Search results for: whole body vibration
4508 Design of In-House Test Method for Assuring Packing Quality of Bottled Spirits
Authors: S. Ananthakrishnan, U. H. Acharya
Abstract:
Whether shopping in a retail location or via the internet, consumers expect to receive their products intact. When products arrive damaged or over-packaged, the result can be customer dissatisfaction and increased cost for retailers and manufacturers. The packaging performance depends on both the transport situation and the packaging design. During transportation, the packaged products are subjected to the variation in vibration levels from transport vehicles that vary in frequency and acceleration while moving to their destinations. Spirits manufactured by this Company were being transported to various parts of the country by road. There were instances of package breaking and customer complaints. The vibration experienced on a straight road at some speed may not be same as the vibration experienced by the same vehicle on a curve at the same speed. This vibration may negatively affect the product or packing. Hence, it was necessary to conduct a physical road test to understand the effect of vibration in the packaged products. The field transit trial has to be done before the transportations, which results in high investment. The company management was interested in developing an in-house test environment which would adequately represent the transit conditions. With the objective to develop an in-house test condition that can accurately simulate the mechanical loading scenario prevailing during the storage, handling and transportation of the products a brainstorming was done with the concerned people to identify the critical factors affecting vibration rate. Position of corrugated box, the position of bottle and speed of vehicle were identified as factors affecting the vibration rate. Several packing scenarios were identified by Design of Experiment methodology and simulated in the in-house test facility. Each condition was observed for 30 minutes, which was equivalent to 1000 km. The achieved vibration level was considered as the response. The average achieved in the simulated experiments was near to the third quartile (Q3) of the actual data. Thus, we were able to address around three-fourth of the actual phenomenon. Most of the cases in transit could be reproduced. The recommended test condition could generate a vibration level ranging from 9g to 15g as against a maximum of only 7g that was being generated earlier. Thus, the Company was able to test the packaged cartons satisfactorily in the house itself before transporting to the destinations, assuring itself that the breakages of the bottles will not happen.Keywords: ANOVA, Corrugated box, DOE, Quartile
Procedia PDF Downloads 1254507 Investigation of Cavitation in a Centrifugal Pump Using Synchronized Pump Head Measurements, Vibration Measurements and High-Speed Image Recording
Authors: Simon Caba, Raja Abou Ackl, Svend Rasmussen, Nicholas E. Pedersen
Abstract:
It is a challenge to directly monitor cavitation in a pump application during operation because of a lack of visual access to validate the presence of cavitation and its form of appearance. In this work, experimental investigations are carried out in an inline single-stage centrifugal pump with optical access. Hence, it gives the opportunity to enhance the value of CFD tools and standard cavitation measurements. Experiments are conducted using two impellers running in the same volute at 3000 rpm and the same flow rate. One of the impellers used is optimized for lower NPSH₃% by its blade design, whereas the other one is manufactured using a standard casting method. The cavitation is detected by pump performance measurements, vibration measurements and high-speed image recordings. The head drop and the pump casing vibration caused by cavitation are correlated with the visual appearance of the cavitation. The vibration data is recorded in an axial direction of the impeller using accelerometers recording at a sample rate of 131 kHz. The vibration frequency domain data (up to 20 kHz) and the time domain data are analyzed as well as the root mean square values. The high-speed recordings, focusing on the impeller suction side, are taken at 10,240 fps to provide insight into the flow patterns and the cavitation behavior in the rotating impeller. The videos are synchronized with the vibration time signals by a trigger signal. A clear correlation between cloud collapses and abrupt peaks in the vibration signal can be observed. The vibration peaks clearly indicate cavitation, especially at higher NPSHA values where the hydraulic performance is not affected. It is also observed that below a certain NPSHA value, the cavitation started in the inlet bend of the pump. Above this value, cavitation occurs exclusively on the impeller blades. The impeller optimized for NPSH₃% does show a lower NPSH₃% than the standard impeller, but the head drop starts at a higher NPSHA value and is more gradual. Instabilities in the head drop curve of the optimized impeller were observed in addition to a higher vibration level. Furthermore, the cavitation clouds on the suction side appear more unsteady when using the optimized impeller. The shape and location of the cavitation are compared to 3D fluid flow simulations. The simulation results are in good agreement with the experimental investigations. In conclusion, these investigations attempt to give a more holistic view on the appearance of cavitation by comparing the head drop, vibration spectral data, vibration time signals, image recordings and simulation results. Data indicates that a criterion for cavitation detection could be derived from the vibration time-domain measurements, which requires further investigation. Usually, spectral data is used to analyze cavitation, but these investigations indicate that the time domain could be more appropriate for some applications.Keywords: cavitation, centrifugal pump, head drop, high-speed image recordings, pump vibration
Procedia PDF Downloads 1804506 The Lateral and Torsional Vibration Analysis of a Rotor-Bearing System Using Transfer Matrix Method
Authors: Mohammad Hadi Jalali, Mostafa Ghayour, Saeed Ziaei-Rad, Behrooz Shahriari
Abstract:
The vibration problems that can be occurred in the operational conditions of rotating machines may cause damage to the machine or even failure of the machine completely. Therefore, dynamic analysis of rotors is vital in the design and development stages of the rotating machines. In this study, the uncoupled torsional and lateral vibration analysis of a rotor-bearing system is carried out using transfer matrix method. The Campbell diagram, critical speed and the mode shape corresponding to the critical speed are obtained in order to evaluate the dynamic behavior of the rotor.Keywords: transfer matrix method, rotor-bearing system, campbell diagram, critical speed
Procedia PDF Downloads 4924505 Relationship between Body Mass Composition and Primary Dysmenorrhoea
Authors: Snehalata Tembhurne
Abstract:
Introduction: A healthy menstrual cycle is a sign of women’s sound health.Various variables may influence the length and regularity of menstrual cycle.Studies have revealed that menstrual cycle abnormalities may be associated with psychological stress,lack of physical exercise, alteration in body composition,endocrine disturbances,higher estrogen levels as seen in obese females.Hence there is an urgent need to find out the relationship between variations in body mass composition(BMI & body fat%) with menstrual abnormalities like primary dysmenorrhoea. Aim: To find out the relationship between body mass composition and primary dysmenorrhea. Objectives: 1.To check whether there is any association between body mass index and primary dysmenorrhoea.2.To check whether there is any association between body fat percentage and primary dysmenorrhoea. NULL HYPOTHESES-There is no relationship between body mass composition and primary dysmenorrhea. Hypothesis: There exists a relationship between body mass composition and primary dysmenorrhea. Materials and Methods: The study was conducted over a period of 6 months with 90 samples selected on random basis. The procedure was explained to the participant and a written consent was taken thereafter. The participant was made to stand on the BODY COMPOSITION SCANNING MONITOR, which scanned the physical profile of the participant (height, weight, BMI, body fat percentage and visceral fat).Thereafter, the candidate was asked about her menstrual irregularities and was asked to grade her level of dysmenorrhoea (if present) using the Verbal Dimensional Dysmenorrhea Scale. Results: Chi square test of association was used to find out the association between body mass composition(body mass index,body fat percentage) and primary dysmenorrhea.The chi-square value for association between body mass index and primary dysmenorrhea was 38.63 p<0.001 which was statistically significant.The chi-square value for the association of body fat % & primary dysmenorrhea was 30.09,p<0.001which was statistically significant. Conclusion: Study shows that there exists a significant relationship between body mass composition and primary dysmenorrhea and as the value of Body mass index and body fat percentages goes on increasing in females, the severity of primary dysmenorrhea also increases.Keywords: body mass index, body composition screening monitor, primary dysmenorrhea, verbal dimensional dysmenorrhea scale
Procedia PDF Downloads 3284504 Social Appearance Anxiety, Body Dissatisfaction, and Disordered Eating Behavior among Cancer Survivors
Authors: Rose J. Thazhathukunnel, A. G. Smitha
Abstract:
In the wake of social development, humans overlook the ideal physical appearance, and there is an increasing trend of criticising other’s bodies or offering tips to hide imperfections. Social appearance anxiety demonstrates the association with body dissatisfaction and disordered eating behavior. In this study, we examined the hypothesis that social appearance anxiety, body dissatisfaction, and disordered eating behavior would predict the relation between each among cancer survivors. It was observed that implicit belief to be thin was more pronounced in people with low body dissatisfaction than those with high body dissatisfaction. Results of the study indicated that overall body dissatisfaction and social appearance anxiety were correlated with disordered eating behavior for both men and women cancer survivors of all ages.Keywords: social appearance anxiety, body dissatisfaction, disordered eating behavior, cancer survivors
Procedia PDF Downloads 704503 Colonial Body: Historicizing the Becoming of the Kashmiri Body
Authors: Ain ul Khair
Abstract:
In this study, the author situates the formation of the Kashmiri body as colonized in the postcolonial society, on which India continues to execute and maintain colonial practices adopted and replicated from the Western colonial projects. This paper explores the formation of a Kashmiri body as a site of complete dehumanization, which has deliberately been politicized based on its religion, racialized because of its ethnic distinction, and consequently has been subjected to extreme forms of violence. This paper specifically looks at the creation of the Kashmiri colonized body through India’s colonial practices that are in continuity from the Western imperialist colonial projects through the historicization of the careful manufacturing of the Kashmiri colonial body through the lens of the political, legal, geographical, and demographic landscape of India’s colonial project. The paper looks at the framing of the colonial legal framework that informs the construction of the colonized Kashmiri body, drawing violence and religion at the center of it.Keywords: historicization, colonial body, kashmir, india, pakistan, south asia, religion, political identity, politics, Mahmood Mamdani, Ann Stoler, Fanon
Procedia PDF Downloads 404502 Research Developments in Vibration Control of Structure Using Tuned Liquid Column Dampers: A State-of-the-Art Review
Authors: Jay Gohel, Anant Parghi
Abstract:
A tuned liquid column damper (TLCD) is a modified passive system of tuned mass damper, where a liquid is used in place of mass in the structure. A TLCD consists of U-shaped tube with an orifice that produces damping against the liquid motion in the tube. This paper provides a state-of-the-art review on the vibration control of wind and earthquake excited structures using liquid dampers. Further, the paper will also discuss the theoretical background of TCLD, history of liquid dampers and existing literature on experimental, numerical, and analytical study. The review will also include different configuration of TLCD viz single TLCD, multi tuned liquid column damper (MTLCD), TLCD-Interior (TLCDI), tuned liquid column ball damper (TLCBD), tuned liquid column ball gas damper (TLCBGD), and pendulum liquid column damper (PLCD). The dynamic characteristics of the different configurate TLCD system and their effectiveness in reducing the vibration of structure will be discussed. The effectiveness of semi-active TLCD will be also discussed with reference to experimental and analytical results. In addition, the review will also provide the numerous examples of implemented TLCD to control the vibration in real structures. Based on the comprehensive review of literature, some important conclusions will be made and the need for future research will be identified for vibration control of structures using TLCD.Keywords: earthquake, wind, tuned liquid column damper, passive response control, structures
Procedia PDF Downloads 2084501 High Rise Building Vibration Control Using Tuned Mass Damper
Authors: T. Vikneshvaran, A. Aminudin, U. Alyaa Hashim, Waziralilah N. Fathiah, D. Shakirah Shukor
Abstract:
This paper presents the experimental study conducted on a structure of three-floor height building model. Most vibrations are undesirable and can cause damages to the buildings, machines and people all around us. The vibration wave from earthquakes, construction and winds have high potential to bring damage to the buildings. Excessive vibrations can result in structural and machinery failures. This failure is related to the human life and environment around it. The effect of vibration which causes failure and damage to the high rise buildings can be controlled in real life by implementing tuned mass damper (TMD) into the structure of the buildings. This research aims to study the effect and performance improvement achieved by applying TMD into the building structure. A structure model of three degrees of freedom (3DOF) is designed to demonstrate the performance of TMD to the designed model. The model designed is the physical representation of actual building structure in real life. It is constructed at a reduced scale and will be used for the experiment. Thus, the result obtained will be more accurate to compared with the real life effect. Based on the result from experimental study, by applying TMD to the structure model, the forces of vibration and the displacement mode of the building reduced. Thus, the reduced in vibration of the building helps to maintain the good condition of the building.Keywords: degrees-of-freedom, displacement mode, natural frequency, tuned mass damper
Procedia PDF Downloads 3404500 Development of Low-Cost Vibro-Acoustic, and Fire-Resistant, Insulation Material from Natural and Sustainable Sources
Authors: K. Nasir, S. Ahmad, A. Khan, H. Benkreira
Abstract:
The topic of the research is to develop sustainable fire-resistant materials for vibration and acoustic damping of structure and airborne noises from sustainable recycled materials and biodegradable binders. The paper reports, methods and techniques of enhancing fire resistive, vibration and acoustic properties of building insulation materials made from natural resources like wood and recycled materials like rubber and textile waste. The structures are designed to optimize the number, size and stratification of closed (heat insulating) and open (noise insulating) pores. The samples produced are tested for their heat and noise insulating properties, including vibration damping and their structural properties (airflow resistivity, porosity, tortuosity and elastic modulus). The structural properties are then used in theoretical models to check the acoustic insulation measurements. Initial data indicate that one layer of such material can yield as much as 18 times more damping, increasing the loss factor by 18%.Keywords: fire resistant, vibration damping, acoustic material, vibro-acoustic, thermal insulation, sustainable material, low cost materials, recycled materials, construction material
Procedia PDF Downloads 1344499 An investigation of the High-frequency Isolation Performance of Quasi-Zero-Stiffness Vibration Isolators
Authors: Chen Zhang, Yongpeng Gu, Xiaotian Li
Abstract:
Quasi-zero-stiffness (QZS) vibration isolation technology has garnered significant attention in both academia and industry, which enables ultra-low-frequency vibration isolation. In modern industries, such as shipbuilding and aerospace, rotating machinery generates vibrations over a wide frequency range, thus imposing more stringent requirements on vibration isolation technologies. These technologies must not only achieve ultra-low starting isolation frequencies but also provide effective isolation across mid- to high-frequency ranges. However, existing research on QZS vibration isolators primarily focuses on frequency ranges below 50 Hz. Moreover, studies have shown that in the mid-to high-frequency ranges, QZS isolators tend to generate resonance peaks that adversely affect their isolation performance. This limitation significantly restricts the practical applicability of QZS isolation technology. To address this issue, the present study investigates the high-frequency isolation performance of two typical QZS isolators: the mechanism type three-spring QZS isolator mechanism and the structure and bowl-shaped QZS isolator structure. First, the parameter conditions required to achieve quasi-zero stiffness characteristics for two isolators are derived based on static mechanical analysis. The theoretical transmissibility characteristics are then calculated using the harmonic balance method. Three-dimensional finite element models of two QZS isolators are developed using ABAQUS simulation software, and transmissibility curves are computed for the 0-500 Hz frequency range. The results indicate that the three-spring QZS mechanism exhibits multiple higher-order resonance peaks in the mid-to high-frequency ranges due to the higher-order models of the springs. Springs with fewer coils and larger diameters can shift the higher-order modals to higher frequencies but cannot entirely eliminate their occurrence. In contrast, the bowl-shaped QZS isolator, through shape optimization using a spline-based representation, effectively mitigates the generation of higher-order resonance modes, resulting in superior isolation performance in the mid-to high-frequency ranges. This study provides essential theoretical insights for optimizing the vibration isolation performance of QZS technologies in complex, wide-frequency vibration environments, offering significant practical value for their application.Keywords: quasi-zero-stiffness, wide-frequency vibration, vibration isolator, transmissibility
Procedia PDF Downloads 74498 Quality Control of Automotive Gearbox Based On Vibration Signal Analysis
Authors: Nilson Barbieri, Bruno Matos Martins, Gabriel de Sant'Anna Vitor Barbieri
Abstract:
In more complex systems, such as automotive gearbox, a rigorous treatment of the data is necessary because there are several moving parts (gears, bearings, shafts, etc.), and in this way, there are several possible sources of errors and also noise. The basic objective of this work is the detection of damage in automotive gearbox. The detection methods used are the wavelet method, the bispectrum; advanced filtering techniques (selective filtering) of vibrational signals and mathematical morphology. Gearbox vibration tests were performed (gearboxes in good condition and with defects) of a production line of a large vehicle assembler. The vibration signals are obtained using five accelerometers in different positions of the sample. The results obtained using the kurtosis, bispectrum, wavelet and mathematical morphology showed that it is possible to identify the existence of defects in automotive gearboxes.Keywords: automotive gearbox, mathematical morphology, wavelet, bispectrum
Procedia PDF Downloads 4754497 Design and Optimization of an Electromagnetic Vibration Energy Converter
Authors: Slim Naifar, Sonia Bradai, Christian Viehweger, Olfa Kanoun
Abstract:
Vibration provides an interesting source of energy since it is available in many indoor and outdoor applications. Nevertheless, in order to have an efficient design of the harvesting system, vibration converters have to satisfy some criterion in terms of robustness, compactness and energy outcome. In this work, an electromagnetic converter based on mechanical spring principle is proposed. The designed harvester is formed by a coil oscillating around ten ring magnets using a mechanical spring. The proposed design overcomes one of the main limitation of the moving coil by avoiding the contact between the coil wires with the mechanical spring which leads to a better robustness for the converter. In addition, the whole system can be implemented in a cavity of a screw. Different parameters in the harvester were investigated by finite element method including the magnet size, the coil winding number and diameter and the excitation frequency and amplitude. A prototype was realized and tested. Experiments were performed for 0.5 g to 1 g acceleration. The used experimental setup consists of an electrodynamic shaker as an external artificial vibration source controlled by a laser sensor to measure the applied displacement and frequency excitation. Together with the laser sensor, a controller unit, and an amplifier, the shaker is operated in a closed loop which allows controlling the vibration amplitude. The resonance frequency of the proposed designs is in the range of 24 Hz. Results indicate that the harvester can generate 612 mV and 1150 mV maximum open circuit peak to peak voltage at resonance for 0.5 g and 1 g acceleration respectively which correspond to 4.75 mW and 1.34 mW output power. Tuning the frequency to other values is also possible due to the possibility to add mass to the moving part of the or by changing the mechanical spring stiffness.Keywords: energy harvesting, electromagnetic principle, vibration converter, moving coil
Procedia PDF Downloads 2984496 Simulation for Squat Exercise of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform
Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho
Abstract:
In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, feedback delay, and signal noise were added to a simulation model of an active-controlled vibration isolation system to regulate the movement of the exercise platform. Previous simulation work was conducted primarily via MATLAB/Simulink. Two additional simulation tools used in this study were Trick and MBDyn, NASA co-developed software simulation environments. Simulation results obtained from these three tools were very similar. All simulation results support the hypothesis that an active-controlled vibration isolation system outperforms a passive-controlled system even with the addition of feedback delay and signal noise to the active-controlled system. In this paper, squat exercise was used in creating excited force to the simulation model. The exciter force from a squat exercise was calculated from the motion capture of an exerciser. The simulation results demonstrate much greater transmitted force reduction in the active-controlled system than the passive-controlled system.Keywords: control, counterweight, isolation, vibration
Procedia PDF Downloads 1134495 Contactless and Multiple Space Debris Removal by Micro to Nanno Satellites
Authors: Junichiro Kawaguchi
Abstract:
Space debris problems have emerged and threatened the use of low earth orbit around the Earth owing to a large number of spacecraft. In debris removal, a number of research and patents have been proposed and published so far. They assume servicing spacecraft, robots to be built for accessing the target debris objects. The robots should be sophisticated enough automatically to access the debris articulating the attitude and the translation motion with respect to the debris. This paper presents the idea of using the torpedo-like third unsophisticated and disposable body, in addition to the first body of the servicing robot and the second body of the target debris. The third body is launched from the first body from a distance farer than the size of the second body. This paper presents the method and the system, so that the third body is launched from the first body. The third body carries both a net and an inflatable or extendible drag deceleration device and is built small and light. This method enables even a micro to nano satellite to perform contactless and multiple debris removal even via a single flight.Keywords: ballute, debris removal, echo satellite, gossamer, gun-net, inflatable space structure, small satellite, un-cooperated target
Procedia PDF Downloads 1214494 A Closed-Form Solution and Comparison for a One-Dimensional Orthorhombic Quasicrystal and Crystal Plate
Authors: Arpit Bhardwaj, Koushik Roy
Abstract:
The work includes derivation of the exact-closed form solution for simply supported quasicrystal and crystal plates by using propagator matrix method under surface loading and free vibration. As a numerical example a quasicrystal and a crystal plate are considered, and after investigation, the variation of displacement and stress fields along the thickness of these two plates are presented. Further, it includes analyzing the displacement and stress fields for two plates having two different stacking arrangement, i.e., QuasiCrystal/Crystal/QuasiCrystal and Crystal/QuasiCrystal/Crystal and comparing their results. This will not only tell us the change in the behavior of displacement and stress fields in two different materials but also how these get changed after trying their different combinations. For the free vibration case, Crystal and Quasicrystal plates along with their different stacking arrangements are considered, and displacements are plotted in all directions for different Mode Shapes.Keywords: free vibration, multilayered plates, surface loading, quasicrystals
Procedia PDF Downloads 1474493 Vibration control of Bridge Super structure using Tuned Mass Damper (TMD)
Authors: Tauhidur Rahman, Dhrubajyoti Thakuria
Abstract:
In this article, vibration caused by earthquake excitation, wind load and the high-speed vehicle in the superstructure has been studied. An attempt has been made to control these vibrations using passive Tuned Mass Dampers (TMD). Tuned mass damper consists of a mass, spring, and viscous damper which dissipates the vibration energy of the primary structure at the damper of the TMD. In the present paper, the concrete box girder bridge superstructure is considered and is modeled using MIDAS software. The bridge is modeled as Euler-Bernoulli beam to study the responses imposed by high-speed vehicle, earthquake excitation and wind load. In the present study, comparative study for the responses has been done considering different velocities of the train. The results obtained in this study are based on Indian standard loadings specified in Indian Railways Board (Bridge Rules). A comparative study has been done for the responses of the high-speed vehicle with and without Tuned Mass Dampers. The results indicate that there is a significant reduction in displacement and acceleration in the bridge superstructure when Tuned Mass Damper is used.Keywords: bridge superstructure, high speed vehicle, tuned mass damper, TMD, vibration control
Procedia PDF Downloads 4034492 Optimization Design of Superposition Wave Form Automotive Exhaust Bellows Structure
Authors: Zhang Jianrun, He Tangling
Abstract:
Superposition wave form automotive exhaust bellows is a new type of bellows, which has the characteristics of large compensation, good vibration isolation performance and long life. It has been paid more and more attention and applications in automotive exhaust pipe system. Aiming at the lack of current design methods of superposition wave form automotive exhaust bellows, this paper proposes a response surface parameter optimization method where the fatigue life and vibration transmissibility of the bellows are set as objectives. The parametric modeling of bellow structure is also adopted to achieve the high efficiency in the design. The approach proposed in this paper provides a new way for the design of superposition wave form automotive exhaust bellows. It embodies good engineering application value.Keywords: superposition wave form, exhaust bellows, optimization, vibration, fatigue life
Procedia PDF Downloads 964491 The Stability Analysis and New Torque Control Strategy of Direct-Driven PMSG Wind Turbines
Authors: Jun Liu, Feihang Zhou, Gungyi Wang
Abstract:
This paper expounds on the direct-driven PMSG wind power system control strategy, and analyses the stability conditions of the system. The direct-driven PMSG wind power system may generate the intense mechanical vibration, when wind speed changes dramatically. This paper proposes a new type of torque control strategy, which increases the system damping effectively, mitigates mechanical vibration of the system, and enhances the stability conditions of the system. The simulation results verify the reliability of the new torque control strategy.Keywords: damping, direct-driven PMSG wind power system, mechanical vibration, torque control
Procedia PDF Downloads 3334490 Torsional Vibration of Carbon Nanotubes via Nonlocal Gradient Theories
Authors: Mustafa Arda, Metin Aydogdu
Abstract:
Carbon nanotubes (CNTs) have many possible application areas because of their superior physical properties. Nonlocal Theory, which unlike the classical theories, includes the size dependency. Nonlocal Stress and Strain Gradient approaches can be used in nanoscale static and dynamic analysis. In the present study, torsional vibration of CNTs was investigated according to nonlocal stress and strain gradient theories. Effects of the small scale parameters to the non-dimensional frequency were obtained. Results were compared with the Molecular Dynamics Simulation and Lattice Dynamics. Strain Gradient Theory has shown more weakening effect on CNT according to the Stress Gradient Theory. Combination of both theories gives more acceptable results rather than the classical and stress or strain gradient theory according to Lattice Dynamics.Keywords: torsional vibration, carbon nanotubes, nonlocal gradient theory, stress, strain
Procedia PDF Downloads 3894489 A Passive Reaction Force Compensation for a Linear Motor Motion Stage Using Pre-Compressed Springs
Authors: Kim Duc Hoang, Hyeong Joon Ahn
Abstract:
Residual vibration of the system base due to a high-acceleration motion of a stage may reduce life and productivity of the manufacturing device. Although a passive RFC can reduce vibration of the system base, spring or dummy mass should be replaced to tune performance of the RFC. In this paper, we develop a novel concept of the passive RFC mechanism for a linear motor motion stage using pre-compressed springs. Dynamic characteristic of the passive RFC can be adjusted by pre-compression of the spring without exchanging the spring or dummy mass. First, we build a linear motor motion stage with pre-compressed springs. Then, the effect of the pre-compressed spring on the passive RFC is investigated by changing both pre-compressions and stiffness of springs. Finally, the effectiveness of the passive RFC using pre-compressed springs was verified with both simulations and experiments.Keywords: linear motor motion stage, residual vibration, passive RFC, pre-compressed spring
Procedia PDF Downloads 3554488 A Study of Some Selected Anthropometric and Physical Fitness Variables of Junior Free Style Wrestlers
Authors: Parwinder Singh, Ashok Kumar
Abstract:
Aim: The aim of the study was to investigate the relationship between selected Anthropometric and physical fitness variables of Junior Free Style Wrestlers. Method: one hundred fifty (N = 150) male Junior Free Style Wrestlers were selected as subjects, and they were categorized into five groups according to their weight categories; each group was comprised of 30 wrestlers. Body Mass Index can be considered according to the World Health Organization. Body fat percentage was assessed by using Durnin and Womersley equation, and Bodyweight was checked with a weighing machine. Cardiovascular endurance was checked by the Havard Step test of junior freestyle wrestlers. Results: A statistically positive significant correlation was found between Body Weight and Body Mass Index, skinfold thickness, and Percentage Body Fat. Fitness index was observed as negatively significant relationship related with Body Weight, Percent Body Fat, and Body Mass Index. Conclusion: It is concluded that freestyle wrestling is a weight classified sport and physical fitness is the most important factor in freestyle wrestling; therefore, the correlation of the fitness index of the wrestlers with body composition is important. The results of the present study also demonstrated the effect of Age, Body Height, Body Weight, Body Mass Index, and percentage body fat of the aerobic fitness of junior freestyle wrestlers.Keywords: aerobic fitness, anthropometry, fat percentage, free style wrestling, skinfold, strength
Procedia PDF Downloads 2084487 Body Weight Variation in Indian Heterogeneous Group-An Analytical Study
Authors: A. K. Srivastva
Abstract:
Body weight is considered as an important factor in health and fitness. It is an index of one's health. Considering significance of body weight and its wider application in various fields in general and sports in particular, it is made a point of enquiry in the present study. The purpose of the study to observe over all weight pattern of Indian youths in the age group of 15 through 20 years. Total 7500 samples pooled from ten Indian states ranging in their age 15 to 20 years were examined in six age categories. Conclusion: 1. The period between 15 to 20 year of age is a growing period and that body weight is gained during this period. 2. Statewise difference is observed in body-weight during the period, which is significant. 3. PRG indicated by higher rate of weight gain varies from state to state. 4. Sportsman possess comparatively higer level of body-weight than other student of same age group. 5. Tribal youths show comparatively better status in their weight gain than the untrained uraban dwellers.Keywords: PRG (period of rapid growth), HG (heterogeneous group), WP (weight pattern), MBW (mean body weight)
Procedia PDF Downloads 3374486 Flexible Design of Triboelectric Nanogenerators for Efficient Vibration Energy Harvesting
Authors: Meriam Khelifa
Abstract:
In recent years, many studies have focused on the harvesting of the vibrations energy to produce electrical energy using contact separation (CS) triboelectric nanogenerators (TENG). The simplest design for a TENG consists of a capacitor comprising a single moving electrode. The conversion efficiency of vibration energy into electrical energy can, in principle, reach 100%. But to actually achieve this objective, it is necessary to optimize the parameters of the TENG, such as the dielectric constant and the thickness of the insulator, the load resistance, etc. In particular, the use of a switch which is actioned at optimal times within the TENG cycle is essential. Using numerical modeling and experimental design, we applied a methodology to find the TENG parameters which optimize the energy transfer efficiency (ETE) to almost 100% for any vibration frequency and amplitude. The rather simple design of a TENG is promising as an environment friendly device. It opens the doors for harvesting acoustic vibrations from the environment and to design effective protection against environmental noise.Keywords: vibrations, CS TENG, efficiency, design of experiments
Procedia PDF Downloads 904485 Internal Combustion Engine Fuel Composition Detection by Analysing Vibration Signals Using ANFIS Network
Authors: M. N. Khajavi, S. Nasiri, E. Farokhi, M. R. Bavir
Abstract:
Alcohol fuels are renewable, have low pollution and have high octane number; therefore, they are important as fuel in internal combustion engines. Percentage detection of these alcoholic fuels with gasoline is a complicated, time consuming, and expensive process. Nowadays, these processes are done in equipped laboratories, based on international standards. The aim of this research is to determine percentage detection of different fuels based on vibration analysis of engine block signals. By doing, so considerable saving in time and cost can be achieved. Five different fuels consisted of pure gasoline (G) as base fuel and combination of this fuel with different percent of ethanol and methanol are prepared. For example, volumetric combination of pure gasoline with 10 percent ethanol is called E10. By this convention, we made M10 (10% methanol plus 90% pure gasoline), E30 (30% ethanol plus 70% pure gasoline), and M30 (30% Methanol plus 70% pure gasoline) were prepared. To simulate real working condition for this experiment, the vehicle was mounted on a chassis dynamometer and run under 1900 rpm and 30 KW load. To measure the engine block vibration, a three axis accelerometer was mounted between cylinder 2 and 3. After acquisition of vibration signal, eight time feature of these signals were used as inputs to an Adaptive Neuro Fuzzy Inference System (ANFIS). The designed ANFIS was trained for classifying these five different fuels. The results show suitable classification ability of the designed ANFIS network with 96.3 percent of correct classification.Keywords: internal combustion engine, vibration signal, fuel composition, classification, ANFIS
Procedia PDF Downloads 4024484 Characterization of the Near-Wake of an Ahmed Body Profile
Authors: Stéphanie Pellerin, Bérengére Podvin, Luc Pastur
Abstract:
In aerovehicles context, the flow around an Ahmed body profile is simulated using the velocity-vorticity formulation of the Navier-Stokes equations, associated to a penalization method for solids and Large Eddy Simulation for turbulence. The study focuses both on the ground influence on the flow and on the dissymetry of the wake, observed for a ground clearance greater than 10% of the body height H. Unsteady and mean flows are presented and analyzed. POD study completes the analysis and gives information on the most energetic structures of the flow.Keywords: Ahmed body, bi-stability, LES, near wake
Procedia PDF Downloads 6254483 Analysis Rotor Bearing System Dynamic Interaction with Bearing Supports
Abstract:
Frequently, in the design of machines, some of parameters that directly affect the rotor dynamics of the machines are not accurately known. In particular, bearing stiffness support is one such parameter. One of the most basic principles to grasp in rotor dynamics is the influence of the bearing stiffness on the critical speeds and mode shapes associated with a rotor-bearing system. Taking a rig shafting as an example, this paper studies the lateral vibration of the rotor with multi-degree-of-freedom by using Finite Element Method (FEM). The FEM model is created and the eigenvalues and eigenvectors are calculated and analyzed to find natural frequencies, critical speeds, mode shapes. Then critical speeds and mode shapes are analyzed by set bearing stiffness changes. The model permitted to identify the critical speeds and bearings that have an important influence on the vibration behavior.Keywords: lateral vibration, finite element method, rig shafting, critical speed
Procedia PDF Downloads 3404482 Using Machine Learning to Monitor the Condition of the Cutting Edge during Milling Hardened Steel
Authors: Pawel Twardowski, Maciej Tabaszewski, Jakub Czyżycki
Abstract:
The main goal of the work was to use machine learning to predict cutting-edge wear. The research was carried out while milling hardened steel with sintered carbide cutters at various cutting speeds. During the tests, cutting-edge wear was measured, and vibration acceleration signals were also measured. Appropriate measures were determined from the vibration signals and served as input data in the machine-learning process. Two approaches were used in this work. The first one involved a two-state classification of the cutting edge - suitable and unfit for further work. In the second approach, prediction of the cutting-edge state based on vibration signals was used. The obtained research results show that the appropriate use of machine learning algorithms gives excellent results related to monitoring cutting edge during the process.Keywords: milling of hardened steel, tool wear, vibrations, machine learning
Procedia PDF Downloads 604481 Third Super-Harmonic Resonance in Vortex-Induced Vibration of a Pipeline Close to the Seabed
Authors: Yiming Jin, Ping Dong
Abstract:
The third super-harmonic resonance of a pipeline close to the seabed is investigated in this paper. To analyse the vortex-induced vibration (VIV) of the pipeline close to the seabed, the classic Van der Pol equation is extended with a nonlinear item. Then, on the base of the multi-scale method, the frequency-response curves of the pipeline with regard to the third super-harmonic resonance are studied with a series of parameters, such as the mass ratio, frequency, damp ratio and gap ratio. On the whole, the numerical results show that the characters of third super-harmonic resonance are quite from that of primary resonance, though with the same trend that the larger is the mass ratio, the smaller impact the gap ratio has on the frequency-response curves of the third super-harmonic resonance.Keywords: the third super-harmonic resonance, gap ratio, vortex-induced vibration, multi-scale method
Procedia PDF Downloads 4324480 Detection of Patient Roll-Over Using High-Sensitivity Pressure Sensors
Authors: Keita Nishio, Takashi Kaburagi, Yosuke Kurihara
Abstract:
Recent advances in medical technology have served to enhance average life expectancy. However, the total time for which the patients are prescribed complete bedrest has also increased. With patients being required to maintain a constant lying posture- also called bedsore- development of a system to detect patient roll-over becomes imperative. For this purpose, extant studies have proposed the use of cameras, and favorable results have been reported. Continuous on-camera monitoring, however, tends to violate patient privacy. We have proposed unconstrained bio-signal measurement system that could detect body-motion during sleep and does not violate patient’s privacy. Therefore, in this study, we propose a roll-over detection method by the date obtained from the bi-signal measurement system. Signals recorded by the sensor were assumed to comprise respiration, pulse, body motion, and noise components. Compared the body-motion and respiration, pulse component, the body-motion, during roll-over, generate large vibration. Thus, analysis of the body-motion component facilitates detection of the roll-over tendency. The large vibration associated with the roll-over motion has a great effect on the Root Mean Square (RMS) value of time series of the body motion component calculated during short 10 s segments. After calculation, the RMS value during each segment was compared to a threshold value set in advance. If RMS value in any segment exceeded the threshold, corresponding data were considered to indicate occurrence of a roll-over. In order to validate the proposed method, we conducted experiment. A bi-directional microphone was adopted as a high-sensitivity pressure sensor and was placed between the mattress and bedframe. Recorded signals passed through an analog Band-pass Filter (BPF) operating over the 0.16-16 Hz bandwidth. BPF allowed the respiration, pulse, and body-motion to pass whilst removing the noise component. Output from BPF was A/D converted with the sampling frequency 100Hz, and the measurement time was 480 seconds. The number of subjects and data corresponded to 5 and 10, respectively. Subjects laid on a mattress in the supine position. During data measurement, subjects—upon the investigator's instruction—were asked to roll over into four different positions—supine to left lateral, left lateral to prone, prone to right lateral, and right lateral to supine. Recorded data was divided into 48 segments with 10 s intervals, and the corresponding RMS value for each segment was calculated. The system was evaluated by the accuracy between the investigator’s instruction and the detected segment. As the result, an accuracy of 100% was achieved. While reviewing the time series of recorded data, segments indicating roll-over tendencies were observed to demonstrate a large amplitude. However, clear differences between decubitus and the roll-over motion could not be confirmed. Extant researches possessed a disadvantage in terms of patient privacy. The proposed study, however, demonstrates more precise detection of patient roll-over tendencies without violating their privacy. As a future prospect, decubitus estimation before and after roll-over could be attempted. Since in this paper, we could not confirm the clear differences between decubitus and the roll-over motion, future studies could be based on utilization of the respiration and pulse components.Keywords: bedsore, high-sensitivity pressure sensor, roll-over, unconstrained bio-signal measurement
Procedia PDF Downloads 1214479 Studies on Influence of Rub on Vibration Signature of Rotating Machines
Authors: K. N. Umesh, K. S. Srinivasan
Abstract:
The influence of rotor rub was studied with respect to light rub and heavy rub conditions. The investigations were carried out for both below and above critical speeds. The time domain waveform has revealed truncation of the waveform during rubbing conditions. The quantum of rubbing has been indicated by the quantum of truncation. The orbits for light rub have indicated a single loop whereas for heavy rub multi looped orbits have been observed. In the heavy rub condition above critical speed both sub harmonics and super harmonics are exhibited. The orbit precess in a direction opposite to the direction of the rotation of the rotor. When the rubbing was created above the critical speed the orbit shape was of '8' shape indicating the rotor instability. Super-harmonics and sub-harmonics of vibration signals have been observed for light rub and heavy rub conditions and for speeds above critical.Keywords: rotor rub, orbital analysis, frequency analysis, vibration signatures
Procedia PDF Downloads 314