Search results for: robot operation system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19051

Search results for: robot operation system

18871 The Use of the Limit Cycles of Dynamic Systems for Formation of Program Trajectories of Points Feet of the Anthropomorphous Robot

Authors: A. S. Gorobtsov, A. S. Polyanina, A. E. Andreev

Abstract:

The movement of points feet of the anthropomorphous robot in space occurs along some stable trajectory of a known form. A large number of modifications to the methods of control of biped robots indicate the fundamental complexity of the problem of stability of the program trajectory and, consequently, the stability of the control for the deviation for this trajectory. Existing gait generators use piecewise interpolation of program trajectories. This leads to jumps in the acceleration at the boundaries of sites. Another interpolation can be realized using differential equations with fractional derivatives. In work, the approach to synthesis of generators of program trajectories is considered. The resulting system of nonlinear differential equations describes a smooth trajectory of movement having rectilinear sites. The method is based on the theory of an asymptotic stability of invariant sets. The stability of such systems in the area of localization of oscillatory processes is investigated. The boundary of the area is a bounded closed surface. In the corresponding subspaces of the oscillatory circuits, the resulting stable limit cycles are curves having rectilinear sites. The solution of the problem is carried out by means of synthesis of a set of the continuous smooth controls with feedback. The necessary geometry of closed trajectories of movement is obtained due to the introduction of high-order nonlinearities in the control of stabilization systems. The offered method was used for the generation of trajectories of movement of point’s feet of the anthropomorphous robot. The synthesis of the robot's program movement was carried out by means of the inverse method.

Keywords: control, limits cycle, robot, stability

Procedia PDF Downloads 305
18870 A Review on Robot Trajectory Optimization and Process Validation through off-Line Programming in Virtual Environment Using Robcad

Authors: Ashwini Umale

Abstract:

Trajectory planning and optimization is a fundamental problem in articulated robotics. It is often viewed as a two phase problem of initial feasible path planning around obstacles and subsequent optimization of a trajectory satisfying dynamical constraints. An optimized trajectory of multi-axis robot is important and directly influences the Performance of the executing task. Optimal is defined to be the minimum time to transition from the current speed to the set speed. In optimization of trajectory through virtual environment explores the most suitable way to represent robot motion from virtual environment to real environment. This paper aims to review the research of trajectory optimization in virtual environment using simulation software Robcad. Improvements are to be expected in trajectory optimization to generate smooth and collision free trajectories with minimization of overall robot cycle time.

Keywords: trajectory optimization, forward kinematics and reverse kinematics, dynamic constraints, robcad simulation software

Procedia PDF Downloads 474
18869 Analysis of the Use of a NAO Robot to Improve Social Skills in Children with Autism Spectrum Disorder in Saudi Arabia

Authors: Eman Alarfaj, Hissah Alabdullatif, Huda Alabdullatif, Ghazal Albakri, Nor Shahriza Abdul Karim

Abstract:

Autism Spectrum Disorder is extensively spread amid children; it affects their social, communication and interactive skills. As robotics technology has been proven to be a significant helpful utility those able individuals to overcome their disabilities. Robotic technology is used in ASD therapy. The purpose of this research is to show how Nao robots can improve the social skills for children who suffer from autism in Saudi Arabia by interacting with the autistic child and perform a number of tasks. The objective of this research is to identify, implement, and test the effectiveness of the module for interacting with ASD children in an autism center in Saudi Arabia. The methodology in this study followed the ten layers of protocol that needs to be followed during any human-robot interaction. Also, in order to elicit the scenario module, TEACCH Autism Program was adopted. Six different qualified interaction modules have been elicited and designed in this study; the robot will be programmed to perform these modules in a series of controlled interaction sessions with the Autistic children to enhance their social skills.

Keywords: humanoid robot Nao, ASD, human-robot interaction, social skills

Procedia PDF Downloads 239
18868 Modular Robotics and Terrain Detection Using Inertial Measurement Unit Sensor

Authors: Shubhakar Gupta, Dhruv Prakash, Apoorv Mehta

Abstract:

In this project, we design a modular robot capable of using and switching between multiple methods of propulsion and classifying terrain, based on an Inertial Measurement Unit (IMU) input. We wanted to make a robot that is not only intelligent in its functioning but also versatile in its physical design. The advantage of a modular robot is that it can be designed to hold several movement-apparatuses, such as wheels, legs for a hexapod or a quadpod setup, propellers for underwater locomotion, and any other solution that may be needed. The robot takes roughness input from a gyroscope and an accelerometer in the IMU, and based on the terrain classification from an artificial neural network; it decides which method of propulsion would best optimize its movement. This provides the bot with adaptability over a set of terrains, which means it can optimize its locomotion on a terrain based on its roughness. A feature like this would be a great asset to have in autonomous exploration or research drones.

Keywords: modular robotics, terrain detection, terrain classification, neural network

Procedia PDF Downloads 111
18867 A Method of Drilling a Ground Using a Robotic Arm

Authors: Lotfi Beji, Laredj Benchikh

Abstract:

Underground tunnel face bolting and pipe umbrella reinforcement are one of the most challenging tasks in construction whether industrial or not, and infrastructures such as roads or pipelines. It is one of the first sectors of economic activity in the world. Through a variety of soil and rock, a cyclic Conventional Tunneling Method (CTM) remains the best one for projects with highly variable ground conditions or shapes. CTM is the only alternative for the renovation of existing tunnels and creating emergency exit. During the drilling process, a wide variety of non-desired vibrations may arise, and a method using a robot arm is proposed. The main kinds of drilling through vibration here is the bit-bouncing phenomenon (resonant axial vibration). Hence, assisting the task by a robot arm may play an important role on drilling performances and security. We propose to control the axial-vibration phenomenon along the drillstring at a practical resonant frequency, and embed a Resonant Sonic Drilling Head (RSDH) as a robot end effector for drilling. Many questionable industry drilling criteria and stability are discussed in this paper.

Keywords: drilling, resonant vibration, robot arm, control

Procedia PDF Downloads 265
18866 PID Sliding Mode Control with Sliding Surface Dynamics based Continuous Control Action for Robotic Systems

Authors: Wael M. Elawady, Mohamed F. Asar, Amany M. Sarhan

Abstract:

This paper adopts a continuous sliding mode control scheme for trajectory tracking control of robot manipulators with structured and unstructured uncertain dynamics and external disturbances. In this algorithm, the equivalent control in the conventional sliding mode control is replaced by a PID control action. Moreover, the discontinuous switching control signal is replaced by a continuous proportional-integral (PI) control term such that the implementation of the proposed control algorithm does not require the prior knowledge of the bounds of unknown uncertainties and external disturbances and completely eliminates the chattering phenomenon of the conventional sliding mode control approach. The closed-loop system with the adopted control algorithm has been proved to be globally stable by using Lyapunov stability theory. Numerical simulations using the dynamical model of robot manipulators with modeling uncertainties demonstrate the superiority and effectiveness of the proposed approach in high speed trajectory tracking problems.

Keywords: PID, robot, sliding mode control, uncertainties

Procedia PDF Downloads 475
18865 User Requirements Study in Order to Improve the Quality of Social Robots for Dementia Patients

Authors: Konrad Rejdak

Abstract:

Introduction: Neurodegenerative diseases are frequently accompanied by loss and unwanted change in functional independence, social relationships, and economic circumstances. Currently, the achievements of social robots to date is being projected to improve multidimensional quality of life among people with cognitive impairment and others. Objectives: Identification of particular human needs in the context of the changes occurring in course of neurodegenerative diseases. Methods: Based on the 110 surveys performed in the Medical University of Lublin from medical staff, patients, and caregivers we made prioritization of the users' needs as high, medium, and low. The issues included in the surveys concerned four aspects: user acceptance, functional requirements, the design of the robotic assistant and preferred types of human-robot interaction. Results: We received completed questionnaires; 50 from medical staff, 30 from caregivers and 30 from potential users. Above 90% of the respondents from each of the three groups, accepted a robotic assistant as a potential caregiver. High priority functional capability of assistive technology was to handle emergencies in a private home-like recognizing life-threatening situations and reminding about medication intake. With reference to the design of the robotic assistant, the majority of the respondent would like to have an anthropomorphic appearance with a positive emotionally expressive face. The most important type of human-robot interaction was a voice-operated system and by touchscreen. Conclusion: The results from our study might contribute to a better understanding of the system and users’ requirements for the development of a service robot intended to support patients with dementia.

Keywords: assistant robot, dementia, long term care, patients

Procedia PDF Downloads 135
18864 The Human Rights Code: Fundamental Rights as the Basis of Human-Robot Coexistence

Authors: Gergely G. Karacsony

Abstract:

Fundamental rights are the result of thousand years’ progress of legislation, adjudication and legal practice. They serve as the framework of peaceful cohabitation of people, protecting the individual from any abuse by the government or violation by other people. Artificial intelligence, however, is the development of the very recent past, being one of the most important prospects to the future. Artificial intelligence is now capable of communicating and performing actions the same way as humans; such acts are sometimes impossible to tell from actions performed by flesh-and-blood people. In a world, where human-robot interactions are more and more common, a new framework of peaceful cohabitation is to be found. Artificial intelligence, being able to take part in almost any kind of interaction where personal presence is not necessary without being recognized as a non-human actor, is now able to break the law, violate people’s rights, and disturb social peace in many other ways. Therefore, a code of peaceful coexistence is to be found or created. We should consider the issue, whether human rights can serve as the code of ethical and rightful conduct in the new era of artificial intelligence and human coexistence. In this paper, we will examine the applicability of fundamental rights to human-robot interactions as well as to the actions of artificial intelligence performed without human interaction whatsoever. Robot ethics has been a topic of discussion and debate of philosophy, ethics, computing, legal sciences and science fiction writing long before the first functional artificial intelligence has been introduced. Legal science and legislation have approached artificial intelligence from different angles, regulating different areas (e.g. data protection, telecommunications, copyright issues), but they are only chipping away at the mountain of legal issues concerning robotics. For a widely acceptable and permanent solution, a more general set of rules would be preferred to the detailed regulation of specific issues. We argue that human rights as recognized worldwide are able to be adapted to serve as a guideline and a common basis of coexistence of robots and humans. This solution has many virtues: people don’t need to adjust to a completely unknown set of standards, the system has proved itself to withstand the trials of time, legislation is easier, and the actions of non-human entities are more easily adjudicated within their own framework. In this paper we will examine the system of fundamental rights (as defined in the most widely accepted source, the 1966 UN Convention on Human Rights), and try to adapt each individual right to the actions of artificial intelligence actors; in each case we will examine the possible effects on the legal system and the society of such an approach, finally we also examine its effect on the IT industry.

Keywords: human rights, robot ethics, artificial intelligence and law, human-robot interaction

Procedia PDF Downloads 223
18863 Efficient Control of Some Dynamic States of Wheeled Robots

Authors: Boguslaw Schreyer

Abstract:

In some types of wheeled robots it is important to secure starting acceleration and deceleration maxima while at the same time maintaining transversal stability. In this paper torque distribution between the front and rear wheels as well as the timing of torque application have been calculated. Both secure an optimum traction coefficient. This paper also identifies required input signals to a control unit, which controls the torque values and timing. Using a three dimensional, two mass model of a robot developed by the author a computer simulation was performed confirming the calculations presented in this paper. These calculations were also implemented and confirmed during military robot testing.

Keywords: robot dynamics, torque distribution, traction coefficient, wheeled robots

Procedia PDF Downloads 296
18862 Design of a Chaotic Trajectory Generator Algorithm for Mobile Robots

Authors: J. J. Cetina-Denis, R. M. López-Gutiérrez, R. Ramírez-Ramírez, C. Cruz-Hernández

Abstract:

This work addresses the problem of designing an algorithm capable of generating chaotic trajectories for mobile robots. Particularly, the chaotic behavior is induced in the linear and angular velocities of a Khepera III differential mobile robot by infusing them with the states of the H´enon chaotic map. A possible application, using the properties of chaotic systems, is patrolling a work area. In this work, numerical and experimental results are reported and analyzed. In addition, two quantitative numerical tests are applied in order to measure how chaotic the generated trajectories really are.

Keywords: chaos, chaotic trajectories, differential mobile robot, Henon map, Khepera III robot, patrolling applications

Procedia PDF Downloads 283
18861 Implementation of Inference Fuzzy System as a Valuation Subsidiary is Based Particle Swarm Optimization for Solves the Issue of Decision Making in Middle Size Soccer Robot League

Authors: Zahra Abdolkarimi, Naser Zouri

Abstract:

Nowadays, there is unbelievable growing of Robots created a collection of complex and motivate subject in robotic and intellectual ornate, also it made a mechatronics style base of theoretical and technical way in Robocop. Additionally, robotics system recommended RoboCup factor as a provider of some standardization and testing method in case of computer discussion widely. The actual purpose of RoboCup is creating independent team of robots in 2050 based of FiFa roles to bring the victory in compare of world star team. In addition, decision making of robots depends to environment reaction, self-player and rival player with using inductive Fuzzy system valuation subsidiary to solve issue of robots in land game. The measure of selection in compare with other methods depends to amount of victories percentage in the same team that plays accidently. Consequences, shows method of our discussion is the best way for Particle Swarm Optimization and Fuzzy system compare to other decision of robotics algorithmic.

Keywords: PSO algorithm, inference fuzzy system, chaos theory, soccer robot league

Procedia PDF Downloads 379
18860 Locomotion Effects of Redundant Degrees of Freedom in Multi-Legged Quadruped Robots

Authors: Hossein Keshavarz, Alejandro Ramirez-Serrano

Abstract:

Energy efficiency and locomotion speed are two key parameters for legged robots; thus, finding ways to improve them are important. This paper proposes a locomotion framework to analyze the energy usage and speed of quadruped robots via a Genetic Algorithm (GA) optimization process. For this, a quadruped robot platform with joint redundancy in its hind legs that we believe will help multi-legged robots improve their speed and energy consumption is used. ContinuO, the quadruped robot of interest, has 14 active degrees of freedom (DoFs), including three DoFs for each front leg, and unlike previously developed quadruped robots, four DoFs for each hind leg. ContinuO aims to realize a cost-effective quadruped robot for real-world scenarios with high speeds and the ability to overcome large obstructions. The proposed framework is used to locomote the robot and analyze its energy consumed at diverse stride lengths and locomotion speeds. The analysis is performed by comparing the obtained results in two modes, with and without the joint redundancy on the robot’s hind legs.

Keywords: genetic algorithm optimization, locomotion path planning, quadruped robots, redundant legs

Procedia PDF Downloads 57
18859 The Study about the New Monitoring System of Signal Equipment of Railways Using Radio Communication

Authors: Masahiko Suzuki, Takashi Kato , Masahiro Kobayashi

Abstract:

In our company, the monitoring system for signal equipment has already implemented. So, we can know the state of signal equipment, sitting in the control room or the maintenance center. But this system was installed over 20 years ago, so it cannot stand the needs such as 'more stable operation', 'broadband data transfer', 'easy construction and easy maintenance'. To satisfy these needs, we studied the monitoring system using radio communication as a new method which can realize the operation in the terrible environment along railroads. In these studies, we have developed the terminals and repeaters based on the ZigBee protocol and have implemented the application using two different radio bands simultaneously. At last, we got the good results from the fundamental examinations using the developed equipment.

Keywords: monitoring, radio communication, 2 bands, ZigBee

Procedia PDF Downloads 559
18858 Recognition of Noisy Words Using the Time Delay Neural Networks Approach

Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha

Abstract:

This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.

Keywords: TDNN, neural networks, noise, speech recognition

Procedia PDF Downloads 256
18857 Nursing System Development in Patients Undergoing Operation in 3C Ward: Early Ambulation in Patients with Head and Neck Cancer

Authors: Artitaya Sabangbal, Darawan Augsornwan, Palakorn Surakunprapha, Lalida Petphai

Abstract:

Background: Srinagarind Hospital Ward 3C has about 180 cases of patients with head and neck cancer per year. Almost all of these patients suffer with pain, fatigue, low self image, swallowing problem and when the tumor is larger they will have breathing problem. Many of them have complication after operation such as pressure sore, pneumonia, deep vein thrombosis. Nursing activity is very important to prevent the complication especially promoting patients early ambulation. The objective of this study was to develop early ambulation protocol for patients with head and neck cancer undergoing operation. Method: this study is one part of nursing system development in patients undergoing operation in Ward 3C. It is a participation action research divided into 3 phases Phase 1 Situation review: In this phase we review the clinical outcomes, process of care, from document such as nurses note and interview nurses, patients and family about early ambulation. Phase 2 Searching nursing intervention about early ambulation from previous study then establish protocol . This phase we have picture package of early ambulation. Phase 3 implementation and evaluation. Result: Patients with head and neck cancer after operation can follow early ambulation protocol 100%, 85 % of patients can follow protocol within 2 days after operation and 100% can follow protocol within 3 days. No complications occur. Patients satisfaction in very good level is 58% and in good level is 42% Length of hospital stay is 6 days in patients with wide excision and 16 day in patients with flap coverage. Conclusion: The early ambulation protocol is appropriate for patients with head and neck cancer who undergo operation. This can restore physical health, reduce complication and increase patients satisfaction.

Keywords: nursing system, early ambulation, head and neck cancer, operation

Procedia PDF Downloads 202
18856 Industrial Practical Training for Mechanical Engineering Students: A Multidisciplinary Approach

Authors: Bashiru Olayinka Adisa, Najeem Lateef

Abstract:

The integrated knowledge in the application of mechanical engineering, microprocessor and electronic sensor technologies is becoming the basic skill of a modern engineer in machinery based processes. To meet this objective, we have developed a cross-disciplinary industrial training to teach essential hard technical and soft project skills to the mechanical engineering students in mid-curriculum. Ten groups of students were selected to participate in a 150 hour program. The students were required to design and build a robot with ability to follow tracks and pick/place target blocks in specific locations. The students were trained to integrate the knowledge of computer aid design, electronics, sensor theories and motor technology to fabricate a workable robot as a major outcome of this course. On completion of the project, students competed for top robot honors by demonstrating their robots' movements and performance in pick/place to a panel of judges.

Keywords: electronics, sensor theories and motor, robot, technology

Procedia PDF Downloads 256
18855 Design and Manufacture of an Autonomous Agricultural Robot for Pesticide Application

Authors: Caner Koc, Dilara Gerdan Koc, Emrah Saka, H. Ibrahim Karagol

Abstract:

The use of pesticides in agricultural activities is the most harmful to the environment and farmers' health, and it also has the greatest input prices, along with fertilizers. In this study, an electric, electrostatically charged, autonomous agricultural robot was developed, modeled, and prototyped and manufactured. It allows for sensitive pesticide applications with variable levels, has controllable spray nozzles, and uses camera distance sensors to detect and spray into tree canopies. The created prototype was produced with flexibility in mind. Two stages of prototype manufacture were completed. The initial stage involved designing and producing the flexible primary body of the autonomous vehicle. Detachable hanger assemblies are employed so that the main body robot can perform a variety of agricultural tasks. The design of the spraying devices and their fitting to the autonomous vehicle was completed as the second stage of the prototype. The built prototype spraying robot's itinerary was planned using the free, open-source program Mission Planner. PX4, telemetry, and RTK GPS are used to maneuver the autonomous car along the designated path. To avoid potential obstructions, the robot uses ultrasonic and lidar sensors. The developed autonomous vehicle's energy needs are intended to be met entirely by electric batteries. In the event that the batteries run out of power, the sockets are set up to be recharged both by using the generator and the main power source through the specifically constructed panel.

Keywords: autonomous agricultural robot, pesticide, smart farming, spraying, variable rate application

Procedia PDF Downloads 52
18854 Humans, Social Robots, and Mutual Love: An Application of Aristotle’s Nicomachean Ethics

Authors: Ruby Jean Hornsby

Abstract:

In our rapidly advancing techno-moral world, human-robot relationships are increasingly becoming a part of intimate human life. Indeed, social robots - that is, autonomous or semi-autonomous embodied artificial agents that generally possess human or animal-like qualities (such as responding to environmental stimuli, communicating, learning, performing human tasks, and making autonomous decisions) - have been designed to function as human friends. In light of such advances, immediate philosophical scrutiny is imperative in order to examine the extent to which human-robot interactions constitute genuine friendship and therefore contribute towards the good human life. Aristotle's conception of friendship is philosophically illuminating and sufficiently broad in scope to guide such analysis. On his account, it is necessary (though not sufficient) that for a friendship to exist between two agents - A and B - both agents must have a mutual love for one another. Aristotle claims that A loves B if: Condition 1: A desires those apparent good (qua pleasant, useful, or virtuous) properties attributable to B, and Condition 2: A has goodwill (wishes what is best) for B. This paper argues that human-robot interaction can (and does) successfully meet both conditions; as such, it demonstrates that robots and humans can reciprocally love one another. It will argue for this position by first justifying the claim that a human can desire apparent good features attributable to a robot (i.e., by taking them to be pleasant and/or useful) and outlining how it is that a human can wish a robot well in light of that robot's (quasi-) interests. Next, the paper will argue that a robot can (quasi-)desire certain properties that are attributable to a human before elucidating how it is possible for a robot to act in the interests of a human. Accordingly, this paper will conclude that it is already the case that humans can formulate relationships with robots that involve reciprocated love. This is significant because it suggests that social robots are candidates for human friendship and can therefore contribute toward flourishing human futures.

Keywords: ancient philosophy, friendship, inter-disciplinary applied ethics, love, social robotics

Procedia PDF Downloads 83
18853 Self-Propelled Intelligent Robotic Vehicle Based on Octahedral Dodekapod to Move in Active Branched Pipelines with Variable Cross-Sections

Authors: Sergey N. Sayapin, Anatoly P. Karpenko, Suan H. Dang

Abstract:

Comparative analysis of robotic vehicles for pipe inspection is presented in this paper. The promising concept of self-propelled intelligent robotic vehicle (SPIRV) based on octahedral dodekapod for inspection and operation in active branched pipelines with variable cross-sections is reasoned. SPIRV is able to move in pipeline, regardless of its spatial orientation. SPIRV can also be used to move along the outside of the pipelines as well as in space between surfaces of annular tubes. Every one of faces of the octahedral dodekapod can clamp/unclamp a thing with a closed loop surface of various forms as well as put pressure on environmental surface of contact. These properties open new possibilities for its applications in SPIRV. We examine design principles of octahedral dodekapod as future intelligent building blocks for various robotic vehicles that can self-move and self-reconfigure.

Keywords: Modular robot, octahedral dodekapod, pipe inspection robot, spatial parallel structure

Procedia PDF Downloads 480
18852 Advanced Mechatronic Design of Robot Manipulator Using Hardware-In-The-Loop Simulation

Authors: Reza Karami, Ali Akbar Ebrahimi

Abstract:

This paper discusses concurrent engineering of robot manipulators, based on the Holistic Concurrent Design (HCD) methodology and by using a hardware-in-the-loop simulation platform. The methodology allows for considering numerous design variables with different natures concurrently. It redefines the ultimate goal of design based on the notion of satisfaction, resulting in the simplification of the multi-objective constrained optimization process. It also formalizes the effect of designer’s subjective attitude in the process. To enhance modeling efficiency for both computation and accuracy, a hardware-in-the-loop simulation platform is used, which involves physical joint modules and the control unit in addition to the software modules. This platform is implemented in the HCD design architecture to reliably evaluate the design attributes and performance super criterion during the design process. The resulting overall architecture is applied to redesigning kinematic, dynamic and control parameters of an industrial robot manipulator.

Keywords: concurrent engineering, hardware-in-the-loop simulation, robot manipulator, multidisciplinary systems, mechatronics

Procedia PDF Downloads 423
18851 ROSgeoregistration: Aerial Multi-Spectral Image Simulator for the Robot Operating System

Authors: Andrew R. Willis, Kevin Brink, Kathleen Dipple

Abstract:

This article describes a software package called ROS-georegistration intended for use with the robot operating system (ROS) and the Gazebo 3D simulation environment. ROSgeoregistration provides tools for the simulation, test, and deployment of aerial georegistration algorithms and is available at github.com/uncc-visionlab/rosgeoregistration. A model creation package is provided which downloads multi-spectral images from the Google Earth Engine database and, if necessary, incorporates these images into a single, possibly very large, reference image. Additionally a Gazebo plugin which uses the real-time sensor pose and image formation model to generate simulated imagery using the specified reference image is provided along with related plugins for UAV relevant data. The novelty of this work is threefold: (1) this is the first system to link the massive multi-spectral imaging database of Google’s Earth Engine to the Gazebo simulator, (2) this is the first example of a system that can simulate geospatially and radiometrically accurate imagery from multiple sensor views of the same terrain region, and (3) integration with other UAS tools creates a new holistic UAS simulation environment to support UAS system and subsystem development where real-world testing would generally be prohibitive. Sensed imagery and ground truth registration information is published to client applications which can receive imagery synchronously with telemetry from other payload sensors, e.g., IMU, GPS/GNSS, barometer, and windspeed sensor data. To highlight functionality, we demonstrate ROSgeoregistration for simulating Electro-Optical (EO) and Synthetic Aperture Radar (SAR) image sensors and an example use case for developing and evaluating image-based UAS position feedback, i.e., pose for image-based Guidance Navigation and Control (GNC) applications.

Keywords: EO-to-EO, EO-to-SAR, flight simulation, georegistration, image generation, robot operating system, vision-based navigation

Procedia PDF Downloads 84
18850 Representations of Childcare Robots as a Controversial Issue

Authors: Raya A. Jones

Abstract:

This paper interrogates online representations of robot companions for children, including promotional material by manufacturers, media articles and technology blogs. The significance of the study lies in its contribution to understanding attitudes to robots. The prospect of childcare robots is particularly controversial ethically, and is associated with emotive arguments. The sampled material is restricted to relatively recent posts (the past three years) though the analysis identifies both continuous and changing themes across the past decade. The method extrapolates social representations theory towards examining the ways in which information about robotic products is provided for the general public. Implications for social acceptance of robot companions for the home and robot ethics are considered.

Keywords: acceptance of robots, childcare robots, ethics, social representations

Procedia PDF Downloads 225
18849 Map Matching Performance under Various Similarity Metrics for Heterogeneous Robot Teams

Authors: M. C. Akay, A. Aybakan, H. Temeltas

Abstract:

Aerial and ground robots have various advantages of usage in different missions. Aerial robots can move quickly and get a different sight of view of the area, but those vehicles cannot carry heavy payloads. On the other hand, unmanned ground vehicles (UGVs) are slow moving vehicles, since those can carry heavier payloads than unmanned aerial vehicles (UAVs). In this context, we investigate the performances of various Similarity Metrics to provide a common map for Heterogeneous Robot Team (HRT) in complex environments. Within the usage of Lidar Odometry and Octree Mapping technique, the local 3D maps of the environment are gathered.  In order to obtain a common map for HRT, informative theoretic similarity metrics are exploited. All types of these similarity metrics gave adequate as allowable simulation time and accurate results that can be used in different types of applications. For the heterogeneous multi robot team, those methods can be used to match different types of maps.

Keywords: common maps, heterogeneous robot team, map matching, informative theoretic similarity metrics

Procedia PDF Downloads 137
18848 Optimizing the Public Policy Information System under the Environment of E-Government

Authors: Qian Zaijian

Abstract:

E-government is one of the hot issues in the current academic research of public policy and management. As the organic integration of information and communication technology (ICT) and public administration, e-government is one of the most important areas in contemporary information society. Policy information system is a basic subsystem of public policy system, its operation affects the overall effect of the policy process or even exerts a direct impact on the operation of a public policy and its success or failure. The basic principle of its operation is information collection, processing, analysis and release for a specific purpose. The function of E-government for public policy information system lies in the promotion of public access to the policy information resources, information transmission through e-participation, e-consultation in the process of policy analysis and processing of information and electronic services in policy information stored, to promote the optimization of policy information systems. However, due to many factors, the function of e-government to promote policy information system optimization has its practical limits. In the building of E-government in our country, we should take such path as adhering to the principle of freedom of information, eliminating the information divide (gap), expanding e-consultation, breaking down information silos and other major path, so as to promote the optimization of public policy information systems.

Keywords: China, e-consultation, e-democracy, e-government, e-participation, ICTs, public policy information systems

Procedia PDF Downloads 828
18847 Improvement of the Quality Services of Social Robots by Understanding Requirements of People with Dementia

Authors: Konrad Rejdak, Agnieszka Korchut, Sebastian Szklener, Urszula Skrobas, Justyna Gerlowska, Katarzyna Grabowska-Aleksandrowicz, Dorota Szczesniak-Stanczyk

Abstract:

Introduction: Neurodegenerative diseases are frequently accompanied by loss and unwanted change in functional independence, social relationships, and economic circumstances. Currently, the achievements of social robots to date is being projected to improve multidimensional quality of life among people with cognitive impairment and others. Objectives: Identification of particular human needs in context of the changes occurring in course of neurodegenerative diseases. Methods: Based on the 110 surveys performed in Medical University of Lublin from medical staff, patients, and caregivers we made prioritization of the users' needs as: high, medium, and low. The issues included in the surveys concerned four aspects: user acceptance, functional requirements, design of the robotic assistant and preferred types of human-robot interaction. Results: We received completed questionnaires: 50 from medical staff, 30 from caregivers and 30 from potential users. Above 90% of the respondents from each of the three groups, accepted robotic assistant as a potential caregiver. High priority functional capability of assistive technology was to handle emergencies in a private home like recognizing life-threatening situations and reminding about medication intake. With reference to design of the robotic assistant, the majority of the respondent would like to have an anthropomorphic appearance with positive emotionally expressive face. The most important type of human-robot interaction was voice-operated system and by touchscreen. Conclusion: The results from our study might contribute to a better understanding of the system and users’ requirements for the development of a service robot intended to support patients with dementia.

Keywords: social robot, dementia, requirements, patients needs

Procedia PDF Downloads 242
18846 An Exponential Field Path Planning Method for Mobile Robots Integrated with Visual Perception

Authors: Magdy Roman, Mostafa Shoeib, Mostafa Rostom

Abstract:

Global vision, whether provided by overhead fixed cameras, on-board aerial vehicle cameras, or satellite images can always provide detailed information on the environment around mobile robots. In this paper, an intelligent vision-based method of path planning and obstacle avoidance for mobile robots is presented. The method integrates visual perception with a new proposed field-based path-planning method to overcome common path-planning problems such as local minima, unreachable destination and unnecessary lengthy paths around obstacles. The method proposes an exponential angle deviation field around each obstacle that affects the orientation of a close robot. As the robot directs toward, the goal point obstacles are classified into right and left groups, and a deviation angle is exponentially added or subtracted to the orientation of the robot. Exponential field parameters are chosen based on Lyapunov stability criterion to guarantee robot convergence to the destination. The proposed method uses obstacles' shape and location, extracted from global vision system, through a collision prediction mechanism to decide whether to activate or deactivate obstacles field. In addition, a search mechanism is developed in case of robot or goal point is trapped among obstacles to find suitable exit or entrance. The proposed algorithm is validated both in simulation and through experiments. The algorithm shows effectiveness in obstacles' avoidance and destination convergence, overcoming common path planning problems found in classical methods.

Keywords: path planning, collision avoidance, convergence, computer vision, mobile robots

Procedia PDF Downloads 162
18845 Energy Storage Modelling for Power System Reliability and Environmental Compliance

Authors: Rajesh Karki, Safal Bhattarai, Saket Adhikari

Abstract:

Reliable and economic operation of power systems are becoming extremely challenging with large scale integration of renewable energy sources due to the intermittency and uncertainty associated with renewable power generation. It is, therefore, important to make a quantitative risk assessment and explore the potential resources to mitigate such risks. Probabilistic models for different energy storage systems (ESS), such as the flywheel energy storage system (FESS) and the compressed air energy storage (CAES) incorporating specific charge/discharge performance and failure characteristics suitable for probabilistic risk assessment in power system operation and planning are presented in this paper. The proposed methodology used in FESS modelling offers flexibility to accommodate different configurations of plant topology. It is perceived that CAES has a high potential for grid-scale application, and a hybrid approach is proposed, which embeds a Monte-Carlo simulation (MCS) method in an analytical technique to develop a suitable reliability model of the CAES. The proposed ESS models are applied to a test system to investigate the economic and reliability benefits of the energy storage technologies in system operation and planning, as well as to assess their contributions in facilitating wind integration during different operating scenarios. A comparative study considering various storage system topologies are also presented. The impacts of failure rates of the critical components of ESS on the expected state of charge (SOC) and the performance of the different types of ESS during operation are illustrated with selected studies on the test system. The paper also applies the proposed models on the test system to investigate the economic and reliability benefits of the different ESS technologies and to evaluate their contributions in facilitating wind integration during different operating scenarios and system configurations. The conclusions drawn from the study results provide valuable information to help policymakers, system planners, and operators in arriving at effective and efficient policies, investment decisions, and operating strategies for planning and operation of power systems with large penetrations of renewable energy sources.

Keywords: flywheel energy storage, compressed air energy storage, power system reliability, renewable energy, system planning, system operation

Procedia PDF Downloads 101
18844 Digital Transformation: Actionable Insights to Optimize the Building Performance

Authors: Jovian Cheung, Thomas Kwok, Victor Wong

Abstract:

Buildings are entwined with smart city developments. Building performance relies heavily on electrical and mechanical (E&M) systems and services accounting for about 40 percent of global energy use. By cohering the advancement of technology as well as energy and operation-efficient initiatives into the buildings, people are enabled to raise building performance and enhance the sustainability of the built environment in their daily lives. Digital transformation in the buildings is the profound development of the city to leverage the changes and opportunities of digital technologies To optimize the building performance, intelligent power quality and energy management system is developed for transforming data into actions. The system is formed by interfacing and integrating legacy metering and internet of things technologies in the building and applying big data techniques. It provides operation and energy profile and actionable insights of a building, which enables to optimize the building performance through raising people awareness on E&M services and energy consumption, predicting the operation of E&M systems, benchmarking the building performance, and prioritizing assets and energy management opportunities. The intelligent power quality and energy management system comprises four elements, namely the Integrated Building Performance Map, Building Performance Dashboard, Power Quality Analysis, and Energy Performance Analysis. It provides predictive operation sequence of E&M systems response to the built environment and building activities. The system collects the live operating conditions of E&M systems over time to identify abnormal system performance, predict failure trends and alert users before anticipating system failure. The actionable insights collected can also be used for system design enhancement in future. This paper will illustrate how intelligent power quality and energy management system provides operation and energy profile to optimize the building performance and actionable insights to revitalize an existing building into a smart building. The system is driving building performance optimization and supporting in developing Hong Kong into a suitable smart city to be admired.

Keywords: intelligent buildings, internet of things technologies, big data analytics, predictive operation and maintenance, building performance

Procedia PDF Downloads 130
18843 Local Tax Map Software System Development

Authors: Smithinun Thairoongrojana

Abstract:

This research is a qualitative research with three main purposes: (1) to develop the local tax map software system to be linked to the main Local Tax Map System (LTAX3000) system; (2) to design and develop a program for tax data fieldwork on wireless devices and link it to LTAX3000 database of Surat Thani Municipality; (3) to develop the human resource responsible for the fieldwork to be able to use the program and maintain the system and also to be able to work with the dynamic of technologies. In-depth interviews with the two groups of samples, the board of Surat Thani Municipality and operation staff responsible for observing and taxing fieldworks were conducted. The result of this study demonstrates the new developed fieldworks system that can be used both stand-alone usage and networking usage. The fieldworks system to collect and store the variety of taxing information within Surat Thani Municipality will be explained. Then the fieldwork operation process development and the replacement of transferring and storing the information via the network communication.

Keywords: Local tax map, software system development, wireless devices, human resource

Procedia PDF Downloads 171
18842 Concept of a Low Cost Gait Rehabilitation Robot for Children with Neurological Dysfunction

Authors: Mariana Volpini, Volker Bartenbach, Marcos Pinotti, Robert Riener

Abstract:

Restoration of gait ability is an important task in the rehabilitation of people with neurological disorders presenting a great impact in the quality of life of an individual. Based on the motor learning concept, robotic assisted treadmill training has been introduced and found to be a feasible and promising therapeutic option in neurological rehabilitation but unfortunately it is not available for most patients in developing countries due to the high cost. This paper presents the concept of a low cost rehabilitation robot to help consolidate the robotic-assisted gait training as a reality in clinical practice in most countries. This work indicates that it is possible to build a simpler rehabilitation device respecting the physiological trajectory of the ankle.

Keywords: bioengineering, gait therapy, low cost rehabilitation robot, rehabilitation robotics

Procedia PDF Downloads 408