Search results for: bending and torsional strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4186

Search results for: bending and torsional strength

2116 Reliability Based Analysis of Multi-Lane Reinforced Concrete Slab Bridges

Authors: Ali Mahmoud, Shadi Najjar, Mounir Mabsout, Kassim Tarhini

Abstract:

Empirical expressions for estimating the wheel load distribution and live-load bending moment are typically specified in highway bridge codes such as the AASHTO procedures. The purpose of this paper is to analyze the reliability levels that are inherent in reinforced concrete slab bridges that are designed based on the simplified empirical live load equations in the AASHTO LRFD procedures. To achieve this objective, bridges with multi-lanes (three and four lanes) and different spans are modeled using finite-element analysis (FEA) subjected to HS20 truck loading, tandem loading, and standard lane loading per AASHTO LRFD procedures. The FEA results are compared with the AASHTO LRFD moments in order to quantify the biases that might result from the simplifying assumptions adopted in AASHTO. A reliability analysis is conducted to quantify the reliability index for bridges designed using AASHTO procedures. To reach a consistent level of safety for three- and four-lane bridges, following a previous study restricted to one- and two-lane bridges, the live load factor in the design equation proposed by AASHTO LRFD will be assessed and revised if needed by alternating the live load factor for these lanes. The results will provide structural engineers with more consistent provisions to design concrete slab bridges or evaluate the load-carrying capacity of existing bridges.

Keywords: reliability analysis of concrete bridges, finite element modeling, reliability analysis, reinforced concrete bridge design, load carrying capacity

Procedia PDF Downloads 342
2115 Correlation Study between Clinical and Radiological Findings in Knee Osteoarthritis

Authors: Nabil A. A. Mohamed, Alaa A. A. Balbaa, Khaled E. Ayad

Abstract:

Osteoarthritis (OA) of the knee is the most common form of arthritis and leads to more activity limitations (e.g., disability in walking and stair climbing) than any other disease, especially in the elderly. Recently, impaired proprioceptive accuracy of the knee has been proposed as a local factor in the onset and progression of radiographic knee OA (ROA). Purpose: To compare the clinical and radiological findings in healthy with that of knee OA. Also, to determine if there is a correlation between the clinical and radiological findings in patients with knee OA. Subjects: Fifty one patients diagnosed as unilateral or bilateral knee OA with age ranged between 35-70 years, from both gender without any previous history of knee trauma or surgery, and twenty one normal subjects with age ranged from 35 - 68 years. METHODS: peak torque/body weight (PT/BW) was recorded from knee extensors at isokinetic isometric mode at angle of 45 degree. Also, the Absolute Angular Error was recorded at 45O and 30O to measure joint position sense (JPS). They made anteroposterior (AP) plain X-rays from standing semiflexed knee position and their average score of Timed Up and Go test(TUG) and WOMAC were recorded as a measure of knee pain, stiffness and function. Comparison between the mean values of different variables in the two groups was performed using unpaired student t test. The P value less or equal to 0.05 was considered significant. Results: There were significant differences between the studied variables between the experimental and control groups except the values of AAE at 30O. Also, there were no significant correlation between the clinical findings (pain, function, muscle strength and proprioception) and the severity of arthritic changes in X-rays. CONCLUSION: From the finding of the current study we can conclude that there were a significant difference between the both groups in all studied parameters (the WOMAC, functional level, quadriceps muscle strength and the joint proprioception). Also this study did not support the dependency on radiological findings in management of knee OA as the radiological features did not necessarily indicate the level of structural damage of patients with knee OA and we should consider the clinical features in our treatment plan.

Keywords: joint position sense, peak torque, proprioception, radiological knee osteoarthritis

Procedia PDF Downloads 302
2114 Effect of Aminoethoxyvinylglycine on Ceasing in Sweet Orange

Authors: Zahoor Hussain

Abstract:

Creasing is a physiological disorder of rind in sweet orange [Citrus sinensis (L.) Osbeck] fruit and causes serious economic losses in various countries of the world. The reversible inhibitor of ethylene, aminoethoxyvinylglycine (AVG) with the effects of different concentrations (0, 20, 40 and 60 mgL⁻¹) AVG with 0.05% ‘Tween 20’ as a surfactant applied at the fruit set, the golf ball or at the colour break stage on controlling creasing, rheological properties of fruit and rind as well as fruit quality in of Washington Navel and Lane Late sweet orange was investigated. Creasing was substantially reduced and fruit quality was improved with the exogenous application of AVG depending upon its concentration and stage of application in both cultivars. The spray application of AVG (60 mgL⁻¹) at the golf ball stage was effective in reducing creasing (27.86% and 24.29%) compared to the control (52.14 and 51.53%) in cv. Washington Navel during 2011 and 2012, respectively. Whilst, in cv. Lane Late lowest creasing was observed When AVG was applied at fruit set stage (22.86%) compared to the control (51.43%) during 2012. In cv. Washington Navel, AVG treatment (60 mgL⁻¹) was more effective to increase the fruit firmness (318.97 N) and rind hardness (25.94 N) when applied at fruit set stage. However, rind tensile strength was higher, when AVG was applied at the golf ball stage (54.13 N). In cv. Lane Late, the rind harness (28.61 N), rind tensile strength (78.82 N) was also higher when AVG was sprayed at fruit set stage. Whilst, the fruit compression force (369.68 N) was higher when AVG was applied at the golf ball stage. Similarly, the treatment AVG (60 mgL⁻¹) was more effective in improving fruit weight (281.00 and 298.50 g) and fruit diameter (87.30 and 82.69 mm), rind thickness (5.56 and 5.38 mm) and total sugars (15.27 mg.100ml⁻¹) when AVG was applied at the fruit golf ball stage in cv. Washington Navel and Lane Late, respectively. Similarly, rind harness (25.94 and 28.61 N), total antioxidants (45.30 and 46.48 mM trolox 100ml⁻¹), total sugars (13.64 and 15.27 mg.100ml⁻¹), citric acid (1.66 and 1.32 mg100ml⁻¹), malic acid (0.36 and 0.63 mg.100ml⁻¹) and succinic acid (0.35 and 0.38 mg100ml⁻¹) were also higher, when AVG was applied at the fruit set stage in both cultivars. In conclusion, the exogenous applications of AVG substantially reduces the creasing incidence, improves rheological properties of fruit and rind as well as fruit quality in Washington Navel and Lane Late sweet orange fruit.

Keywords: AVG, creasing, ethylene inhibitor, sweet orange

Procedia PDF Downloads 161
2113 Development of Bioplastic Disposable Food Packaging from Starch and Cellulose

Authors: Lidya Hailu, Ramesh Duraisamy, Masood Akhtar Khan, Belete Yilma

Abstract:

Disposable food packaging is a single-use plastics that can include any disposable plastic item which could be designed and use only once. In this context, this study aimed to prepare and evaluate bioplastic food packaging material from avocado seed starch and sugarcane bagasse cellulose and to characterise avocado seed starch. Performed the physicomechanical, structural, thermal properties, and biodegradability of raw materials and readily prepared bioplastic using the universal tensile testing machine, FTIR, UV-Vis spectroscopy, TGA, XRD, and SEM. Results have shown that an increasing amount of glycerol (3-5 mL) resulted in increases in water absorption, density, water vapor permeability, and elongation at the break of prepared bioplastic. However, it causes decreases in % transmittance, thermal degradation, and the tensile strength of prepared bioplastic. Likewise, the addition of cellulose fiber (0-15 %) increases % transmittance ranged (91.34±0.12-63.03±0.05 %), density (0.93±0.04-1.27±0.02 g/cm3), thermal degradation (310.01-321.61°C), tensile strength (2.91±6.18-4.21±6.713 MPa) of prepared bioplastic. On the other hand, it causes decreases in water absorption (14.4±0.25-9.40±0.007 %), water vapor permeability (9.306x10-12±0.3-3.57x10-12±0.15 g•s−1•m−1•Pa−1) and elongation at break (34.46±3.37-27.63±5.67 %) of prepared bioplastic. All the readily prepared bioplastic films rapidly degraded in the soil in the first 6 days and decompose within 12 days with a diminutive leftover and completely degraded within 15 days under an open soil atmosphere. Studied results showed starch derived bioplastic reinforced with 15 % cellulose fiber that plasticized with 3 mL of glycerol had improved results than other combinations of glycerol and bagasse cellulose with avocado seed starch. Thus, biodegradable disposable food packaging cup has been successfully produced in the lab-scale level using the studied approach. Biodegradable disposable food packaging materials have been successfully produced by employing avocado seed starch and sugarcane bagasse cellulose. The future study should be done on nano scale production since this study was done at the micro level.

Keywords: avocado seed, food packaging, glycerol, sugarcane bagasse

Procedia PDF Downloads 339
2112 Development of Kenaf Cellulose CNT Paper for Electrical Conductive Paper

Authors: A. W. Fareezal, R. Rosazley, M. A. Izzati, M. Z. Shazana, I. Rushdan

Abstract:

Kenaf cellulose CNT paper production was for lightweight, high strength and excellent flexibility electrical purposes. Aqueous dispersions of kenaf cellulose and varied weight percentage of CNT were combined with the assistance of PEI solution by using ultrasonic probe. The solution was dried using vacuum filter continued with air drying in condition room for 2 days. Circle shape conductive paper was characterized with Fourier transformed infrared (FTIR) spectra, scanning electron microscopy (SEM) and therma gravimetric analysis (TGA).

Keywords: cellulose, CNT paper, PEI solution, electrical conductive paper

Procedia PDF Downloads 240
2111 Elastic Behaviour of Graphene Nanoplatelets Reinforced Epoxy Resin Composites

Authors: V. K. Srivastava

Abstract:

Graphene has recently attracted an increasing attention in nanocomposites applications because it has 200 times greater strength than steel, making it the strongest material ever tested. Graphene, as the fundamental two-dimensional (2D) carbon structure with exceptionally high crystal and electronic quality, has emerged as a rapidly rising star in the field of material science. Graphene, as defined, as a 2D crystal, is composed of monolayers of carbon atoms arranged in a honeycombed network with six-membered rings, which is the interest of both theoretical and experimental researchers worldwide. The name comes from graphite and alkene. Graphite itself consists of many graphite-sheets stacked together by weak van der Waals forces. This is attributed to the monolayer of carbon atoms densely packed into honeycomb structure. Due to superior inherent properties of graphene nanoplatelets (GnP) over other nanofillers, GnP particles were added in epoxy resin with the variation of weight percentage. It is indicated that the DMA results of storage modulus, loss modulus and tan δ, defined as the ratio of elastic modulus and imaginary (loss) modulus versus temperature were affected with addition of GnP in the epoxy resin. In epoxy resin, damping (tan δ) is usually caused by movement of the molecular chain. The tan δ of the graphene nanoplatelets/epoxy resin composite is much lower than that of epoxy resin alone. This finding suggests that addition of graphene nanoplatelets effectively impedes movement of the molecular chain. The decrease in storage modulus can be interpreted by an increasing susceptibility to agglomeration, leading to less energy dissipation in the system under viscoelastic deformation. The results indicates the tan δ increased with the increase of temperature, which confirms that tan δ is associated with magnetic field strength. Also, the results show that the nanohardness increases with increase of elastic modulus marginally. GnP filled epoxy resin gives higher value than the epoxy resin, because GnP improves the mechanical properties of epoxy resin. Debonding of GnP is clearly observed in the micrograph having agglomeration of fillers and inhomogeneous distribution. Therefore, DMA and nanohardness studies indiacte that the elastic modulus of epoxy resin is increased with the addition of GnP fillers.

Keywords: agglomeration, elastic modulus, epoxy resin, graphene nanoplatelet, loss modulus, nanohardness, storage modulus

Procedia PDF Downloads 264
2110 Mechanical Properties of Poly(Propylene)-Based Graphene Nanocomposites

Authors: Luiza Melo De Lima, Tito Trindade, Jose M. Oliveira

Abstract:

The development of thermoplastic-based graphene nanocomposites has been of great interest not only to the scientific community but also to different industrial sectors. Due to the possible improvement of performance and weight reduction, thermoplastic nanocomposites are a great promise as a new class of materials. These nanocomposites are of relevance for the automotive industry, namely because the emission limits of CO2 emissions imposed by the European Commission (EC) regulations can be fulfilled without compromising the car’s performance but by reducing its weight. Thermoplastic polymers have some advantages over thermosetting polymers such as higher productivity, lower density, and recyclability. In the automotive industry, for example, poly(propylene) (PP) is a common thermoplastic polymer, which represents more than half of the polymeric raw material used in automotive parts. Graphene-based materials (GBM) are potential nanofillers that can improve the properties of polymer matrices at very low loading. In comparison to other composites, such as fiber-based composites, weight reduction can positively affect their processing and future applications. However, the properties and performance of GBM/polymer nanocomposites depend on the type of GBM and polymer matrix, the degree of dispersion, and especially the type of interactions between the fillers and the polymer matrix. In order to take advantage of the superior mechanical strength of GBM, strong interfacial strength between GBM and the polymer matrix is required for efficient stress transfer from GBM to the polymer. Thus, chemical compatibilizers and physicochemical modifications have been reported as important tools during the processing of these nanocomposites. In this study, PP-based nanocomposites were obtained by a simple melt blending technique, using a Brabender type mixer machine. Graphene nanoplatelets (GnPs) were applied as structural reinforcement. Two compatibilizers were used to improve the interaction between PP matrix and GnPs: PP graft maleic anhydride (PPgMA) and PPgMA modified with tertiary amine alcohol (PPgDM). The samples for tensile and Charpy impact tests were obtained by injection molding. The results suggested the GnPs presence can increase the mechanical strength of the polymer. However, it was verified that the GnPs presence can promote a decrease of impact resistance, turning the nanocomposites more fragile than neat PP. The compatibilizers’ incorporation increases the impact resistance, suggesting that the compatibilizers can enhance the adhesion between PP and GnPs. Compared to neat PP, Young’s modulus of non-compatibilized nanocomposite increase demonstrated that GnPs incorporation can promote a stiffness improvement of the polymer. This trend can be related to the several physical crosslinking points between the PP matrix and the GnPs. Furthermore, the decrease of strain at a yield of PP/GnPs, together with the enhancement of Young’s modulus, confirms that the GnPs incorporation led to an increase in stiffness but to a decrease in toughness. Moreover, the results demonstrated that incorporation of compatibilizers did not affect Young’s modulus and strain at yield results compared to non-compatibilized nanocomposite. The incorporation of these compatibilizers showed an improvement of nanocomposites’ mechanical properties compared both to those the non-compatibilized nanocomposite and to a PP sample used as reference.

Keywords: graphene nanoplatelets, mechanical properties, melt blending processing, poly(propylene)-based nanocomposites

Procedia PDF Downloads 188
2109 Comparison of Mechanical Property of UNS C12200Joints Brazed by (Cu&Ag) Based Filler Metals

Authors: Ali Elhatmi, Mustafa Elshbo, Hussin Alosta

Abstract:

In this study the coper tube witch used in medical applications was brazed by Copper, Zink and Silver alloys, using BCuP2, RBCuZnAl and BAg2 filler metals. The sample of the medical tubes was chemically analyzed and the result matches the British standard. Tensile and hardness tests were carried out for brazed joints, and the tensile test results show that the BCuP2 has the hardest and the filler metal RBCuZnAl has the highest tensile strength.

Keywords: welding, Brazing, Copper tubes, Joints

Procedia PDF Downloads 228
2108 The Analysis on Leadership Skills in UK Automobile Manufacturing Enterprises

Authors: Yanting Cao

Abstract:

The UK has strong economic growth, which attracts other countries to invest there through globalization. This research process will be based on quantitative and qualitative descriptive analysis using interviews. The secondary analysis will involve a case study approach to understand the important aspects of leadership skills. The research outcomes will be identifying the strength and weaknesses of the leadership skills of UK automobile manufacturing enterprises and suggest the best practices adopted by the respective countries for better results.

Keywords: engineering management, leadership, Industrial project management, Project managers, automobile manufacturing

Procedia PDF Downloads 186
2107 Analyzing the Ergonomic Design of Manual Material Handling in Chemical Industry: Case Study of Activity Task Weigh Liquid Catalyst to the Container Storage

Authors: Yayan Harry Yadi, L. Meily Kurniawidjaja

Abstract:

Work activities for MMH (Manual Material Handling) in the storage of liquid catalyst raw material workstations in chemical industries identify high-risk MSDs (Musculoskeletal Disorders). Their work is often performed frequently requires an awkward body posture, twisting, bending because of physical space limited, cold, slippery, and limited tools for transfer container and weighing the liquid chemistry of the catalyst into the container. This study aims to develop an ergonomic work system design on the transfer and weighing process of liquid catalyst raw materials at the storage warehouse. A triangulation method through an interview, observation, and detail study team with assessing the level of risk work posture and complaints. Work postures were analyzed using the RULA method, through the support of CATIA software. The study concludes that ergonomic design can make reduce 3 levels of risk scores awkward posture. CATIA Software simulation provided a comprehensive solution for a better posture of manual material handling at task weigh. An addition of manual material handling tools such as adjustable conveyors, trolley and modification tools semi-mechanical weighing with techniques based on rule ergonomic design can reduce the hazard of chemical fluid spills.

Keywords: ergonomic design, MSDs, CATIA software, RULA, chemical industry

Procedia PDF Downloads 165
2106 Analysis of Impact of Airplane Wheels Pre-Rotating on Landing Gears of Large Airplane

Authors: Huang Bingling, Jia Yuhong, Liu Yanhui

Abstract:

As an important part of aircraft, landing gears are responsible for taking-off and landing function. In recent years, big airplane's structural quality increases a lot. As a result, landing gears have stricter technical requirements than ever before such as structure strength and etc. If the structural strength of the landing gear is enhanced through traditional methods like increasing structural quality, the negative impacts on the landing gear's function would be very serious and even counteract the positive effects. Thus, in order to solve this problem, the impact of pre-rotating of landing gears on performance of landing gears is studied from the theoretical and experimental verification in this paper. By increasing the pre-rotating speed of the wheel, it can improve the performance of the landing gear and reduce the structural quality, the force of joint parts and other properties. In addition, the pre-rotating of the wheels also has other advantages, such as reduce the friction between wheels and ground and extend the life of the wheel. In this paper, the impact of the pre-rotating speed on landing gears and the connecting between landing gears performance and pre-rotating speed would be researched in detail. This paper is divided into three parts. In the first part, large airplane landing gear model is built by CATIA and LMS. As most general landing gear type in big plane, four-wheel landing gear is picked as model. The second part is to simulate the process of landing in LMS motion, and study the impact of pre-rotating of wheels on the aircraft`s properties, including the buffer stroke, efficiency, power; friction, displacement and relative speed between piston and sleeve; force and load distribution of tires. The simulation results show that the characteristics of the different pre-rotation speed are understood. The third part is conclusion. Through the data of the previous simulation and the relationship between the pre-rotation speed of the aircraft wheels and the performance of the aircraft, recommended speed interval is proposed. This paper is of great theoretical value to improve the performance of large airplane. It is a very effective method to improve the performance of aircraft by setting wheel pre-rotating speed. Do not need to increase the structural quality too much, eliminating the negative effects of traditional methods.

Keywords: large airplane, landing gear, pre-rotating, simulation

Procedia PDF Downloads 344
2105 Reinforced Concrete Foundation for Turbine Generators

Authors: Siddhartha Bhattacharya

Abstract:

Steam Turbine-Generators (STG) and Combustion Turbine-Generator (CTG) are used in almost all modern petrochemical, LNG plants and power plant facilities. The reinforced concrete table top foundations are required to support these high speed rotating heavy machineries and is one of the most critical and challenging structures on any industrial project. The paper illustrates through a practical example, the step by step procedure adopted in designing a table top foundation supported on piles for a steam turbine generator with operating speed of 60 Hz. Finite element model of a table top foundation is generated in ANSYS. Piles are modeled as springs-damper elements (COMBIN14). Basic loads are adopted in analysis and design of the foundation based on the vendor requirements, industry standards, and relevant ASCE & ACI codal provisions. Static serviceability checks are performed with the help of Misalignment Tolerance Matrix (MTM) method in which the percentage of misalignment at a given bearing due to displacement at another bearing is calculated and kept within the stipulated criteria by the vendor so that the machine rotor can sustain the stresses developed due to this misalignment. Dynamic serviceability checks are performed through modal and forced vibration analysis where the foundation is checked for resonance and allowable amplitudes, as stipulated by the machine manufacturer. Reinforced concrete design of the foundation is performed by calculating the axial force, bending moment and shear at each of the critical sections. These values are calculated through area integral of the element stresses at these critical locations. Design is done as per ACI 318-05.

Keywords: steam turbine generator foundation, finite element, static analysis, dynamic analysis

Procedia PDF Downloads 297
2104 Language Choice and Language Maintenance of Northeastern Thai Staff in Suan Sunandha Rajabhat University

Authors: Napasri Suwanajote

Abstract:

The purposes of this research were to analyze and evaluate successful factors in OTOP production process for the developing of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The research has been designed as a qualitative study to gather information from 30 OTOP producers in Bangkontee District, Samudsongkram Province. They were all interviewed on 3 main parts. Part 1 was about the production process including 1) production, 2) product development, 3) the community strength, 4) marketing possibility, and 5) product quality. Part 2 evaluated appropriate successful factors including 1) the analysis of the successful factors, 2) evaluate the strategy based on Sufficiency Economic Philosophy, and 3) the model of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The results showed that the production did not affect the environment with potential in continuing standard quality production. They used the raw materials in the country. On the aspect of product and community strength in the past 1 year, it was found that there was no appropriate packaging showing product identity according to global market standard. They needed the training on packaging especially for food and drink products. On the aspect of product quality and product specification, it was found that the products were certified by the local OTOP standard. There should be a responsible organization to help the uncertified producers pass the standard. However, there was a problem on food contamination which was hazardous to the consumers. The producers should cooperate with the government sector or educational institutes involving with food processing to reach FDA standard. The results from small group discussion showed that the community expected high education and better standard living. Some problems reported by the community included informal debt and drugs in the community. There were 8 steps in developing the model of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality.

Keywords: production process, OTOP, sufficiency economic philosophy, language choice

Procedia PDF Downloads 239
2103 Physical, Chemical and Mineralogical Characterization of Construction and Demolition Waste Produced in Greece

Authors: C. Alexandridou, G. N. Angelopoulos, F. A. Coutelieris

Abstract:

Construction industry in Greece consumes annually more than 25 million tons of natural aggregates originating mainly from quarries. At the same time, more than 2 million tons of construction and demolition waste are deposited every year, usually without control, therefore increasing the environmental impact of this sector. A potential alternative for saving natural resources and minimize landfilling, could be the recycling and re-use of Concrete and Demolition Waste (CDW) in concrete production. Moreover, in order to conform to the European legislation, Greece is obliged to recycle non-hazardous construction and demolition waste to a minimum of 70% by 2020. In this paper characterization of recycled materials - commercially and laboratory produced, coarse and fine, Recycled Concrete Aggregates (RCA) - has been performed. Namely, X-Ray Fluorescence and X-ray diffraction (XRD) analysis were used for chemical and mineralogical analysis respectively. Physical properties such as particle density, water absorption, sand equivalent and resistance to fragmentation were also determined. This study, first time made in Greece, aims at outlining the differences between RCA and natural aggregates and evaluating their possible influence in concrete performance. Results indicate that RCA’s chemical composition is enriched in Si, Al, and alkali oxides compared to natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, quartz and minor peaks of mica and feldspars. From all the evaluated physical properties of coarse RCA, only water absorption and resistance to fragmentation seem to have a direct influence on the properties of concrete. Low Sand Equivalent and significantly high water absorption values indicate that fine fractions of RCA cannot be used for concrete production unless further processed. Chemical properties of RCA in terms of water soluble ions are similar to those of natural aggregates. Four different concrete mixtures were produced and examined, replacing natural coarse aggregates with RCA by a ratio of 0%, 25%, 50% and 75% respectively. Results indicate that concrete mixtures containing recycled concrete aggregates have a minor deterioration of their properties (3-9% lower compression strength at 28 days) compared to conventional concrete containing the same cement quantity.

Keywords: chemical and physical characterization, compressive strength, mineralogical analysis, recycled concrete aggregates, waste management

Procedia PDF Downloads 234
2102 Development of Multifunctional Yarns and Fabrics for Interactive Textiles

Authors: Muhammad Bilal Qadir, Danish Umer, Amir Shahzad

Abstract:

The use of conductive materials in smart and interactive textiles is gaining significant importance for creating value addition, innovation, and functional product development. These products find their potential applications in health monitoring, military, protection, communication, sensing, monitoring, actuation, fashion, and lifestyles. The materials which are most commonly employed in such type of interactive textile include intrinsically conducting polymers, conductive inks, and metallic coating on textile fabrics and inherently conducting metallic fibre yarns. In this study, silver coated polyester filament yarn is explored for the development of multifunctional interactive gloves. The composite yarn was developed by covering the silver coated polyester filament around the polyester spun yarn using hollow spindle technique. The electrical and tensile properties of the yarn were studied. This novel yarn was used to manufacture a smart glove to explore the antibacterial, functional, and interactive properties of the yarn. The change in electrical resistance due to finger movement at different bending positions and antimicrobial properties were studied. This glove was also found useful as an interactive tool to operate the commonly used touch screen devices due to its conductive nature. The yarn can also be used to develop the sensing elements like stretch, strain, and piezoresistive sensors. Such sensor can be effectively used in medical and sports textile for performance monitoring, vital signs monitoring and development of antibacterial textile for healthcare and hygiene.

Keywords: conductive yarn, interactive textiles, piezoresistive sensors, smart gloves

Procedia PDF Downloads 244
2101 Analysis of Friction Stir Welding Process for Joining Aluminum Alloy

Authors: A. M. Khourshid, I. Sabry

Abstract:

Friction Stir Welding (FSW), a solid state joining technique, is widely being used for joining Al alloys for aerospace, marine automotive and many other applications of commercial importance. FSW were carried out using a vertical milling machine on Al 5083 alloy pipe. These pipe sections are relatively small in diameter, 5mm, and relatively thin walled, 2 mm. In this study, 5083 aluminum alloy pipe were welded as similar alloy joints using (FSW) process in order to investigate mechanical and microstructural properties .rotation speed 1400 r.p.m and weld speed 10,40,70 mm/min. In order to investigate the effect of welding speeds on mechanical properties, metallographic and mechanical tests were carried out on the welded areas. Vickers hardness profile and tensile tests of the joints as a metallurgical feasibility of friction stir welding for joining Al 6061 aluminum alloy welding was performed on pipe with different thickness 2, 3 and 4 mm,five rotational speeds (485,710,910,1120 and 1400) rpm and a traverse speed (4, 8 and 10)mm/min was applied. This work focuses on two methods such as artificial neural networks using software (pythia) and response surface methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminum alloy. An artificial neural network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. The tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters Tool rotation speed, material thickness and travel speed as a function. A comparison was made between measured and predicted data. Response surface methodology (RSM) also developed and the values obtained for the response Tensile strengths, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameter on mechanical properties of 6061 aluminum alloy has been analyzed in detail.

Keywords: friction stir welding (FSW), al alloys, mechanical properties, microstructure

Procedia PDF Downloads 464
2100 Higher Education in India Strength, Weakness, Opportunities and Threats

Authors: Renu Satish Nair

Abstract:

Indian higher education system is the third largest in the world next to United States and China. India is experiencing a rapid growth in higher education in terms of student enrollment as well as establishment of new universities, colleges and institutes of national importance. Presently about 22 million students are being enrolled in higher education and more than 46 thousand institutions’ are functioning as centers of higher education. Indian government plays a 'command and control' role in higher education. The main governing body is University Grants Commission, which enforces its standards, advises the government, and helps coordinate between the centre and the state. Accreditation of higher learning is over seen by 12 autonomous institutions established by the University Grants Commission. The present paper is an effort to analyze the strength, weakness, opportunities and threat (SWOT Analysis) of Indian Higher education system. The higher education in India is progressing ahead by virtue of its strength which is being recognized at global level. Several institutions of India, such as Indian Institutes of Technology (IITs), Indian Institutes of Management (IIMs) and National Institutes of Technology (NITs) have been globally acclaimed for their standard of education. Three Indian universities were listed in the Times Higher Education list of the world’s top 200 universities i.e. Indian Institutes of Technology, Indian Institute of Management and Jawahar Lal Nehru University in 2005 and 2006. Six Indian Institutes of Technology and the Birla Institute of Technology and Science - Pilani were listed among the top 20 science and technology schools in Asia by the Asia Week. The school of Business situated in Hyderabad was ranked number 12 in Globe MBA ranking by the Financial Times of London in 2010 while the All India Institute of Medical Sciences has been recognized as a global leader in medical research and treatment. But at the same time, because of vast expansion, the system bears several weaknesses. The Indian higher education system in many parts of the country is in the state of disrepair. In almost half the districts in the country higher education enrollment are very low. Almost two third of total universities and 90% of colleges are rated below average on quality parameters. This can be attributed to the under prepared faculty, unwieldy governance and other obstacles to innovation and improvement that could prohibit India from meeting its national education goals. The opportunities in Indian higher education system are widely ranged. The national institutions are training their products to compete at global level and make them capable to grab opportunities worldwide. The state universities and colleges with their limited resources are giving the products that are capable enough to secure career opportunities and hold responsible positions in various government and private sectors with in the country. This is further creating opportunities for the weaker section of the society to join the main stream. There are several factors which can be defined as threats to Indian higher education system. It is a matter of great concern and needs proper attention. Some important factors are -Conservative society, particularly for women education; -Lack of transparency, -Taking higher education as a means of business

Keywords: Indian higher education system, SWOT analysis, university grants commission, Indian institutes of technology

Procedia PDF Downloads 898
2099 Finite Element Analysis of the Lumbar Spine after Unilateral and Bilateral Laminotomies and Laminectomy

Authors: Chih-Hsien Chen, Yi-Hung Ho, Chih-Wei Wang, Chih-Wei Chang, Yen-Nien Chen, Chih-Han Chang, Chun-Ting Li

Abstract:

Laminotomy is a spinal decompression surgery compatible with a minimally invasive approach. However, the unilateral laminotomy for bilateral side decompression leads to more perioperative complications than the bilateral laminotomy. Although the unilateral laminotomy removes the least bone tissue among the spinal decompression surgeries, the difference of spinal stability between unilateral and bilateral laminotomy and laminectomy is rarely investigated. This study aims to compare the biomechanical effects of unilateral and bilateral laminotomy and laminectomy on the lumbar spine by finite element (FE) simulation. A three-dimensional FE model of the lumbar spine (L1–L5) was constructed with the vertebral body, discs, and ligaments, as well as the sacrum was constructed. Three different surgical methods, namely unilateral laminotomy, bilateral laminotomy and laminectomy, at L3–L4 and L4–L5 were considered. Partial pedicle and entire ligamentum flavum were removed to simulate bilateral decompression in laminotomy. The entire lamina and spinal processes from the lower L3 to upper L5 were detached in the laminectomy model. Then, four kinds of loadings, namely flexion, extension, lateral bending and rotation, were applied on the lumbar with various decompression conditions. The results indicated that the bilateral and unilateral laminotomy both increased the range of motion (ROM) compared with intact lumbar, while the laminectomy increased more ROM than both laminotomy did. The difference of ROM between the bilateral and unilateral laminotomy was very minor. Furthermore, bilateral laminotomy demonstrated similar poster element stress with unilateral laminotomy. Unilateral and bilateral laminotomy are equally suggested to bilateral decompression of lumbar spine with minimally invasive technique because limited effect was aroused due to more bone remove in the bilateral laminotomy on the lumbar stability. Furthermore, laminectomy is the last option for lumbar decompression.

Keywords: minimally invasive technique, lumbar decompression, laminotomy, laminectomy, finite element method

Procedia PDF Downloads 190
2098 Influence of Strengthening of Hip Abductors and External Rotators in Treatment of Patellofemoral Pain Syndrome

Authors: Karima Abdel Aty Hassan Mohamed, Manal Mohamed Ismail, Mona Hassan Gamal Eldein, Ahmed Hassan Hussein, Abdel Aziz Mohamed Elsingerg

Abstract:

Background: Patellofemoral pain (PFP) is a common musculoskeletal pain condition, especially in females. Decreased hip muscle strength has been implicated as a contributing factor, yet the relationships between pain, hip muscle strength and function are not known. Objective: The purpose of this study is to investigate the effects of strengthening hip abductors and lateral rotators on pain intensity, function and hip abductor and hip lateral rotator eccentric and concentric torques in patients with PFPS. Methods: Thirty patients had participated in this study; they were assigned into two experimental groups. With age ranged for eighty to thirty five years. Group A consisted of 15 patients (11females and 4 males) with mean age 20.8 (±2.73) years, received closed kinetic chain exercises program, stretching exercises for tight lower extremity soft tissues, and hip strengthening exercises .Group B consisted of 15 patients (12 females and 3 males) with mean age 21.2(±3.27) years, received closed kinetic chain exercises program and stretching exercises for tight lower extremity soft tissues. Treatment was given 2-3times/week, for 6 weeks. Patients were evaluated pre and post treatment for their pain severity, function of knee joint, hip abductors and external rotators concentric/eccentric peak torque. Result: the results revealed that there were significant differences in pain and function between both groups, while there was improvement for all values for both group. Conclusion: Six weeks rehabilitation program focusing on knee strengthening exercises either supplemented by hip strengthening exercises or not effective in improving function, reducing pain and improving hip muscles torque in patients with PFPS. However, adding hip abduction and lateral rotation strengthening exercises seem to reduce pain and improve function more efficiently.

Keywords: patellofemoral pain syndrome, hip muscles, rehabilitation, isokinetic

Procedia PDF Downloads 451
2097 Temperature Susceptibility of Multigrade Bitumen Asphalt and an Approach to Account for Temperature Variation through Deep Pavements

Authors: Brody R. Clark, Chaminda Gallage, John Yeaman

Abstract:

Multigrade bitumen asphalt is a quality asphalt product that is not utilised in many places globally. Multigrade bitumen is believed to be less sensitive to temperature, which gives it an advantage over conventional binders. Previous testing has shown that asphalt temperature changes greatly with depth, but currently the industry standard is to nominate a single temperature for design. For detailed design of asphalt roads, perhaps asphalt layers should be divided into nominal layer depths and different modulus and fatigue equations/values should be used to reflect the temperatures of each respective layer. A collaboration of previous laboratory testing conducted on multigrade bitumen asphalt beams under a range of temperatures and loading conditions was analysed. The samples tested included 0% or 15% recycled asphalt pavement (RAP) to determine what impact the recycled material has on the fatigue life and stiffness of the pavement. This paper investigated the temperature susceptibility of multigrade bitumen asphalt pavements compared to conventional binders by combining previous testing that included conducting a sweep of fatigue tests, developing complex modulus master curves for each mix and a study on how pavement temperature changes through pavement depth. This investigation found that the final design of the pavement is greatly affected by the nominated pavement temperature and respective material properties. This paper has outlined a potential revision to the current design approach for asphalt pavements and proposes that further investigation is needed into pavement temperature and its incorporation into design.

Keywords: asphalt, complex modulus, fatigue life, flexural stiffness, four point bending, multigrade bitumen, recycled asphalt pavement

Procedia PDF Downloads 376
2096 Thermal Decomposition Behaviors of Hexafluoroethane (C2F6) Using Zeolite/Calcium Oxide Mixtures

Authors: Kazunori Takai, Weng Kaiwei, Sadao Araki, Hideki Yamamoto

Abstract:

HFC and PFC gases have been commonly and widely used as refrigerant of air conditioner and as etching agent of semiconductor manufacturing process, because of their higher heat of vaporization and chemical stability. On the other hand, HFCs and PFCs gases have the high global warming effect on the earth. Therefore, we have to be decomposed these gases emitted from chemical apparatus like as refrigerator. Until now, disposal of these gases were carried out by using combustion method like as Rotary kiln treatment mainly. However, this treatment needs extremely high temperature over 1000 °C. In the recent year, in order to reduce the energy consumption, a hydrolytic decomposition method using catalyst and plasma decomposition treatment have been attracted much attention as a new disposal treatment. However, the decomposition of fluorine-containing gases under the wet condition is not able to avoid the generation of hydrofluoric acid. Hydrofluoric acid is corrosive gas and it deteriorates catalysts in the decomposition process. Moreover, an additional process for the neutralization of hydrofluoric acid is also indispensable. In this study, the decomposition of C2F6 using zeolite and zeolite/CaO mixture as reactant was evaluated in the dry condition at 923 K. The effect of the chemical structure of zeolite on the decomposition reaction was confirmed by using H-Y, H-Beta, H-MOR and H-ZSM-5. The formation of CaF2 in zeolite/CaO mixtures after the decomposition reaction was confirmed by XRD measurements. The decomposition of C2F6 using zeolite as reactant showed the closely similar behaviors regardless the type of zeolite (MOR, Y, ZSM-5, Beta type). There was no difference of XRD patterns of each zeolite before and after reaction. On the other hand, the difference in the C2F6 decomposition for each zeolite/CaO mixtures was observed. These results suggested that the rate-determining process for the C2F6 decomposition on zeolite alone is the removal of fluorine from reactive site. In other words, the C2F6 decomposition for the zeolite/CaO improved compared with that for the zeolite alone by the removal of the fluorite from reactive site. HMOR/CaO showed 100% of the decomposition for 3.5 h and significantly improved from zeolite alone. On the other hand, Y type zeolite showed no improvement, that is, the almost same value of Y type zeolite alone. The descending order of C2F6 decomposition was MOR, ZSM-5, beta and Y type zeolite. This order is similar to the acid strength characterized by NH3-TPD. Hence, it is considered that the C-F bond cleavage is closely related to the acid strength.

Keywords: hexafluoroethane, zeolite, calcium oxide, decomposition

Procedia PDF Downloads 483
2095 Evaluation of the Efficacy of Surface Hydrophobisation and Properties of Composite Based on Lime Binder with Flax Fillers

Authors: Stanisław Fic, Danuta Barnat-Hunek, Przemysław Brzyski

Abstract:

The aim of the study was to evaluate the possibility of applying modified lime binder together with natural flax fibers and straw to the production of wall blocks to the usage in energy-efficient construction industry and the development of proposals for technological solutions. The following laboratory tests were performed: the analysis of the physical characteristics of the tested materials (bulk density, total porosity, and thermal conductivity), compressive strength, a water droplet absorption test, water absorption of samples, diffusion of water vapor, and analysis of the structure by using SEM. In addition, the process of surface hydrophobisation was analyzed. In the paper, there was examined the effectiveness of two formulations differing in the degree of hydrolytic polycondensation, viscosity and concentration, as these are the factors that determine the final impregnation effect. Four composites, differing in composition, were executed. Composites, as a result of the presence of flax straw and fibers showed low bulk density in the range from 0.44 to 1.29 kg/m3 and thermal conductivity between 0.13 W/mK and 0.22 W/mK. Compressive strength changed in the range from 0,45 MPa to 0,65 MPa. The analysis of results allowed observing the relationship between the formulas and the physical properties of the composites. The results of the effectiveness of hydrophobisation of composites after 2 days showed a decrease in water absorption. Depending on the formulation, after 2 days, the water absorption ratio WH of composites was from 15 to 92% (effectiveness of hydrophobization was suitably from 8 to 85%). In practice, preparations based on organic solvents often cause sealing of surface, hindering the diffusion of water vapor from materials but studies have shown good water vapor permeability by the hydrophobic silicone coating. The conducted pilot study demonstrated the possibility of applying flax composites. The article shows that the reduction of CO2 which is produced in the building process can be affected by using natural materials for the building components whose quality is not inferior as compared to the materials which are commonly used.

Keywords: ecological construction, flax fibers, hydrophobisation, lime

Procedia PDF Downloads 334
2094 The Impact of Protein Content on Athletes’ Body Composition

Authors: G. Vici, L. Cesanelli, L. Belli, R. Ceci, V. Polzonetti

Abstract:

Several factors contribute to success in sport and diet is one of them. Evidence-based sport nutrition guidelines underline the importance of macro- and micro-nutrients’ balance and timing in order to improve athlete’s physical status and performance. Nevertheless, a high content of proteins is commonly found in resistance training athletes’ diet with carbohydrate intake that is not enough or not well planned. The aim of the study was to evaluate the impact of different protein and carbohydrate diet contents on body composition and sport performance on a group of resistance training athletes. Subjects were divided as study group (n=16) and control group (n=14). For a period of 4 months, both groups were subjected to the same resistance training fitness program with study group following a specific diet and control group following an ab libitum diet. Body compositions were evaluated trough anthropometric measurement (weight, height, body circumferences and skinfolds) and Bioimpedence Analysis. Physical strength and training status of individuals were evaluated through the One Repetition Maximum test (RM1). Protein intake in studied group was found to be lower than in control group. There was a statistically significant increase of body weight, free fat mass and body mass cell of studied group respect to the control group. Fat mass remains almost constant. Statistically significant changes were observed in quadriceps and biceps circumferences, with an increase in studied group. The MR1 test showed improvement in study group’s strength but no changes in control group. Usually people consume hyper-proteic diet to achieve muscle mass development. Through this study, it was possible to show that protein intake fixed at 1,7 g/kg/d can meet the individual's needs. In parallel, the increased intake of carbohydrates, focusing on quality and timing of assumption, has enabled the obtainment of desired results with a training protocol supporting a hypertrophic strategy. Therefore, the key point seems related to the planning of a structured program both from a nutritional and training point of view.

Keywords: body composition, diet, exercise, protein

Procedia PDF Downloads 226
2093 Characteristics of Double-Stator Inner-Rotor Axial Flux Permanent Magnet Machine with Rotor Eccentricity

Authors: Dawoon Choi, Jian Li, Yunhyun Cho

Abstract:

Axial Flux Permanent Magnet (AFPM) machines have been widely used in various applications due to their important merits, such as compact structure, high efficiency and high torque density. This paper presents one of the most important characteristics in the design process of the AFPM device, which is a recent issue. To design AFPM machine, the predicting electromagnetic forces between the permanent magnets and stator is important. Because of the magnitude of electromagnetic force affects many characteristics such as machine size, noise, vibration, and quality of output power. Theoretically, this force is canceled by the equilibrium of force when it is in the middle of the gap, but it is inevitable to deviate due to manufacturing problems in actual machine. Such as large scale wind generator, because of the huge attractive force between rotor and stator disks, this is more serious in getting large power applications such as large. This paper represents the characteristics of Double-Stator Inner –Rotor AFPM machines when it has rotor eccentricity. And, unbalanced air-gap and inclined air-gap condition which is caused by rotor offset and tilt in a double-stator single inner-rotor AFPM machine are each studied in electromagnetic and mechanical aspects. The output voltage and cogging torque under un-normal air-gap condition of AF machines are firstly calculated using a combined analytical and numerical methods, followed by a structure analysis to study the effect to mechanical stress, deformation and bending forces on bearings. Results and conclusions given in this paper are instructive for the successful development of AFPM machines.

Keywords: axial flux permanent magnet machine, inclined air gap, unbalanced air gap, rotor eccentricity

Procedia PDF Downloads 221
2092 Investigating the Characteristics of Multi-Plastic Composites Prepared from a Mixture of Silk Fibers and Recycled Polycarbonate

Authors: Razieh Shamsi, Mehdi Faezipour, Ali Abdolkhani

Abstract:

In this research, the characteristics of composites prepared from waste silk fibers and recycled polycarbonate polymer (used compacted boards) at four levels of 0, 10, 20, and 30% (silk fibers) and using 2% N- 2-Aminoethyl-3-Aminopropyltrimethoxysilane was investigated as a coupling agent and melt process method. Silk fibers (carpet weaving waste) with dimensions of 8-18 mm were prepared, and recycled polymer with 9 mesh grading was ground. Production boards in 3 thicknesses, 3 mm (tensile test samples), 5 mm (bending test samples, water absorption, and thickness shrinkage), 7 mm (impact resistance test samples) ) with a specific weight of 1 gram per cubic centimeter, hot pressing time and temperature of 12 minutes and 190 degrees Celsius with a pressure of 130 bar, cold pressing time of 6 minutes with a pressure of 50 bar and using the coupling agent N- (2- Aminoethyl)-3-aminopropyltrimethoxysilane was prepared in a constant amount of 2% of the dry weight of the filler. The results showed that, in general, by adding silk fibers to the base polymer, compared to the control samples (pure recycled polycarbonate polymer) and also by increasing the amount of silk fibers, almost all the resistances increased. The amount of water absorption of the constructed composite increased with the increase in the amount of silk fibers, and the thickness absorption was equal to 0% even after 72 hours of immersion in water. The thermal resistance of the pure recycled polymer was higher than the prepared composites, and by adding silk fibers to the base polymer and also by increasing the amount of silk fibers from 10 to 30%, the thermal resistance of the composites decreased.

Keywords: wood composite, recycled polycarbonate, silk fibers, polymer

Procedia PDF Downloads 93
2091 Structural Characterization and Hot Deformation Behaviour of Al3Ni2/Al3Ni in-situ Core-shell intermetallic in Al-4Cu-Ni Composite

Authors: Ganesh V., Asit Kumar Khanra

Abstract:

An in-situ powder metallurgy technique was employed to create Ni-Al3Ni/Al3Ni2 core-shell-shaped aluminum-based intermetallic reinforced composites. The impact of Ni addition on the phase composition, microstructure, and mechanical characteristics of the Al-4Cu-xNi (x = 0, 2, 4, 6, 8, 10 wt.%) in relation to various sintering temperatures was investigated. Microstructure evolution was extensively examined using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscopy (TEM) techniques. Initially, under sintering conditions, the formation of "Single Core-Shell" structures was observed, consisting of Ni as the core with Al3Ni2 intermetallic, whereas samples sintered at 620°C exhibited both "Single Core-Shell" and "Double Core-Shell" structures containing Al3Ni2 and Al3Ni intermetallics formed between the Al matrix and Ni reinforcements. The composite achieved a high compressive yield strength of 198.13 MPa and ultimate strength of 410.68 MPa, with 24% total elongation for the sample containing 10 wt.% Ni. Additionally, there was a substantial increase in hardness, reaching 124.21 HV, which is 2.4 times higher than that of the base aluminum. Nanoindentation studies showed hardness values of 1.54, 4.65, 21.01, 13.16, 5.52, 6.27, and 8.39GPa corresponding to α-Al matrix, Ni, Al3Ni2, Ni and Al3Ni2 interface, Al3Ni, and their respective interfaces. Even at 200°C, it retained 54% of its room temperature strength (90.51 MPa). To investigate the deformation behavior of the composite material, experiments were conducted at deformation temperatures ranging from 300°C to 500°C, with strain rates varying from 0.0001s-1 to 0.1s-1. A sine-hyperbolic constitutive equation was developed to characterize the flow stress of the composite, which exhibited a significantly higher hot deformation activation energy of 231.44 kJ/mol compared to the self-diffusion of pure aluminum. The formation of Al2Cu intermetallics at grain boundaries and Al3Ni2/Al3Ni within the matrix hindered dislocation movement, leading to an increase in activation energy, which might have an adverse effect on high-temperature applications. Two models, the Strain-compensated Arrhenius model and the Artificial Neural Network (ANN) model, were developed to predict the composite's flow behavior. The ANN model outperformed the Strain-compensated Arrhenius model with a lower average absolute relative error of 2.266%, a smaller root means square error of 1.2488 MPa, and a higher correlation coefficient of 0.9997. Processing maps revealed that the optimal hot working conditions for the composite were in the temperature range of 420-500°C and strain rates between 0.0001s-1 and 0.001s-1. The changes in the composite microstructure were successfully correlated with the theory of processing maps, considering temperature and strain rate conditions. The uneven distribution in the shape and size of Core-shell/Al3Ni intermetallic compounds influenced the flow stress curves, leading to Dynamic Recrystallization (DRX), followed by partial Dynamic Recovery (DRV), and ultimately strain hardening. This composite material shows promise for applications in the automobile and aerospace industries.

Keywords: core-shell structure, hot deformation, intermetallic compounds, powder metallurgy

Procedia PDF Downloads 22
2090 Flow Performance of Hybrid Cement Based Mortars

Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco Torgal

Abstract:

The workability of hybrid alkaline cements is a field of knowledge that still needs further research efforts. This paper reports experimental results of 32 hybrid cement mixes regarding the joint effect of sodium hydroxide concentration, the use of a commercial superplasticizer and a biopolymer on the flow and compressive strength performance. The results show that the use of commercial admixtures led to a slightly increase in the flow of mortars with lower sodium hydroxide concentration.

Keywords: waste reuse, fly ash, waste glass, hybrid cement, biopolymer, polycarboxylate, flow

Procedia PDF Downloads 307
2089 Tool Wear of Metal Matrix Composite 10wt% AlN Reinforcement Using TiB2 Cutting Tool

Authors: M. S. Said, J. A. Ghani, C. H. Che Hassan, N. N. Wan, M. A. Selamat, R. Othman

Abstract:

Metal Matrix Composite (MMCs) have attracted considerable attention as a result of their ability to provide high strength, high modulus, high toughness, high impact properties, improved wear resistance and good corrosion resistance than unreinforced alloy. Aluminium Silicon (Al/Si) alloys Metal Matrix composite (MMC) has been widely used in various industrial sectors such as transportation, domestic equipment, aerospace, military, construction, etc. Aluminium silicon alloy is MMC reinforced with aluminium nitride (AlN) particle and becomes a new generation material for automotive and aerospace applications. The AlN material is one of the advanced materials with light weight, high strength, high hardness and stiffness qualities which have good future prospects. However, the high degree of ceramic particles reinforcement and the irregular nature of the particles along the matrix material that contribute to its low density, is the main problem that leads to the machining difficulties. This paper examines tool wear when milling AlSi/AlN Metal Matrix Composite using a TiB2 coated carbide cutting tool. The volume of the AlN reinforced particle was 10%. The milling process was carried out under dry cutting condition. The TiB2 coated carbide insert parameters used were the cutting speed of (230 m/min, feed rate 0.4mm tooth, DOC 0.5mm, 300 m/min, feed rate 0.8mm/tooth, DOC 0.5mm and 370 m/min, feed rate 0.8, DOC 0.4m). The Sometech SV-35 video microscope system was used for tool wear measurements respectively. The results have revealed that the tool life increases with the cutting speed (370 m/min, feed rate 0.8 mm/tooth and depth of cut 0.4mm) constituted the optimum condition for longer tool life which is 123.2 min. While at medium cutting speed, it is found that the cutting speed of 300m/min, feed rate 0.8 mm/tooth and depth of cut 0.5mm only 119.86 min for tool wear mean while the low cutting speed give 119.66 min. The high cutting speed gives the best parameter for cutting AlSi/AlN MMCs materials. The result will help manufacture to machining the AlSi/AlN MMCs materials.

Keywords: AlSi/AlN Metal Matrix Composite milling process, tool wear, TiB2 coated carbide tool, manufacturing engineering

Procedia PDF Downloads 428
2088 Construction and Validation of a Hybrid Lumbar Spine Model for the Fast Evaluation of Intradiscal Pressure and Mobility

Authors: Dicko Ali Hamadi, Tong-Yette Nicolas, Gilles Benjamin, Faure Francois, Palombi Olivier

Abstract:

A novel hybrid model of the lumbar spine, allowing fast static and dynamic simulations of the disc pressure and the spine mobility, is introduced in this work. Our contribution is to combine rigid bodies, deformable finite elements, articular constraints, and springs into a unique model of the spine. Each vertebra is represented by a rigid body controlling a surface mesh to model contacts on the facet joints and the spinous process. The discs are modeled using a heterogeneous tetrahedral finite element model. The facet joints are represented as elastic joints with six degrees of freedom, while the ligaments are modeled using non-linear one-dimensional elastic elements. The challenge we tackle is to make these different models efficiently interact while respecting the principles of Anatomy and Mechanics. The mobility, the intradiscal pressure, the facet joint force and the instantaneous center of rotation of the lumbar spine are validated against the experimental and theoretical results of the literature on flexion, extension, lateral bending as well as axial rotation. Our hybrid model greatly simplifies the modeling task and dramatically accelerates the simulation of pressure within the discs, as well as the evaluation of the range of motion and the instantaneous centers of rotation, without penalizing precision. These results suggest that for some types of biomechanical simulations, simplified models allow far easier modeling and faster simulations compared to usual full-FEM approaches without any loss of accuracy.

Keywords: hybrid, modeling, fast simulation, lumbar spine

Procedia PDF Downloads 307
2087 A Current Problem for Steel Bridges: Fatigue Assessment of Seams´ Repair

Authors: H. Pasternak, A. Chwastek

Abstract:

The paper describes the results from a research project about repair of welds. The repair was carried out by grinding the flawed seams and re-welding them. The main task was to determine the FAT classes of original state and after repair of seams according to the assessment procedures, such as nominal, structural and effective notch stress approach. The first part shows the results of the tests, the second part encloses numerical analysis and evaluation of results to determine the fatigue strength classes according to three assessment procedures.

Keywords: cyclic loading, fatigue crack, post-weld treatment, seams’ repair

Procedia PDF Downloads 260