Search results for: stokes equations
1734 An Efficient Collocation Method for Solving the Variable-Order Time-Fractional Partial Differential Equations Arising from the Physical Phenomenon
Authors: Haniye Dehestani, Yadollah Ordokhani
Abstract:
In this work, we present an efficient approach for solving variable-order time-fractional partial differential equations, which are based on Legendre and Laguerre polynomials. First, we introduced the pseudo-operational matrices of integer and variable fractional order of integration by use of some properties of Riemann-Liouville fractional integral. Then, applied together with collocation method and Legendre-Laguerre functions for solving variable-order time-fractional partial differential equations. Also, an estimation of the error is presented. At last, we investigate numerical examples which arise in physics to demonstrate the accuracy of the present method. In comparison results obtained by the present method with the exact solution and the other methods reveals that the method is very effective.Keywords: collocation method, fractional partial differential equations, legendre-laguerre functions, pseudo-operational matrix of integration
Procedia PDF Downloads 1671733 Large Eddy Simulation of Particle Clouds Using Open-Source CFD
Authors: Ruo-Qian Wang
Abstract:
Open-source CFD has become increasingly popular and promising. The recent progress in multiphase flow enables new CFD applications, which provides an economic and flexible research tool for complex flow problems. Our numerical study using four-way coupling Euler-Lagrangian Large-Eddy Simulations to resolve particle cloud dynamics with OpenFOAM and CFDEM will be introduced: The fractioned Navier-Stokes equations are numerically solved for fluid phase motion, solid phase motion is addressed by Lagrangian tracking for every single particle, and total momentum is conserved by fluid-solid inter-phase coupling. The grid convergence test was performed, which proves the current resolution of the mesh is appropriate. Then, we validated the code by comparing numerical results with experiments in terms of particle cloud settlement and growth. A good comparison was obtained showing reliability of the present numerical schemes. The time and height at phase separations were defined and analyzed for a variety of initial release conditions. Empirical formulas were drawn to fit the results.Keywords: four-way coupling, dredging, land reclamation, multiphase flows, oil spill
Procedia PDF Downloads 4291732 RANS Simulation of Viscous Flow around Hull of Multipurpose Amphibious Vehicle
Authors: M. Nakisa, A. Maimun, Yasser M. Ahmed, F. Behrouzi, A. Tarmizi
Abstract:
The practical application of the Computational Fluid Dynamics (CFD), for predicting the flow pattern around Multipurpose Amphibious Vehicle (MAV) hull has made much progress over the last decade. Today, several of the CFD tools play an important role in the land and water going vehicle hull form design. CFD has been used for analysis of MAV hull resistance, sea-keeping, maneuvering and investigating its variation when changing the hull form due to varying its parameters, which represents a very important task in the principal and final design stages. Resistance analysis based on CFD (Computational Fluid Dynamics) simulation has become a decisive factor in the development of new, economically efficient and environmentally friendly hull forms. Three-dimensional finite volume method (FVM) based on Reynolds Averaged Navier-Stokes equations (RANS) has been used to simulate incompressible flow around three types of MAV hull bow models in steady-state condition. Finally, the flow structure and streamlines, friction and pressure resistance and velocity contours of each type of hull bow will be compared and discussed.Keywords: RANS simulation, multipurpose amphibious vehicle, viscous flow structure, mechatronic
Procedia PDF Downloads 3121731 Modelling Structural Breaks in Stock Price Time Series Using Stochastic Differential Equations
Authors: Daniil Karzanov
Abstract:
This paper studies the effect of quarterly earnings reports on the stock price. The profitability of the stock is modeled by geometric Brownian diffusion and the Constant Elasticity of Variance model. We fit several variations of stochastic differential equations to the pre-and after-report period using the Maximum Likelihood Estimation and Grid Search of parameters method. By examining the change in the model parameters after reports’ publication, the study reveals that the reports have enough evidence to be a structural breakpoint, meaning that all the forecast models exploited are not applicable for forecasting and should be refitted shortly.Keywords: stock market, earnings reports, financial time series, structural breaks, stochastic differential equations
Procedia PDF Downloads 2051730 Second Order Analysis of Frames Using Modified Newmark Method
Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi
Abstract:
The main purpose of this paper is to present the Modified Newmark Method as a method of non-linear frame analysis by considering the effect of the axial load (second order analysis). The discussion will be restricted to plane frameworks containing a constant cross-section for each element. In addition, it is assumed that the frames are prevented from out-of-plane deflection. This part of the investigation is performed to generalize the established method for the assemblage structures such as frameworks. As explained, the governing differential equations are non-linear and cannot be formulated easily due to unknown axial load of the struts in the frame. By the assumption of constant axial load, the governing equations are changed to linear ones in most methods. Since the modeling and the solutions of the non-linear form of the governing equations are cumbersome, the linear form of the equations would be used in the established method. However, according to the ability of the method to reconsider the minor omitted parameters in modeling during the solution procedure, the axial load in the elements at each stage of the iteration can be computed and applied in the next stage. Therefore, the ability of the method to present an accurate approach to the solutions of non-linear equations will be demonstrated again in this paper.Keywords: nonlinear, stability, buckling, modified newmark method
Procedia PDF Downloads 4271729 Symbolic Computation for the Multi-Soliton Solutions of a Class of Fifth-Order Evolution Equations
Authors: Rafat Alshorman, Fadi Awawdeh
Abstract:
By employing a simplified bilinear method, a class of generalized fifth-order KdV (gfKdV) equations which arise in nonlinear lattice, plasma physics and ocean dynamics are investigated. With the aid of symbolic computation, both solitary wave solutions and multiple-soliton solutions are obtained. These new exact solutions will extend previous results and help us explain the properties of nonlinear solitary waves in many physical models in shallow water. Parametric analysis is carried out in order to illustrate that the soliton amplitude, width and velocity are affected by the coefficient parameters in the equation.Keywords: multiple soliton solutions, fifth-order evolution equations, Cole-Hopf transformation, Hirota bilinear method
Procedia PDF Downloads 3231728 The Dynamics of Unsteady Squeezing Flow between Parallel Plates (Two-Dimensional)
Authors: Jiya Mohammed, Ibrahim Ismail Giwa
Abstract:
Unsteady squeezing flow of a viscous fluid between parallel plates is considered. The two plates are considered to be approaching each other symmetrically, causing the squeezing flow. Two-dimensional rectangular Cartesian coordinate is considered. The Navier-Stokes equation was reduced using similarity transformation to a single fourth order non-linear ordinary differential equation. The energy equation was transformed to a second order coupled differential equation. We obtained solution to the resulting ordinary differential equations via Homotopy Perturbation Method (HPM). HPM deforms a differential problem into a set of problem that are easier to solve and it produces analytic approximate expression in the form of an infinite power series by using only sixth and fifth terms for the velocity and temperature respectively. The results reveal that the proposed method is very effective and simple. Comparisons among present and existing solutions were provided and it is shown that the proposed method is in good agreement with Variation of Parameter Method (VPM). The effects of appropriate dimensionless parameters on the velocity profiles and temperature field are demonstrated with the aid of comprehensive graphs and tables.Keywords: coupled differential equation, Homotopy Perturbation Method, plates, squeezing flow
Procedia PDF Downloads 4751727 Thermodynamic Analysis of Ventilated Façades under Operating Conditions in Southern Spain
Authors: Carlos A. Domínguez Torres, Antonio Domínguez Delgado
Abstract:
In this work we study the thermodynamic behavior of some ventilated facades under summer operating conditions in Southern Spain. Under these climatic conditions, indoor comfort implies a high energetic demand due to high temperatures that usually are reached in this season in the considered geographical area. The aim of this work is to determine if during summer operating conditions in Southern Spain, ventilated façades provide some energy saving compared to the non-ventilated façades and to deduce their behavior patterns in terms of energy efficiency. The modeling of the air flow in the channel has been performed by using Navier-Stokes equations for thermodynamic flows. Numerical simulations have been carried out with a 2D Finite Element approach. This way, we analyze the behavior of ventilated façades under different weather conditions as variable wind, variable temperature and different levels of solar irradiation. CFD computations show that the combined effect of the shading of the external wall and the ventilation by the natural convection into the air gap achieve a reduction of the heat load during the summer period. This reduction has been evaluated by comparing the thermodynamic performances of two ventilated and two unventilated façades with the same geometry and thermophysical characteristics.Keywords: passive cooling, ventilated façades, energy-efficient building, CFD, FEM
Procedia PDF Downloads 3561726 Modeling of a Small Unmanned Aerial Vehicle
Authors: Ahmed Elsayed Ahmed, Ashraf Hafez, A. N. Ouda, Hossam Eldin Hussein Ahmed, Hala Mohamed ABD-Elkader
Abstract:
Unmanned Aircraft Systems (UAS) are playing increasingly prominent roles in defense programs and defense strategies around the world. Technology advancements have enabled the development of it to do many excellent jobs as reconnaissance, surveillance, battle fighters, and communications relays. Simulating a small unmanned aerial vehicle (SUAV) dynamics and analyzing its behavior at the preflight stage is too important and more efficient. The first step in the UAV design is the mathematical modeling of the nonlinear equations of motion. In this paper, a survey with a standard method to obtain the full non-linear equations of motion is utilized,and then the linearization of the equations according to a steady state flight condition (trimming) is derived. This modeling technique is applied to an Ultrastick-25e fixed wing UAV to obtain the valued linear longitudinal and lateral models. At the end, the model is checked by matching between the behavior of the states of the non-linear UAV and the resulted linear model with doublet at the control surfaces.Keywords: UAV, equations of motion, modeling, linearization
Procedia PDF Downloads 7441725 Globally Attractive Mild Solutions for Non-Local in Time Subdiffusion Equations of Neutral Type
Authors: Jorge Gonzalez Camus, Carlos Lizama
Abstract:
In this work is proved the existence of at least one globally attractive mild solution to the Cauchy problem, for fractional evolution equation of neutral type, involving the fractional derivate in Caputo sense. An almost sectorial operator on a Banach space X and a kernel belonging to a large class appears in the equation, which covers many relevant cases from physics applications, in particular, the important case of time - fractional evolution equations of neutral type. The main tool used in this work was the Hausdorff measure of noncompactness and fixed point theorems, specifically Darbo-type. Initially, the equation is a Cauchy problem, involving a fractional derivate in Caputo sense. Then, is formulated the equivalent integral version, and defining a convenient functional, using the analytic integral resolvent operator, and verifying the hypothesis of the fixed point theorem of Darbo type, give us the existence of mild solution for the initial problem. Furthermore, each mild solution is globally attractive, a property that is desired in asymptotic behavior for that solution.Keywords: attractive mild solutions, integral Volterra equations, neutral type equations, non-local in time equations
Procedia PDF Downloads 1601724 Checking Planetary Clutch on the Romania Tractor Using Mathematical Equations
Authors: Mohammad Vahedi Torshizi
Abstract:
In this investigation, at first, bending stress, contact stress, Safety factor of bending and Safety factor of contact between sun gear and planet gear tooth was determined using mathematical equations. Also, The amount of Sun Revolution in, Speed carrier, power Transmitted of the sun, sun torque, sun peripheral speed, Enter the tangential force gears, was calculated using mathematical equations. According to the obtained results, maximum of bending stress and contact stress occurred in three plantary and low status of four plantary. Also, maximum of Speed carrier, sun peripheral speed, Safety factor of bending and Safety factor of contact obtained in four plantary and maximum of power Transmitted of the sun, Enter the tangential force gears, bending stress and contact stress was in three pantry and factors And other factors were equal in the two planets.Keywords: bending stress, contact stress, plantary, mathematical equations
Procedia PDF Downloads 2891723 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method
Authors: Emad K. Jaradat, Ala’a Al-Faqih
Abstract:
Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.Keywords: non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two-dimensional Schrodinger equation
Procedia PDF Downloads 1871722 Turbulence Measurement Over Rough and Smooth Bed in Open Channel Flow
Authors: Kirti Singh, Kesheo Prasad
Abstract:
A 3D Acoustic Doppler velocimeter was used in the current investigation to quantify the mean and turbulence characteristics in non-uniform open-channel flows. Results are obtained from studies done in the laboratory, analysing the behavior of sand particles under turbulent open channel flow conditions flowing through rough, porous beds. Data obtained from ADV is used to calculate turbulent flow characteristics, Reynolds stresses and turbulent kinetic energy. Theoretical formulations for the distribution of Reynolds stress and the vertical velocity have been constructed using the Reynolds equation and the continuity equation of 2D open-channel flow. The measured Reynolds stress profile and the vertical velocity are comparable with the derived expressions. This study uses the Navier-Stokes equations for analysing the behavior of the vertical velocity profile in the dominant region of full-fledged turbulent flows in open channels, and it gives a new origination of the profile. For both wide and narrow open channels, this origination can estimate the time-averaged primary velocity in the turbulent boundary layer's outer region.Keywords: turbulence, bed roughness, logarithmic law, shear stress correlations, ADV, Reynolds shear stress
Procedia PDF Downloads 1091721 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions
Authors: Mustafa Bayram Gücen, Coşkun Yakar
Abstract:
In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.Keywords: fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability
Procedia PDF Downloads 2521720 Spectral Quasi Linearization Techniques for the Solution of Time Fractional Diffusion Wave Equations in Boundary Value Problems
Authors: Kizito Ugochukwu Nwajeria
Abstract:
This paper presents a spectral quasi-linearization technique (SQLT) for solving time fractional diffusion wave equations in boundary value problems. The proposed method integrates spectral approximations for spatial derivatives with a quasi-linearization approach to address the nonlinearity introduced by fractional time derivatives. Time fractional differential equations typically formulated using Caputo or Riemann-Liouville derivatives, model complex phenomena such as anomalous diffusion and wave propagation, which are not captured by classical integer-order models. The SQLT method iteratively linearizes the nonlinear terms at each time step, transforming the original problem into a series of linear subproblems, which can be efficiently solved. Using high-order spectral methods such as Chebyshev or Legendre polynomials for spatial discretization, the technique achieves high accuracy in approximating the solution. A convergence analysis is provided, demonstrating the method's efficiency and establishing error bounds. Numerical experiments on a range of test problems confirm the effectiveness of SQLT in solving fractional diffusion wave equations with various boundary conditions. The method offers a robust framework for addressing time fractional differential equations in diverse fields, including materials science, bioengineering, and anomalous transport phenomena.Keywords: spectral methods, quasilinearization, time-fractional diffusion-wave equations, boundary value problems, fractional calculus
Procedia PDF Downloads 141719 Pressure-Controlled Dynamic Equations of the PFC Model: A Mathematical Formulation
Authors: Jatupon Em-Udom, Nirand Pisutha-Arnond
Abstract:
The phase-field-crystal, PFC, approach is a density-functional-type material model with an atomic resolution on a diffusive timescale. Spatially, the model incorporates periodic nature of crystal lattices and can naturally exhibit elasticity, plasticity and crystal defects such as grain boundaries and dislocations. Temporally, the model operates on a diffusive timescale which bypasses the need to resolve prohibitively small atomic-vibration time steps. The PFC model has been used to study many material phenomena such as grain growth, elastic and plastic deformations and solid-solid phase transformations. In this study, the pressure-controlled dynamic equation for the PFC model was developed to simulate a single-component system under externally applied pressure; these coupled equations are important for studies of deformable systems such as those under constant pressure. The formulation is based on the non-equilibrium thermodynamics and the thermodynamics of crystalline solids. To obtain the equations, the entropy variation around the equilibrium point was derived. Then the resulting driving forces and flux around the equilibrium were obtained and rewritten as conventional thermodynamic quantities. These dynamics equations are different from the recently-proposed equations; the equations in this study should provide more rigorous descriptions of the system dynamics under externally applied pressure.Keywords: driving forces and flux, evolution equation, non equilibrium thermodynamics, Onsager’s reciprocal relation, phase field crystal model, thermodynamics of single-component solid
Procedia PDF Downloads 3051718 Some Basic Problems for the Elastic Material with Voids in the Case of Approximation N=1 of Vekua's Theory
Authors: Bakur Gulua
Abstract:
In this work, we consider some boundary value problems for the plate. The plate is the elastic material with voids. The state of plate equilibrium is described by the system of differential equations that is derived from three-dimensional equations of equilibrium of an elastic material with voids (Cowin-Nunziato model) by Vekua's reduction method. Its general solution is represented by means of analytic functions of a complex variable and solutions of Helmholtz equations. The problem is solved analytically by the method of the theory of functions of a complex variable.Keywords: the elastic material with voids, boundary value problems, Vekua's reduction method, a complex variable
Procedia PDF Downloads 1291717 Nonhomogeneous Linear Fractional Differential Equations Will Bessel Functions of the First Kind Giving Hypergeometric Functions Solutions
Authors: Fernando Maass, Pablo Martin, Jorge Olivares
Abstract:
Fractional derivatives have become very important in several areas of Engineering, however, the solutions of simple differential equations are not known. Here we are considering the simplest first order nonhomogeneous differential equations with Bessel regular functions of the first kind, in this way the solutions have been found which are hypergeometric solutions for any fractional derivative of order α, where α is rational number α=m/p, between zero and one. The way to find this result is by using Laplace transform and the Caputo definitions of fractional derivatives. This method is for values longer than one. However for α entire number the hypergeometric functions are Kumer type, no integer values of alpha, the hypergeometric function is more complicated is type ₂F₃(a,b,c, t2/2). The argument of the hypergeometric changes sign when we go from the regular Bessel functions to the modified Bessel functions of the first kind, however it integer seems that using precise values of α and considering no integers values of α, a solution can be obtained in terms of two hypergeometric functions. Further research is required for future papers in order to obtain the general solution for any rational value of α.Keywords: Caputo, fractional calculation, hypergeometric, linear differential equations
Procedia PDF Downloads 1991716 Depth-Averaged Velocity Distribution in Braided Channel Using Calibrating Coefficients
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
Rivers are the backbone of human civilization as well as one of the most important components of nature. In this paper, a method for predicting lateral depth-averaged velocity distribution in a two-flow braided compound channel is proposed. Experiments were conducted to study the boundary shear stress in the tip of the two flow path. The cross-section of the channel is divided into several panels to study the flow phenomenon on both the main channel and the flood plain. It can be inferred from the study that the flow coefficients get affected by boundary shear stress. In this study, the analytical solution of Shiono and knight (SKM) for lateral distributions of depth-averaged velocity and bed shear stress has been taken into account. The SKM is based on hydraulic parameters, which signify the bed friction factor (f), lateral eddy viscosity, and depth-averaged flow. While applying the SKM to different panels, the equations are solved considering the boundary conditions between panels. The boundary shear stress data, which are obtained from experimentation, are compared with CES software, which is based on quasi-one-dimensional Reynold's Averaged Navier-Stokes (RANS) approach.Keywords: boundary shear stress, lateral depth-averaged velocity, two-flow braided compound channel, velocity distribution
Procedia PDF Downloads 1291715 Comparing Numerical Accuracy of Solutions of Ordinary Differential Equations (ODE) Using Taylor's Series Method, Euler's Method and Runge-Kutta (RK) Method
Authors: Palwinder Singh, Munish Sandhir, Tejinder Singh
Abstract:
The ordinary differential equations (ODE) represent a natural framework for mathematical modeling of many real-life situations in the field of engineering, control systems, physics, chemistry and astronomy etc. Such type of differential equations can be solved by analytical methods or by numerical methods. If the solution is calculated using analytical methods, it is done through calculus theories, and thus requires a longer time to solve. In this paper, we compare the numerical accuracy of the solutions given by the three main types of one-step initial value solvers: Taylor’s Series Method, Euler’s Method and Runge-Kutta Fourth Order Method (RK4). The comparison of accuracy is obtained through comparing the solutions of ordinary differential equation given by these three methods. Furthermore, to verify the accuracy; we compare these numerical solutions with the exact solutions.Keywords: Ordinary differential equations (ODE), Taylor’s Series Method, Euler’s Method, Runge-Kutta Fourth Order Method
Procedia PDF Downloads 3591714 Study of Bifurcation Curve with Aspect Ratio at Low Reynolds Number
Authors: Amit K. Singh, Subhankar Sen
Abstract:
The bifurcation curve of separation in steady two-dimensional viscous flow past an elliptic cylinder is studied by varying the angle of incidence (α) with different aspect ratio (ratio of minor to major axis). The solutions are based on numerical investigation, using finite element analysis, of the Navier-Stokes equations for incompressible flow. Results are presented for Reynolds number up to 50 and angle of incidence varies from 0° to 90°. Range of aspect ratio (Ar) is from 0.1 to 1 (in steps of 0.1) and flow is considered as unbounded flow. Bifurcation curve represents the locus of Reynolds numbers (Res) at which flow detaches or separates from the surface of the body at a given α and Ar. In earlier studies, effect of Ar on laminar separation curve or bifurcation curve is limited for Ar = 0.1, 0.2, 0.5 and 0.8. Some results are also available at α = 90° and 45°. The present study attempts to provide a systematic data and clear understanding on the effect of Ar at bifurcation curve and its point of maxima. In addition, issues regarding location of separation angle and maximum ratio of coefficient of lift to drag are studied. We found that nature of curve, separation angle and maximum ratio of lift to drag changes considerably with respect to change in Ar.Keywords: aspect ratio, bifurcation curve, elliptic cylinder, GMRES, stabilized finite-element
Procedia PDF Downloads 3431713 Matrix Valued Difference Equations with Spectral Singularities
Authors: Serifenur Cebesoy, Yelda Aygar, Elgiz Bairamov
Abstract:
In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.Keywords: asymptotics, continuous spectrum, difference equations, eigenvalues, jost functions, spectral singularities
Procedia PDF Downloads 4471712 Triggering Supersonic Boundary-Layer Instability by Small-Scale Vortex Shedding
Authors: Guohua Tu, Zhi Fu, Zhiwei Hu, Neil D Sandham, Jianqiang Chen
Abstract:
Tripping of boundary-layers from laminar to turbulent flow, which may be necessary in specific practical applications, requires high amplitude disturbances to be introduced into the boundary layers without large drag penalties. As a possible improvement on fixed trip devices, a technique based on vortex shedding for enhancing supersonic flow transition is demonstrated in the present paper for a Mach 1.5 boundary layer. The compressible Navier-Stokes equations are solved directly using a high-order (fifth-order in space and third-order in time) finite difference method for small-scale cylinders suspended transversely near the wall. For cylinders with proper diameter and mount location, asymmetry vortices shed within the boundary layer are capable of tripping laminar-turbulent transition. Full three-dimensional simulations showed that transition was enhanced. A parametric study of the size and mounting location of the cylinder is carried out to identify the most effective setup. It is also found that the vortex shedding can be suppressed by some factors such as wall effect.Keywords: boundary layer instability, boundary layer transition, vortex shedding, supersonic flows, flow control
Procedia PDF Downloads 3681711 Mechanical Behavior of Laminated Glass Cylindrical Shell with Hinged Free Boundary Conditions
Authors: Ebru Dural, M. Zulfu Asık
Abstract:
Laminated glass is a kind of safety glass, which is made by 'sandwiching' two glass sheets and a polyvinyl butyral (PVB) interlayer in between them. When the glass is broken, the interlayer in between the glass sheets can stick them together. Because of this property, the hazards of sharp projectiles during natural and man-made disasters reduces. They can be widely applied in building, architecture, automotive, transport industries. Laminated glass can easily undergo large displacements even under their own weight. In order to explain their true behavior, they should be analyzed by using large deflection theory to represent nonlinear behavior. In this study, a nonlinear mathematical model is developed for the analysis of laminated glass cylindrical shell which is free in radial directions and restrained in axial directions. The results will be verified by using the results of the experiment, carried out on laminated glass cylindrical shells. The behavior of laminated composite cylindrical shell can be represented by five partial differential equations. Four of the five equations are used to represent axial displacements and radial displacements and the fifth one for the transverse deflection of the unit. Governing partial differential equations are derived by employing variational principles and minimum potential energy concept. Finite difference method is employed to solve the coupled differential equations. First, they are converted into a system of matrix equations and then iterative procedure is employed. Iterative procedure is necessary since equations are coupled. Problems occurred in getting convergent sequence generated by the employed procedure are overcome by employing variable underrelaxation factor. The procedure developed to solve the differential equations provides not only less storage but also less calculation time, which is a substantial advantage in computational mechanics problems.Keywords: laminated glass, mathematical model, nonlinear behavior, PVB
Procedia PDF Downloads 3201710 A Coupled System of Caputo-Type Katugampola Fractional Differential Equations with Integral Boundary Conditions
Authors: Yacine Arioua
Abstract:
In this paper, we investigate the existence and uniqueness of solutions for a coupled system of nonlinear Caputo-type Katugampola fractional differential equations with integral boundary conditions. Based upon a contraction mapping principle, Schauders fixed point theorems, some new existence and uniqueness results of solutions for the given problems are obtained. For application, some examples are given to illustrate the usefulness of our main results.Keywords: fractional differential equations, coupled system, Caputo-Katugampola derivative, fixed point theorems, existence, uniqueness
Procedia PDF Downloads 2641709 Quantification of Glucosinolates in Turnip Greens and Turnip Tops by Near-Infrared Spectroscopy
Authors: S. Obregon-Cano, R. Moreno-Rojas, E. Cartea-Gonzalez, A. De Haro-Bailon
Abstract:
The potential of near-infrared spectroscopy (NIRS) for screening the total glucosinolate (t-GSL) content, and also, the aliphatic glucosinolates gluconapin (GNA), progoitrin (PRO) and glucobrassicanapin (GBN) in turnip greens and turnip tops was assessed. This crop is grown for edible leaves and stems for human consumption. The reference values for glucosinolates, as they were obtained by high performance liquid chromatography on the vegetable samples, were regressed against different spectral transformations by modified partial least-squares (MPLS) regression (calibration set of samples n= 350). The resulting models were satisfactory, with calibration coefficient values from 0.72 (GBN) to 0.98 (tGSL). The predictive ability of the equations obtained was tested using a set of samples (n=70) independent of the calibration set. The determination coefficients and prediction errors (SEP) obtained in the external validation were: GNA=0.94 (SEP=3.49); PRO=0.41 (SEP=1.08); GBN=0.55 (SEP=0.60); tGSL=0.96 (SEP=3.28). These results show that the equations developed for total glucosinolates, as well as for gluconapin can be used for screening these compounds in the leaves and stems of this species. In addition, the progoitrin and glucobrassicanapin equations obtained can be used to identify those samples with high, medium and low contents. The calibration equations obtained were accurate enough for a fast, non-destructive and reliable analysis of the content in GNA and tGSL directly from NIR spectra. The equations for PRO and GBN can be employed to identify samples with high, medium and low contents.Keywords: brassica rapa, glucosinolates, gluconapin, NIRS, turnip greens
Procedia PDF Downloads 1451708 Viscous Flow Computations for the Diffuser Section of a Large Cavitation Tunnel
Authors: Ahmet Y. Gurkan, Cagatay S. Koksal, Cagri Aydin, U. Oral Unal
Abstract:
The present paper covers the viscous flow computations for the asymmetric diffuser section of a large, high-speed cavitation tunnel which will be constructed in Istanbul Technical University. The analyses were carried out by using the incompressible Reynold-Averaged-Navier-Stokes equations. While determining the diffuser geometry, a high quality, separation-free flow field with minimum energy loses was particularly aimed. The expansion angle has a critical role on the diffuser hydrodynamic performance. In order obtain a relatively short diffuser length, due to the constructive limitations, and hydrodynamic energy effectiveness, three diffuser sections with varying expansion angles for side and bottom walls were considered. A systematic study was performed to determine the most effective diffuser configuration. The results revealed that the inlet condition of the diffuser greatly affects its flow field. The inclusion of the contraction section in the computations substantially modified the flow topology in the diffuser. The effect of the diffuser flow on the test section flow characteristics was clearly observed. The influence of the introduction of small chamfers at the corners of the diffuser geometry is also presented.Keywords: asymmetric diffuser, diffuser design, cavitation tunnel, viscous flow, computational fluid dynamics (CFD), rans
Procedia PDF Downloads 3631707 Propagation of W Shaped of Solitons in Fiber Bragg Gratings
Authors: Mezghiche Kamel
Abstract:
We present solitary wave solutions for the perturbed nonlinear Schrodinger (PNLS) equation describing propagation of femtosecond light pulses through the fiber Bragg grating structure where the pulse dynamics is governed by the nonlinear-coupled mode (NLCM) equations. Using the multiple scale analysis, we reduce the NLCM equations into the perturbed nonlinear Schrodinger (PNLS) type equation. Unlike the reported solitary wave solutions of the PNLS equation, the novel ones can describe W shaped of solitons and their properties.Keywords: fiber bragg grating, nonlinear-coupled mode equations, w shaped of solitons, PNLS
Procedia PDF Downloads 7691706 Assessment of Analytical Equations for the Derivation of Young’s Modulus of Bonded Rubber Materials
Authors: Z. N. Haji, S. O. Oyadiji, H. Samami, O. Farrell
Abstract:
The prediction of the vibration response of rubber products by analytical or numerical method depends mainly on the predefined intrinsic material properties such as Young’s modulus, damping factor and Poisson’s ratio. Such intrinsic properties are determined experimentally by subjecting a bonded rubber sample to compression tests. The compression tests on such a sample yield an apparent Young’s modulus which is greater in magnitude than the intrinsic Young’s modulus of the rubber. As a result, many analytical equations have been developed to determine Young’s modulus from an apparent Young’s modulus of bonded rubber materials. In this work, the applicability of some of these analytical equations is assessed via experimental testing. The assessment is based on testing of vulcanized nitrile butadiene rubber (NBR70) samples using tensile test and compression test methods. The analytical equations are used to determine the intrinsic Young’s modulus from the apparent modulus that is derived from the compression test data of the bonded rubber samples. Then, these Young’s moduli are compared with the actual Young’s modulus that is derived from the tensile test data. The results show significant discrepancy between the Young’s modulus derived using the analytical equations and the actual Young’s modulus.Keywords: bonded rubber, quasi-static test, shape factor, apparent Young’s modulus
Procedia PDF Downloads 1731705 Aerodynamic Design Optimization of Ferrari F430 Flying Car with Enhanced Takeoff Performance
Authors: E. Manikandan, C. Chilambarasan, M. Sulthan Ariff Rahman, S. Kanagaraj, Abhimanyu Pugazhandhi, V. R. Sanal Kumar
Abstract:
The designer of any flying car has the major concern on the creation of upward force with low takeoff velocity, with minimum drag, coupled with better stability and control warranting its overall high performance both in road and air. In this paper, 3D numerical simulations of external flow of a Ferrari F430 fitted with different NACA series rectangular wings have been carried out for finding the best aerodynamic design option in road and air. The principle that allows a car to rise off the ground by creating lift using deployable wings with desirable lifting characteristics is the main theme of our paper. Additionally, the car body is streamlined in accordance with the speed range. Further, the rounded and tapered shape of the top of the car is designed to slice through the air and minimize the wind resistance. The 3D SST k-ω turbulence model has been used for capturing the intrinsic flow physics during the take off phase. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations is employed. Through the detailed parametric analytical studies, we have conjectured that Ferrari F430 can be converted into a lucrative flying car with best fit NACA wing through a proper aerodynamic design optimization.Keywords: aerodynamics of flying car, air taxi, Ferrari F430, roadable airplane
Procedia PDF Downloads 211