Search results for: graph representation of circuit networks
4772 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation
Authors: Hamed Alqahtani, Manolya Kavakli-Thorne
Abstract:
The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.Keywords: disentanglement, face detection, generative adversarial networks, video surveillance
Procedia PDF Downloads 1294771 Hierarchical Piecewise Linear Representation of Time Series Data
Authors: Vineetha Bettaiah, Heggere S. Ranganath
Abstract:
This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation
Procedia PDF Downloads 2754770 Examining Social Connectivity through Email Network Analysis: Study of Librarians' Emailing Groups in Pakistan
Authors: Muhammad Arif Khan, Haroon Idrees, Imran Aziz, Sidra Mushtaq
Abstract:
Social platforms like online discussion and mailing groups are well aligned with academic as well as professional learning spaces. Professional communities are increasingly moving to online forums for sharing and capturing the intellectual abilities. This study investigated dynamics of social connectivity of yahoo mailing groups of Pakistani Library and Information Science (LIS) professionals using Graph Theory technique. Design/Methodology: Social Network Analysis is the increasingly concerned domain for scientists in identifying whether people grow together through online social interaction or, whether they just reflect connectivity. We have conducted a longitudinal study using Network Graph Theory technique to analyze the large data-set of email communication. The data was collected from three yahoo mailing groups using network analysis software over a period of six months i.e. January to June 2016. Findings of the network analysis were reviewed through focus group discussion with LIS experts and selected respondents of the study. Data were analyzed in Microsoft Excel and network diagrams were visualized using NodeXL and ORA-Net Scene package. Findings: Findings demonstrate that professionals and students exhibit intellectual growth the more they get tied within a network by interacting and participating in communication through online forums. The study reports on dynamics of the large network by visualizing the email correspondence among group members in a network consisting vertices (members) and edges (randomized correspondence). The model pair wise relationship between group members was illustrated to show characteristics, reasons, and strength of ties. Connectivity of nodes illustrated the frequency of communication among group members through examining node coupling, diffusion of networks, and node clustering has been demonstrated in-depth. Network analysis was found to be a useful technique in investigating the dynamics of the large network.Keywords: emailing networks, network graph theory, online social platforms, yahoo mailing groups
Procedia PDF Downloads 2394769 Transforming Butterworth Low Pass Filter into Microstrip Line Form at LC-Band Applications
Authors: Liew Hui Fang, Syed Idris Syed Hassan, Mohd Fareq Abd. Malek, Yufridin Wahab, Norshafinash Saudin
Abstract:
The paper implementation new approach method applied into transforming lumped element circuit into microstrip line form for Butterworth low pass filter which is operating at LC band. The filter’s lumped element circuits and microstrip line form were first designed and simulated using Advanced Design Software (ADS) to obtain the best filter characteristic based on S-parameter and implemented on FR4 substrate for order N=3,4,5,6,7,8 and 9. The importance of a new approach of transforming method as a correction factor has been considered into designed microstrip line. From ADS simulation results proved that the response of microstrip line circuit of Butterworth low pass filter with fringing correction factor has an excellent agreement with its lumped circuit. This shows that the new approach of transforming lumped element circuit into microstrip line is able to solve the conventional design of complexity size of circuit of Butterworth low pass filter (LPF) into microstrip line.Keywords: Butterworth low pass filter, number of order, microstrip line, microwave filter, maximally flat
Procedia PDF Downloads 3344768 Impact of FACTS Devices on Power Networks Reliability
Authors: Alireza Alesaadi
Abstract:
Flexible AC transmission system (FACTS) devices have an important rule on expnded electrical transmission networks. In this paper, the effect of these diveces on reliability of electrical networks is studied and it is shown that using of FACTS devices can improve the relibiability of power networks, significantly.Keywords: FACTS devices, power networks, reliability
Procedia PDF Downloads 4284767 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.Keywords: data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks
Procedia PDF Downloads 2214766 Voting Representation in Social Networks Using Rough Set Techniques
Authors: Yasser F. Hassan
Abstract:
Social networking involves use of an online platform or website that enables people to communicate, usually for a social purpose, through a variety of services, most of which are web-based and offer opportunities for people to interact over the internet, e.g. via e-mail and ‘instant messaging’, by analyzing the voting behavior and ratings of judges in a popular comments in social networks. While most of the party literature omits the electorate, this paper presents a model where elites and parties are emergent consequences of the behavior and preferences of voters. The research in artificial intelligence and psychology has provided powerful illustrations of the way in which the emergence of intelligent behavior depends on the development of representational structure. As opposed to the classical voting system (one person – one decision – one vote) a new voting system is designed where agents with opposed preferences are endowed with a given number of votes to freely distribute them among some issues. The paper uses ideas from machine learning, artificial intelligence and soft computing to provide a model of the development of voting system response in a simulated agent. The modeled development process involves (simulated) processes of evolution, learning and representation development. The main value of the model is that it provides an illustration of how simple learning processes may lead to the formation of structure. We employ agent-based computer simulation to demonstrate the formation and interaction of coalitions that arise from individual voter preferences. We are interested in coordinating the local behavior of individual agents to provide an appropriate system-level behavior.Keywords: voting system, rough sets, multi-agent, social networks, emergence, power indices
Procedia PDF Downloads 3944765 A Study of Using Different Printed Circuit Board Design Methods on Ethernet Signals
Authors: Bahattin Kanal, Nursel Akçam
Abstract:
Data transmission size and frequency requirements are increasing rapidly in electronic communication protocols. Increasing data transmission speeds have made the design of printed circuit boards much more important. It is important to carefully examine the requirements and make analyses before and after the design of the digital electronic circuit board. It delves into impedance matching techniques, signal trace routing considerations, and the impact of layer stacking on signal performance. The paper extensively explores techniques for minimizing crosstalk issues and interference, presenting a holistic perspective on design strategies to optimize the quality of high-speed signals. Through a comprehensive review of these design methodologies, this study aims to provide insights into achieving reliable and high-performance printed circuit board layouts for these signals. In this study, the effect of different design methods on Ethernet signals was examined from the type of S parameters. Siemens company HyperLynx software tool was used for the analyses.Keywords: HyperLynx, printed circuit board, s parameters, ethernet
Procedia PDF Downloads 344764 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization
Authors: Yihao Kuang, Bowen Ding
Abstract:
With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graphs and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improved strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain a better and more efficient inference effect by introducing PPO into knowledge inference technology.Keywords: reinforcement learning, PPO, knowledge inference
Procedia PDF Downloads 2434763 A Bibliographical Research on the Use of Social Media Websites by the Deaf in Brazil
Authors: Juliana Guimarães Faria
Abstract:
The article focus on social networks and deaf people. It aims to analyze the studies done about this topic published in journals, as well as the ones done through dissertations and theses. It also aims to identify the thematic focus of the studies produced and to identify how the deaf relates to social networks, more specifically, trying to identify, starting with those productions, what are the benefits, or not, of social networks for the deaf and if there is some reflection about the way the deaf community has been organizing politically in search of bilingual education and inclusion, making use of the softwares of social networks. After reading, description and analysis of the eleven works identified about social networks and the deaf, we detected three thematic groups: four studies presented discussions about social networks and the socialization of the deaf; four works presented discussions about the contribution of social networks to the linguistic and cognitive development of the deaf; and three works presented discussions about the political bias of the use of social networks in favor of the deaf. We also identified that the works presented an optimistic view of social networks.Keywords: social networks, deaf, internet, Brazil
Procedia PDF Downloads 4084762 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms
Authors: Mohammad Besharatloo
Abstract:
Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree
Procedia PDF Downloads 914761 QoS-CBMG: A Model for e-Commerce Customer Behavior
Authors: Hoda Ghavamipoor, S. Alireza Hashemi Golpayegani
Abstract:
An approach to model the customer interaction with e-commerce websites is presented. Considering the service quality level as a predictive feature, we offer an improved method based on the Customer Behavior Model Graph (CBMG), a state-transition graph model. To derive the Quality of Service sensitive-CBMG (QoS-CBMG) model, process-mining techniques is applied to pre-processed website server logs which are categorized as ‘buy’ or ‘visit’. Experimental results on an e-commerce website data confirmed that the proposed method outperforms CBMG based method.Keywords: customer behavior model, electronic commerce, quality of service, customer behavior model graph, process mining
Procedia PDF Downloads 4164760 The Problems of Current Earth Coordinate System for Earthquake Forecasting Using Single Layer Hierarchical Graph Neuron
Authors: Benny Benyamin Nasution, Rahmat Widia Sembiring, Abdul Rahman Dalimunthe, Nursiah Mustari, Nisfan Bahri, Berta br Ginting, Riadil Akhir Lubis, Rita Tavip Megawati, Indri Dithisari
Abstract:
The earth coordinate system is an important part of an attempt for earthquake forecasting, such as the one using Single Layer Hierarchical Graph Neuron (SLHGN). However, there are a number of problems that need to be worked out before the coordinate system can be utilized for the forecaster. One example of those is that SLHGN requires that the focused area of an earthquake must be constructed in a grid-like form. In fact, within the current earth coordinate system, the same longitude-difference would produce different distances. This can be observed at the distance on the Equator compared to distance at both poles. To deal with such a problem, a coordinate system has been developed, so that it can be used to support the ongoing earthquake forecasting using SLHGN. Two important issues have been developed in this system: 1) each location is not represented through two-value (longitude and latitude), but only a single value, 2) the conversion of the earth coordinate system to the x-y cartesian system requires no angular formulas, which is therefore fast. The accuracy and the performance have not been measured yet, since earthquake data is difficult to obtain. However, the characteristics of the SLHGN results show a very promising answer.Keywords: hierarchical graph neuron, multidimensional hierarchical graph neuron, single layer hierarchical graph neuron, natural disaster forecasting, earthquake forecasting, earth coordinate system
Procedia PDF Downloads 2164759 The Potential Benefits of Multimedia Information Representation in Enhancing Students’ Critical Thinking and History Reasoning
Authors: Ang Ling Weay, Mona Masood
Abstract:
This paper discusses the potential benefits of an interactive multimedia information representation in enhancing students’ critical thinking aligned with history reasoning in learning history between Secondary School students in Malaysia. Two modes of multimedia information representation implemented which are chronological and thematic information representation. A qualitative study of an unstructured interview was conducted among two history teachers, one history education lecturer, two i-think expert and program trainers and five form 4 secondary school students. The interview was to elicit their opinions on the implementation of thinking maps and interactive multimedia information representation in history learning. The key elements of interactive multimedia (e.g. multiple media, user control, interactivity, and use of timelines and concept maps) were then considered to improve the learning process. Findings of the preliminary investigation reveal that the interactive multimedia information representations have the potential benefits to be implemented as instructional resource in enhancing students’ higher order thinking skills (HOTs). This paper concludes by giving suggestions for future work.Keywords: multimedia information representation, critical thinking, history reasoning, chronological and thematic information representation
Procedia PDF Downloads 3504758 GRCNN: Graph Recognition Convolutional Neural Network for Synthesizing Programs from Flow Charts
Authors: Lin Cheng, Zijiang Yang
Abstract:
Program synthesis is the task to automatically generate programs based on user specification. In this paper, we present a framework that synthesizes programs from flow charts that serve as accurate and intuitive specification. In order doing so, we propose a deep neural network called GRCNN that recognizes graph structure from its image. GRCNN is trained end-to-end, which can predict edge and node information of the flow chart simultaneously. Experiments show that the accuracy rate to synthesize a program is 66.4%, and the accuracy rates to recognize edge and node are 94.1% and 67.9%, respectively. On average, it takes about 60 milliseconds to synthesize a program.Keywords: program synthesis, flow chart, specification, graph recognition, CNN
Procedia PDF Downloads 1194757 Mostar Type Indices and QSPR Analysis of Octane Isomers
Authors: B. Roopa Sri, Y Lakshmi Naidu
Abstract:
Chemical Graph Theory (CGT) is the branch of mathematical chemistry in which molecules are modeled to study their physicochemical properties using molecular descriptors. Amongst these descriptors, topological indices play a vital role in predicting the properties by defining the graph topology of the molecule. Recently, the bond-additive topological index known as the Mostar index has been proposed. In this paper, we compute the Mostar-type indices of octane isomers and use the data obtained to perform QSPR analysis. Furthermore, we show the correlation between the Mostar type indices and the properties.Keywords: chemical graph theory, mostar type indices, octane isomers, qspr analysis, topological index
Procedia PDF Downloads 1304756 Hypergraph for System of Systems modeling
Authors: Haffaf Hafid
Abstract:
Hypergraphs, after being used to model the structural organization of System of Sytems (SoS) at macroscopic level, has recent trends towards generalizing this powerful representation at different stages of complex system modelling. In this paper, we first describe different applications of hypergraph theory, and step by step, introduce multilevel modeling of SoS by means of integrating Constraint Programming Langages (CSP) dealing with engineering system reconfiguration strategy. As an application, we give an A.C.T Terminal controlled by a set of Intelligent Automated Vehicle.Keywords: hypergraph model, structural analysis, bipartite graph, monitoring, system of systems, reconfiguration analysis, hypernetwork
Procedia PDF Downloads 4884755 Real-Time Scheduling and Control of Supply Chain Networks: Challenges and Graph-Based Solution Approach
Authors: Jens Ehm
Abstract:
Manufacturing in supply chains requires an efficient organisation of production and transport processes in order to guarantee the supply of all partners within the chain with the material that is needed for the reliable fulfilment of tasks. If one partner is not able to supply products for a certain period, these products might be missing as the working material for the customer to perform the next manufacturing step, potentially as supply for further manufacturing steps. This way, local disruptions can influence the whole supply chain. In order to avoid material shortages, an efficient scheduling of tasks is necessary. However, the occurrence of unexpected disruptions cannot be eliminated, so that a modification of the schedule should be arranged as fast as possible. This paper discusses the challenges for the implementation of real-time scheduling and control methods and presents a graph-based approach that enables the integrated scheduling of production and transport processes for multiple supply chain partners and offers the potential for quick adaptations to parts of the initial schedule.Keywords: production, logistics, integrated scheduling, real-time scheduling
Procedia PDF Downloads 3744754 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.Keywords: cyber security, vulnerability detection, neural networks, feature extraction
Procedia PDF Downloads 894753 Frobenius Manifolds Pairing and Invariant Theory
Authors: Zainab Al-Maamari, Yassir Dinar
Abstract:
The orbit space of an irreducible representation of a finite group is a variety with the ring of invariant polynomials as a coordinate ring. The invariant ring is a polynomial ring if and only if the representation is a reflection representation. Boris Dubrovin shows that the orbits spaces of irreducible real reflection representations acquire the structure of polynomial Frobenius manifolds. Dubrovin's method was also used to construct different examples of Frobenius manifolds on certain reflection representations. By successfully applying Dubrovin’s method on non-polynomial invariant rings of linear representations of dicyclic groups, it gives some results that magnify the relation between invariant theory and Frobenius manifolds.Keywords: invariant ring, Frobenius manifold, inversion, representation theory
Procedia PDF Downloads 984752 Implementation of Distributed Randomized Algorithms for Resilient Peer-to-Peer Networks
Authors: Richard Tanaka, Ying Zhu
Abstract:
This paper studies a few randomized algorithms in application-layer peer-to-peer networks. The significant gain in scalability and resilience that peer-to-peer networks provide has made them widely used and adopted in many real-world distributed systems and applications. The unique properties of peer-to-peer networks make them particularly suitable for randomized algorithms such as random walks and gossip algorithms. Instead of simulations of peer-to-peer networks, we leverage the Docker virtual container technology to develop implementations of the peer-to-peer networks and these distributed randomized algorithms running on top of them. We can thus analyze their behaviour and performance in realistic settings. We further consider the problem of identifying high-risk bottleneck links in the network with the objective of improving the resilience and reliability of peer-to-peer networks. We propose a randomized algorithm to solve this problem and evaluate its performance by simulations.Keywords: distributed randomized algorithms, peer-to-peer networks, virtual container technology, resilient networks
Procedia PDF Downloads 2164751 Nonlinear Evolution on Graphs
Authors: Benniche Omar
Abstract:
We are concerned with abstract fully nonlinear differential equations having the form y’(t)=Ay(t)+f(t,y(t)) where A is an m—dissipative operator (possibly multi—valued) defined on a subset D(A) of a Banach space X with values in X and f is a given function defined on I×X with values in X. We consider a graph K in I×X. We recall that K is said to be viable with respect to the above abstract differential equation if for each initial data in K there exists at least one trajectory starting from that initial data and remaining in K at least for a short time. The viability problem has been studied by many authors by using various techniques and frames. If K is closed, it is shown that a tangency condition, which is mainly linked to the dynamic, is crucial for viability. In the case when X is infinite dimensional, compactness and convexity assumptions are needed. In this paper, we are concerned with the notion of near viability for a given graph K with respect to y’(t)=Ay(t)+f(t,y(t)). Roughly speaking, the graph K is said to be near viable with respect to y’(t)=Ay(t)+f(t,y(t)), if for each initial data in K there exists at least one trajectory remaining arbitrary close to K at least for short time. It is interesting to note that the near viability is equivalent to an appropriate tangency condition under mild assumptions on the dynamic. Adding natural convexity and compactness assumptions on the dynamic, we may recover the (exact) viability. Here we investigate near viability for a graph K in I×X with respect to y’(t)=Ay(t)+f(t,y(t)) where A and f are as above. We emphasis that the t—dependence on the perturbation f leads us to introduce a new tangency concept. In the base of a tangency conditions expressed in terms of that tangency concept, we formulate criteria for K to be near viable with respect to y’(t)=Ay(t)+f(t,y(t)). As application, an abstract null—controllability theorem is given.Keywords: abstract differential equation, graph, tangency condition, viability
Procedia PDF Downloads 1454750 The Effects of a Circuit Training Program on Muscle Strength, Agility, Anaerobic Performance and Cardiovascular Endurance
Authors: Wirat Sonchan, Pratoom Moungmee, Anek Sootmongkol
Abstract:
This study aimed to examine the effects of a circuit training program on muscle strength, agility, anaerobic performance and cardiovascular endurance. The study involved 24 freshmen (age 18.87+0.68 yr.) male students of the Faculty of Sport Science, Burapha University. They sample study were randomly divided into two groups: Circuit Training group (CT; n=12) and a Control group (C; n=12). Baseline data on height, weight, muscle strength (hand grip dynamometer and leg strength dynamometer), agility (agility T-Test), and anaerobic performance (Running-based Anaerobic Sprint Test) and cardiovascular endurance (20 m Endurance Shuttle Run Test) were collected. The circuit training program included one circuit of eight stations of 30/60 seconds of work/rest interval with two cycles in Week 1-4, and 60/90 seconds of work/rest interval with three cycles in Week 5-8, performed three times per week. Data were analyzed using paired t-tests and independent sample t-test. Statistically significance level was set at 0.05. The results show that after 8 weeks of a training program, muscle strength, agility, anaerobic capacity and cardiovascular endurance increased significantly in the CT Group (p < 0.05), while significant increase was not observed in the C Group (p < 0.05). The results of this study suggest that the circuit training program improved muscle strength, agility, anaerobic capacity and cardiovascular endurance of the study subjects. This program may be used as a guideline for selecting a set of exercise to improve physical fitness.Keywords: circuit training, physical fitness, cardiovascular endurance, anaerobic performance
Procedia PDF Downloads 4934749 Communication in a Heterogeneous Ad Hoc Network
Authors: C. Benjbara, A. Habbani
Abstract:
Wireless networks are getting more and more used in every new technology or feature, especially those without infrastructure (Ad hoc mode) which provide a low cost alternative to the infrastructure mode wireless networks and a great flexibility for application domains such as environmental monitoring, smart cities, precision agriculture, and so on. These application domains present a common characteristic which is the need of coexistence and intercommunication between modules belonging to different types of ad hoc networks like wireless sensor networks, mesh networks, mobile ad hoc networks, vehicular ad hoc networks, etc. This vision to bring to life such heterogeneous networks will make humanity duties easier but its development path is full of challenges. One of these challenges is the communication complexity between its components due to the lack of common or compatible protocols standard. This article proposes a new patented routing protocol based on the OLSR standard in order to resolve the heterogeneous ad hoc networks communication issue. This new protocol is applied on a specific network architecture composed of MANET, VANET, and FANET.Keywords: Ad hoc, heterogeneous, ID-Node, OLSR
Procedia PDF Downloads 2154748 Application of Metric Dimension of Graph in Unraveling the Complexity of Hyperacusis
Authors: Hassan Ibrahim
Abstract:
The prevalence of hyperacusis, an auditory condition characterized by heightened sensitivity to sounds, continues to rise, posing challenges for effective diagnosis and intervention. It is believed that this work deepens will deepens the understanding of hyperacusis etiology by employing graph theory as a novel analytical framework. We constructed a comprehensive graph wherein nodes represent various factors associated with hyperacusis, including aging, head or neck trauma, infection/virus, depression, migraines, ear infection, anxiety, and other potential contributors. Relationships between factors are modeled as edges, allowing us to visualize and quantify the interactions within the etiological landscape of hyperacusis. it employ the concept of the metric dimension of a connected graph to identify key nodes (landmarks) that serve as critical influencers in the interconnected web of hyperacusis causes. This approach offers a unique perspective on the relative importance and centrality of different factors, shedding light on the complex interplay between physiological, psychological, and environmental determinants. Visualization techniques were also employed to enhance the interpretation and facilitate the identification of the central nodes. This research contributes to the growing body of knowledge surrounding hyperacusis by offering a network-centric perspective on its multifaceted causes. The outcomes hold the potential to inform clinical practices, guiding healthcare professionals in prioritizing interventions and personalized treatment plans based on the identified landmarks within the etiological network. Through the integration of graph theory into hyperacusis research, the complexity of this auditory condition was unraveled and pave the way for more effective approaches to its management.Keywords: auditory condition, connected graph, hyperacusis, metric dimension
Procedia PDF Downloads 384747 Impact of Social Media on Content of Saudi Television News Networks
Authors: Majed Alshaibani
Abstract:
Social media has emerged as a serious contender to TV news networks in Saudi Arabia. The growing usage of social media as a source of news and information has led to significant impact on the content presented by the news networks in Saudi Arabia. This study explored the various ways in which social media has influenced content aired on Saudi news networks. Data were collected by using semi structured interviews with 13 journalists and content editors working for four Saudi TV news networks and six senior academic experts on TV and media teaching in Saudi universities. The findings of the study revealed that social media has affected four aspects of the content on Saudi TV news networks. As a result the content aired on Saudi news networks is more neutral, real time, diverse in terms of sources and includes content on broader subjects and from different parts of the world. This research concludes that social media has contributed positively and significantly to improving the content on Saudi TV news networks.Keywords: TV news networks, Saudi Arabia, social media, media content
Procedia PDF Downloads 2374746 Unraveling the Complexity of Hyperacusis: A Metric Dimension of a Graph Concept
Authors: Hassan Ibrahim
Abstract:
The prevalence of hyperacusis, an auditory condition characterized by heightened sensitivity to sounds, continues to rise, posing challenges for effective diagnosis and intervention. It is believed that this work deepens will deepens the understanding of hyperacusis etiology by employing graph theory as a novel analytical framework. it constructed a comprehensive graph wherein nodes represent various factors associated with hyperacusis, including aging, head or neck trauma, infection/virus, depression, migraines, ear infection, anxiety, and other potential contributors. Relationships between factors are modeled as edges, allowing us to visualize and quantify the interactions within the etiological landscape of hyperacusis. it employ the concept of the metric dimension of a connected graph to identify key nodes (landmarks) that serve as critical influencers in the interconnected web of hyperacusis causes. This approach offers a unique perspective on the relative importance and centrality of different factors, shedding light on the complex interplay between physiological, psychological, and environmental determinants. Visualization techniques were also employed to enhance the interpretation and facilitate the identification of the central nodes. This research contributes to the growing body of knowledge surrounding hyperacusis by offering a network-centric perspective on its multifaceted causes. The outcomes hold the potential to inform clinical practices, guiding healthcare professionals in prioritizing interventions and personalized treatment plans based on the identified landmarks within the etiological network. Through the integration of graph theory into hyperacusis research, the complexity of this auditory condition was unraveled and pave the way for more effective approaches to its management.Keywords: auditory condition, connected graph, hyperacusis, metric dimension
Procedia PDF Downloads 244745 Cities Simulation and Representation in Locative Games from the Perspective of Cultural Studies
Authors: B. A. A. Paixão, J. V. B. Gomide
Abstract:
This work aims to analyze the locative structure used by the locative games of the company Niantic. To fulfill this objective, a literature review on the representation and simulation of cities was developed; interviews with Ingress players and playing Ingress. Relating these data, it was possible to deepen the relationship between the virtual and the real to create the simulation of cities and their cultural objects in locative games. Cities representation associates geo-location provided by the Global Positioning System (GPS), with augmented reality and digital image, and provides a new paradigm in the city interaction with its parts and real and virtual world elements, homeomorphic to real world. Bibliographic review of papers related to the representation and simulation study and their application in locative games was carried out and is presented in the present paper. The cities representation and simulation concepts in locative games, and how this setting enables the flow and immersion in urban space, are analyzed. Some examples of games are discussed for this new setting development, which is a mix of real and virtual world. Finally, it was proposed a Locative Structure for electronic games using the concepts of heterotrophic representations and isotropic representations conjoined with immediacy and hypermediacy.Keywords: cities representation, cities simulation, games simulation, immersion, locative games
Procedia PDF Downloads 2104744 Modeling and Simulation of a Cycloconverter with a Bond Graph Approach
Authors: Gerardo Ayala-Jaimes, Gilberto Gonzalez-Avalos, Allen A. Castillo, Alejandra Jimenez
Abstract:
The modeling of a single-phase cycloconverter in Bond Graph is presented, which includes an alternating current power supply, hybrid dynamics, switch control, and resistive load; this approach facilitates the integration of systems across different energy domains and structural analysis. Cycloconverters, used in motor control, demonstrate the viability of graphical modeling. The use of Bonds is proposed to model the hybrid interaction of the system, and the results are displayed through simulations using 20Sim and Multisim software. The motivation behind developing these models with a graphical approach is to design and build low-cost energy converters, thereby making the main contribution of this document the modeling and simulation of a single-phase cycloconverter.Keywords: bond graph, hybrid system, rectifier, cycloconverter, modelling
Procedia PDF Downloads 384743 Two-Level Graph Causality to Detect and Predict Random Cyber-Attacks
Authors: Van Trieu, Shouhuai Xu, Yusheng Feng
Abstract:
Tracking attack trajectories can be difficult, with limited information about the nature of the attack. Even more difficult as attack information is collected by Intrusion Detection Systems (IDSs) due to the current IDSs having some limitations in identifying malicious and anomalous traffic. Moreover, IDSs only point out the suspicious events but do not show how the events relate to each other or which event possibly cause the other event to happen. Because of this, it is important to investigate new methods capable of performing the tracking of attack trajectories task quickly with less attack information and dependency on IDSs, in order to prioritize actions during incident responses. This paper proposes a two-level graph causality framework for tracking attack trajectories in internet networks by leveraging observable malicious behaviors to detect what is the most probable attack events that can cause another event to occur in the system. Technically, given the time series of malicious events, the framework extracts events with useful features, such as attack time and port number, to apply to the conditional independent tests to detect the relationship between attack events. Using the academic datasets collected by IDSs, experimental results show that the framework can quickly detect the causal pairs that offer meaningful insights into the nature of the internet network, given only reasonable restrictions on network size and structure. Without the framework’s guidance, these insights would not be able to discover by the existing tools, such as IDSs. It would cost expert human analysts a significant time if possible. The computational results from the proposed two-level graph network model reveal the obvious pattern and trends. In fact, more than 85% of causal pairs have the average time difference between the causal and effect events in both computed and observed data within 5 minutes. This result can be used as a preventive measure against future attacks. Although the forecast may be short, from 0.24 seconds to 5 minutes, it is long enough to be used to design a prevention protocol to block those attacks.Keywords: causality, multilevel graph, cyber-attacks, prediction
Procedia PDF Downloads 156