8023 Post Injury Experiences of New Immigrant Workers

Authors: Janki Shankar, Shu Ping Chen

Abstract:

Background: New immigrants are one of most vulnerable sections of the Canadian society. Unable to gain entry into Canada’s strictly regulated professions and trades, several skilled and qualified new immigrants take up precarious jobs without adequate occupational health and safety training, thereby increasing their risk of sustaining occupational injury and illness compared to Canadian born workers. Access to timely and appropriate support is critical for injured new immigrant workers who face additional challenges compared to Canadian born workers in accessing information and support post-injury. The purpose of our study was to explore the post-injury experiences and support needs of new immigrant workers who have sustained work-related injuries. Methods: Using an interpretive research approach and semi structured face to face qualitative interviews, 27 new immigrant workers from a range of industries operating in two cities in a province in Canada were interviewed. All had sustained work-related injuries and reported these to their work supervisors. A constant comparative approach was used to identify key themes across the worker experiences. Results: Findings reveal several factors that can shape the experiences of new immigrant workers and influence their return-to-work outcomes. Conclusion: Based on the insights of study participants, policies, practices, and potential interventions informed by their needs and preferences are proposed that can improve return to work outcomes for these workers.

Keywords: new immigrant workers, post-injury experiences, return to work outcomes, qualified

Procedia PDF Downloads 104
8022 A New Scheme for Chain Code Normalization in Arabic and Farsi Scripts

Authors: Reza Shakoori

Abstract:

This paper presents a structural correction of Arabic and Persian strokes using manipulation of their chain codes in order to improve the rate and performance of Persian and Arabic handwritten word recognition systems. It collects pure and effective features to represent a character with one consolidated feature vector and reduces variations in order to decrease the number of training samples and increase the chance of successful classification. Our results also show that how the proposed approaches can simplify classification and consequently recognition by reducing variations and possible noises on the chain code by keeping orientation of characters and their backbone structures.

Keywords: Arabic, chain code normalization, OCR systems, image processing

Procedia PDF Downloads 408
8021 Charting Sentiments with Naive Bayes and Logistic Regression

Authors: Jummalla Aashrith, N. L. Shiva Sai, K. Bhavya Sri

Abstract:

The swift progress of web technology has not only amassed a vast reservoir of internet data but also triggered a substantial surge in data generation. The internet has metamorphosed into one of the dynamic hubs for online education, idea dissemination, as well as opinion-sharing. Notably, the widely utilized social networking platform Twitter is experiencing considerable expansion, providing users with the ability to share viewpoints, participate in discussions spanning diverse communities, and broadcast messages on a global scale. The upswing in online engagement has sparked a significant curiosity in subjective analysis, particularly when it comes to Twitter data. This research is committed to delving into sentiment analysis, focusing specifically on the realm of Twitter. It aims to offer valuable insights into deciphering information within tweets, where opinions manifest in a highly unstructured and diverse manner, spanning a spectrum from positivity to negativity, occasionally punctuated by neutrality expressions. Within this document, we offer a comprehensive exploration and comparative assessment of modern approaches to opinion mining. Employing a range of machine learning algorithms such as Naive Bayes and Logistic Regression, our investigation plunges into the domain of Twitter data streams. We delve into overarching challenges and applications inherent in the realm of subjectivity analysis over Twitter.

Keywords: machine learning, sentiment analysis, visualisation, python

Procedia PDF Downloads 59
8020 Dynamic Cellular Remanufacturing System (DCRS) Design

Authors: Tariq Aljuneidi, Akif Asil Bulgak

Abstract:

Remanufacturing may be defined as the process of bringing used products to “like-new” functional state with warranty to match, and it is one of the most popular product end-of-life scenarios. An efficient remanufacturing network lead to an efficient design of sustainable manufacturing enterprise. In remanufacturing network, products are collected from the customer zone, disassembled and remanufactured at a suitable remanufacturing facility. In this respect, another issue to consider is how the returned product to be remanufactured, in other words, what is the best layout for such facility. In order to achieve a sustainable manufacturing system, Cellular Manufacturing System (CMS) designs are highly recommended, CMSs combine high throughput rates of line layouts with the flexibility offered by functional layouts (job shop). Introducing the CMS while designing a remanufacturing network will benefit the utilization of such a network. This paper presents and analyzes a comprehensive mathematical model for the design of Dynamic Cellular Remanufacturing Systems (DCRSs). In this paper, the proposed model is the first one to date that consider CMS and remanufacturing system simultaneously. The proposed DCRS model considers several manufacturing attributes such as multi-period production planning, dynamic system reconfiguration, duplicate machines, machine capacity, available time for workers, worker assignments, and machine procurement, where the demand is totally satisfied from a returned product. A numerical example is presented to illustrate the proposed model.

Keywords: cellular manufacturing system, remanufacturing, mathematical programming, sustainability

Procedia PDF Downloads 382
8019 Measurement of Ionospheric Plasma Distribution over Myanmar Using Single Frequency Global Positioning System Receiver

Authors: Win Zaw Hein, Khin Sandar Linn, Su Su Yi Mon, Yoshitaka Goto

Abstract:

The Earth ionosphere is located at the altitude of about 70 km to several 100 km from the ground, and it is composed of ions and electrons called plasma. In the ionosphere, these plasma makes delay in GPS (Global Positioning System) signals and reflect in radio waves. The delay along the signal path from the satellite to the receiver is directly proportional to the total electron content (TEC) of plasma, and this delay is the largest error factor in satellite positioning and navigation. Sounding observation from the top and bottom of the ionosphere was popular to investigate such ionospheric plasma for a long time. Recently, continuous monitoring of the TEC using networks of GNSS (Global Navigation Satellite System) observation stations, which are basically built for land survey, has been conducted in several countries. However, in these stations, multi-frequency support receivers are installed to estimate the effect of plasma delay using their frequency dependence and the cost of multi-frequency support receivers are much higher than single frequency support GPS receiver. In this research, single frequency GPS receiver was used instead of expensive multi-frequency GNSS receivers to measure the ionospheric plasma variation such as vertical TEC distribution. In this measurement, single-frequency support ublox GPS receiver was used to probe ionospheric TEC. The location of observation was assigned at Mandalay Technological University in Myanmar. In the method, the ionospheric TEC distribution is represented by polynomial functions for latitude and longitude, and parameters of the functions are determined by least-squares fitting on pseudorange data obtained at a known location under an assumption of thin layer ionosphere. The validity of the method was evaluated by measurements obtained by the Japanese GNSS observation network called GEONET. The performance of measurement results using single-frequency of GPS receiver was compared with the results by dual-frequency measurement.

Keywords: ionosphere, global positioning system, GPS, ionospheric delay, total electron content, TEC

Procedia PDF Downloads 143
8018 Performance Analysis of 5G for Low Latency Transmission Based on Universal Filtered Multi-Carrier Technique and Interleave Division Multiple Access

Authors: A. Asgharzadeh, M. Maroufi

Abstract:

5G mobile communication system has drawn more and more attention. The 5G system needs to provide three different types of services, including enhanced Mobile BroadBand (eMBB), massive machine-type communication (mMTC), and ultra-reliable and low-latency communication (URLLC). Universal Filtered Multi-Carrier (UFMC), Filter Bank Multicarrier (FBMC), and Filtered Orthogonal Frequency Division Multiplexing (f-OFDM) are suggested as a well-known candidate waveform for the coming 5G system. Themachine-to-machine (M2M) communications are one of the essential applications in 5G, and it involves exchanging of concise messages with a very short latency. However, in UFMC systems, the subcarriers are grouped into subbands but f-OFDM only one subband covers the entire band. Furthermore, in FBMC, a subband includes only one subcarrier, and the number of subbands is the same as the number of subcarriers. This paper mainly discusses the performance of UFMC with different parameters for the UFMC system. Also, paper shows that UFMC is the best choice outperforming OFDM in any case and FBMC in case of very short packets while performing similarly for long sequences with channel estimation techniques for Interleave Division Multiple Access (IDMA) systems.

Keywords: universal filtered multi-carrier technique, UFMC, interleave division multiple access, IDMA, fifth-generation, subband

Procedia PDF Downloads 140
8017 Estimation of the Exergy-Aggregated Value Generated by a Manufacturing Process Using the Theory of the Exergetic Cost

Authors: German Osma, Gabriel Ordonez

Abstract:

The production of metal-rubber spares for vehicles is a sequential process that consists in the transformation of raw material through cutting activities and chemical and thermal treatments, which demand electricity and fossil fuels. The energy efficiency analysis for these cases is mostly focused on studying of each machine or production step, but is not common to study of the quality of the production process achieves from aggregated value viewpoint, which can be used as a quality measurement for determining of impact on the environment. In this paper, the theory of exergetic cost is used for determining of aggregated exergy to three metal-rubber spares, from an exergy analysis and thermoeconomic analysis. The manufacturing processing of these spares is based into batch production technique, and therefore is proposed the use of this theory for discontinuous flows from of single models of workstations; subsequently, the complete exergy model of each product is built using flowcharts. These models are a representation of exergy flows between components into the machines according to electrical, mechanical and/or thermal expressions; they determine the demanded exergy to produce the effective transformation in raw materials (aggregated exergy value), the exergy losses caused by equipment and irreversibilities. The energy resources of manufacturing process are electricity and natural gas. The workstations considered are lathes, punching presses, cutters, zinc machine, chemical treatment tanks, hydraulic vulcanizing presses and rubber mixer. The thermoeconomic analysis was done by workstation and by spare; first of them describes the operation of the components of each machine and where the exergy losses are; while the second of them estimates the exergy-aggregated value for finished product and wasted feedstock. Results indicate that exergy efficiency of a mechanical workstation is between 10% and 60% while this value in the thermal workstations is less than 5%; also that each effective exergy-aggregated value is one-thirtieth of total exergy required for operation of manufacturing process, which amounts approximately to 2 MJ. These troubles are caused mainly by technical limitations of machines, oversizing of metal feedstock that demands more mechanical transformation work, and low thermal insulation of chemical treatment tanks and hydraulic vulcanizing presses. From established information, in this case, it is possible to appreciate the usefulness of theory of exergetic cost for analyzing of aggregated value in manufacturing processes.

Keywords: exergy-aggregated value, exergy efficiency, thermoeconomics, exergy modeling

Procedia PDF Downloads 173
8016 Person-Centered Approaches in Face-to-Face Interventions to Support Enrolment in Cardiac Rehabilitation: A Scoping Review Study

Authors: Birgit Rasmussen, Thomas Maribo, Bente S. Toft

Abstract:

BACKGROUND: Cardiac rehabilitation is the standard treatment for ischemic heart disease. Cardiac rehabilitation improves quality of life, reduces mortality and the risk of readmission, and provides patients with valuable knowledge and encouragement from peers and staff. Still, less than half of eligible patients enroll. Face-to-face interventions have the potential to support patients' decision-making and increase enrolment in cardiac rehabilitation. However, we lack knowledge of the content and characteristics of interventions. AIM: The aim was to outline and evaluate the content and characteristics of studies that have reported on face-to-face interventions to encourage enrolment in cardiac rehabilitation in patients with ischemic heart disease. METHOD: This scoping review followed the Joanne Briggs Institute methodology. Based on an a-priori protocol that defined the systematic search criteria, six databases were searched for studies published between 2001 and 2023. Two reviewers independently screened and selected studies. All authors discussed the summarized data prior to the narrative presentation. RESULTS: After screening and full text review of 5583 records, 20 studies of heterogeneous design and content were included. Four studies described the key contents in face-to-face interventions to be education, support of autonomy, addressing reasons for change, and emotional and cognitive support while showing understanding. Two studies used motivational interviewing to target patients' experiences and address worries and anticipated difficulties. Four quantitative studies found associations between enrolment and intention to attend, cardiac rehabilitation barriers, exercise self-efficacy, and perceived control. When patients asked questions, enrolment rates were higher, while providing reassurance and optimism could lead to non-attendance if patients had a high degree of worry. In qualitative studies, support to overcome barriers and knowledge about health benefits from participation in cardiac rehabilitation facilitated enrolment. Feeling reassured that the cardiac condition was good could lead to non-attendance. DISCUSSION AND CONCLUSION: To support patients' enrolment in cardiac rehabilitation, it is recommended that interventions integrate a person-centered dialogue. Individual worries and barriers to cardiac rehabilitation should be jointly explored. When talking with patients for whom worries predominate, the recommendation is to focus on the patients' perspectives and avoid too much focus on reassurance and problem-solving. The patients' perspectives, the mechanisms of change, and the process evaluation of the intervention including person-centeredness are relevant to include in future studies.

Keywords: ischemic heart disease, cardiac rehabilitation, enrolment, person-centered, in-hospital interventions

Procedia PDF Downloads 72
8015 Using Fuzzy Logic Decision Support System to Predict the Lifted Weight for Students at Weightlifting Class

Authors: Ahmed Abdulghani Taha, Mohammad Abdulghani Taha

Abstract:

This study aims at being acquainted with the using the body fat percentage (%BF) with body Mass Index (BMI) as input parameters in fuzzy logic decision support system to predict properly the lifted weight for students at weightlifting class lift according to his abilities instead of traditional manner. The sample included 53 male students (age = 21.38 ± 0.71 yrs, height (Hgt) = 173.17 ± 5.28 cm, body weight (BW) = 70.34 ± 7.87.6 kg, Body mass index (BMI) 23.42 ± 2.06 kg.m-2, fat mass (FM) = 9.96 ± 3.15 kg and fat percentage (% BF) = 13.98 ± 3.51 %.) experienced the weightlifting class as a credit and has variance at BW, Hgt and BMI and FM. BMI and % BF were taken as input parameters in FUZZY logic whereas the output parameter was the lifted weight (LW). There were statistical differences between LW values before and after using fuzzy logic (Diff 3.55± 2.21, P > 0.001). The percentages of the LW categories proposed by fuzzy logic were 3.77% of students to lift 1.0 fold of their bodies; 50.94% of students to lift 0.95 fold of their bodies; 33.96% of students to lift 0.9 fold of their bodies; 3.77% of students to lift 0.85 fold of their bodies and 7.55% of students to lift 0.8 fold of their bodies. The study concluded that the characteristic changes in body composition experienced by students when undergoing weightlifting could be utilized side by side with the Fuzzy logic decision support system to determine the proper workloads consistent with the abilities of students.

Keywords: fuzzy logic, body mass index, body fat percentage, weightlifting

Procedia PDF Downloads 436