Search results for: computer tasks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3743

Search results for: computer tasks

3563 Load Balancing and Resource Utilization in Cloud Computing

Authors: Gagandeep Kaur

Abstract:

Cloud computing uses various computing resources such as CPU, memory, processor etc. which is used to deliver service over the network and is one of the emerging fields for large scale distributed computing. In cloud computing, execution of large number of tasks with available resources to achieve high performance, minimal total time for completion, minimum response time, effective utilization of resources etc. are the major research areas. In the proposed research, an algorithm has been proposed to achieve high performance in load balancing and resource utilization. The proposed algorithm is used to reduce the makespan, increase the resource utilization and performance cost for independent tasks. Further scheduling metrics based on algorithm in cloud computing has been proposed.

Keywords: resource utilization, response time, load balancing, performance cost

Procedia PDF Downloads 183
3562 The Interrelationship between Aggression and Frustration Brought about by Computer Games with Incentives among LPU Male Students

Authors: Dior Grita F. De Torres, Edielyn Gonzalvo, Jovielyn Manibo

Abstract:

The experimental study aims to measure the level of aggression and frustration brought about by computer games with incentives and the interrelationship of the said variables. With 50 participants for each four groups, a total of 200 males who are avid of playing computer games participated in the study. The results and analyses presented in the study concluded that incentives differentially affect the level of aggression and frustration of the players with tobt = 7.18 and 6.521 > tcrit = 2.021 using t-test for dependent groups and Fobt = 4.527 and 8.340 > Fcrit = 3.89 using ANOVA with alpha level of 0.05, two tailed. At the same time, computer game’s level of difficulty also affects the level of aggression and frustration of the players with tobt = 7.53 and 4.783 > tcrit = 2.021 respectively and Fobt = 6.524 and 10.167 > Fcrit = 3.89. Moreover, there is also an interaction between incentive and the level of difficulty of computer game with tobt = 9.68 for aggression and tobt = 7.356 > 2.021 for frustration. Computer games and /with incentives has a large effect on the among male students of LPU.

Keywords: aggression, frustration, computer game, incentive

Procedia PDF Downloads 535
3561 Advancement of Computer Science Research in Nigeria: A Bibliometric Analysis of the Past Three Decades

Authors: Temidayo O. Omotehinwa, David O. Oyewola, Friday J. Agbo

Abstract:

This study aims to gather a proper perspective of the development landscape of Computer Science research in Nigeria. Therefore, a bibliometric analysis of 4,333 bibliographic records of Computer Science research in Nigeria in the last 31 years (1991-2021) was carried out. The bibliographic data were extracted from the Scopus database and analyzed using VOSviewer and the bibliometrix R package through the biblioshiny web interface. The findings of this study revealed that Computer Science research in Nigeria has a growth rate of 24.19%. The most developed and well-studied research areas in the Computer Science field in Nigeria are machine learning, data mining, and deep learning. The social structure analysis result revealed that there is a need for improved international collaborations. Sparsely established collaborations are largely influenced by geographic proximity. The funding analysis result showed that Computer Science research in Nigeria is under-funded. The findings of this study will be useful for researchers conducting Computer Science related research. Experts can gain insights into how to develop a strategic framework that will advance the field in a more impactful manner. Government agencies and policymakers can also utilize the outcome of this research to develop strategies for improved funding for Computer Science research.

Keywords: bibliometric analysis, biblioshiny, computer science, Nigeria, science mapping

Procedia PDF Downloads 112
3560 A Transformer-Based Approach for Multi-Human 3D Pose Estimation Using Color and Depth Images

Authors: Qiang Wang, Hongyang Yu

Abstract:

Multi-human 3D pose estimation is a challenging task in computer vision, which aims to recover the 3D joint locations of multiple people from multi-view images. In contrast to traditional methods, which typically only use color (RGB) images as input, our approach utilizes both color and depth (D) information contained in RGB-D images. We also employ a transformer-based model as the backbone of our approach, which is able to capture long-range dependencies and has been shown to perform well on various sequence modeling tasks. Our method is trained and tested on the Carnegie Mellon University (CMU) Panoptic dataset, which contains a diverse set of indoor and outdoor scenes with multiple people in varying poses and clothing. We evaluate the performance of our model on the standard 3D pose estimation metrics of mean per-joint position error (MPJPE). Our results show that the transformer-based approach outperforms traditional methods and achieves competitive results on the CMU Panoptic dataset. We also perform an ablation study to understand the impact of different design choices on the overall performance of the model. In summary, our work demonstrates the effectiveness of using a transformer-based approach with RGB-D images for multi-human 3D pose estimation and has potential applications in real-world scenarios such as human-computer interaction, robotics, and augmented reality.

Keywords: multi-human 3D pose estimation, RGB-D images, transformer, 3D joint locations

Procedia PDF Downloads 80
3559 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework

Authors: Jindong Gu, Matthias Schubert, Volker Tresp

Abstract:

In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.

Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning

Procedia PDF Downloads 151
3558 Robotic Arm Control with Neural Networks Using Genetic Algorithm Optimization Approach

Authors: Arbnor Pajaziti, Hasan Cana

Abstract:

In this paper, the structural genetic algorithm is used to optimize the neural network to control the joint movements of robotic arm. The robotic arm has also been modeled in 3D and simulated in real-time in MATLAB. It is found that Neural Networks provide a simple and effective way to control the robot tasks. Computer simulation examples are given to illustrate the significance of this method. By combining Genetic Algorithm optimization method and Neural Networks for the given robotic arm with 5 D.O.F. the obtained the results shown that the base joint movements overshooting time without controller was about 0.5 seconds, while with Neural Network controller (optimized with Genetic Algorithm) was about 0.2 seconds, and the population size of 150 gave best results.

Keywords: robotic arm, neural network, genetic algorithm, optimization

Procedia PDF Downloads 523
3557 A Pattern Practise for Awareness Educations on Information Security: Information Security Project

Authors: Fati̇h Apaydin

Abstract:

Education technology is an area which constantly changes and creates innovations. As an inevitable part of the changing circumstances, the societies who have a tendency to the improvements keep up with these innovations by using the methods and strategies which have been designed for education technology. At this point, education technology has taken the responsibility to help the individuals improve themselves and teach the effective teaching methods by filling the airs in theoretical information, information security and the practice. The technology which comes to the core of our lives by raising the importance of it day by day and it enforced its position in computer- based environments. As a result, ‘being ready for technological innovations, improvement on computer-based talent, information, ability and attitude’ doctrines have to be given. However, it is today quite hard to deal with the security and reinforcement of this information. The information which is got illegally gives harm to society from every aspect, especially education. This study includes how and to what extent to use these innovative appliances such as computers and the factor of information security of these appliances in computer-based education. As the use of computer is constantly becoming prevalent in our country, both education and computer will never become out of date, so how computer-based education affects our lives and the study of information security for this type of education are important topics.

Keywords: computer, information security, education, technology, development

Procedia PDF Downloads 594
3556 Examining the Effects of Increasing Lexical Retrieval Attempts in Tablet-Based Naming Therapy for Aphasia

Authors: Jeanne Gallee, Sofia Vallila-Rohter

Abstract:

Technology-based applications are increasingly being utilized in aphasia rehabilitation as a means of increasing intensity of treatment and improving accessibility to treatment. These interactive therapies, often available on tablets, lead individuals to complete language and cognitive rehabilitation tasks that draw upon skills such as the ability to name items, recognize semantic features, count syllables, rhyme, and categorize objects. Tasks involve visual and auditory stimulus cues and provide feedback about the accuracy of a person’s response. Research has begun to examine the efficacy of tablet-based therapies for aphasia, yet much remains unknown about how individuals interact with these therapy applications. Thus, the current study aims to examine the efficacy of a tablet-based therapy program for anomia, further examining how strategy training might influence the way that individuals with aphasia engage with and benefit from therapy. Individuals with aphasia are enrolled in one of two treatment paradigms: traditional therapy or strategy therapy. For ten weeks, all participants receive 2 hours of weekly in-house therapy using Constant Therapy, a tablet-based therapy application. Participants are provided with iPads and are additionally encouraged to work on therapy tasks for one hour a day at home (home logins). For those enrolled in traditional therapy, in-house sessions involve completing therapy tasks while a clinician researcher is present. For those enrolled in the strategy training group, in-house sessions focus on limiting cue use in order to maximize lexical retrieval attempts and naming opportunities. The strategy paradigm is based on the principle that retrieval attempts may foster long-term naming gains. Data have been collected from 7 participants with aphasia (3 in the traditional therapy group, 4 in the strategy training group). We examine cue use, latency of responses and accuracy through the course of therapy, comparing results across group and setting (in-house sessions vs. home logins).

Keywords: aphasia, speech-language pathology, traumatic brain injury, language

Procedia PDF Downloads 204
3555 Phonological Encoding and Working Memory in Kannada Speaking Adults Who Stutter

Authors: Nirmal Sugathan, Santosh Maruthy

Abstract:

Background: A considerable number of studies have evidenced that phonological encoding (PE) and working memory (WM) skills operate differently in adults who stutter (AWS). In order to tap these skills, several paradigms have been employed such as phonological priming, phoneme monitoring, and nonword repetition tasks. This study, however, utilizes a word jumble paradigm to assess both PE and WM using different modalities and this may give a better understanding of phonological processing deficits in AWS. Aim: The present study investigated PE and WM abilities in conjunction with lexical access in AWS using jumbled words. The study also aimed at investigating the effect of increase in cognitive load on phonological processing in AWS by comparing the speech reaction time (SRT) and accuracy scores across various syllable lengths. Method: Participants were 11 AWS (Age range=19-26) and 11 adults who do not stutter (AWNS) (Age range=19-26) matched for age, gender and handedness. Stimuli: Ninety 3-, 4-, and 5-syllable jumbled words (JWs) (n=30 per syllable length category) constructed from Kannada words served as stimuli for jumbled word paradigm. In order to generate jumbled words (JWs), the syllables in the real words were randomly transpositioned. Procedures: To assess PE, the JWs were presently visually using DMDX software and for WM task, JWs were presented through auditory mode through headphones. The participants were asked to silently manipulate the jumbled words to form a Kannada real word and verbally respond once. The responses for both tasks were audio recorded using record function in DMDX software and the recorded responses were analyzed using PRAAT software to calculate the SRT. Results: SRT: Mann-Whitney test results demonstrated that AWS performed significantly slower on both tasks (p < 0.001) as indicated by increased SRT. Also, AWS presented with increased SRT on both the tasks in all syllable length conditions (p < 0.001). Effect of syllable length: Wilcoxon signed rank test was carried out revealed that, on task assessing PE, the SRT of 4syllable JWs were significantly higher in both AWS (Z= -2.93, p=.003) and AWNS (Z= -2.41, p=.003) when compared to 3-syllable words. However, the findings for 4- and 5-syllable words were not significant. Task Accuracy: The accuracy scores were calculated for three syllable length conditions for both PE and PM tasks and were compared across the groups using Mann-Whitney test. The results indicated that the accuracy scores of AWS were significantly below that of AWNS in all the three syllable conditions for both the tasks (p < 0.001). Conclusion: The above findings suggest that PE and WM skills are compromised in AWS as indicated by increased SRT. Also, AWS were progressively less accurate in descrambling JWs of increasing syllable length and this may be interpreted as, rather than existing as a uniform deficiency, PE and WM deficits emerge when the cognitive load is increased. AWNS exhibited increased SRT and increased accuracy for JWs of longer syllable length whereas AWS was not benefited from increasing the reaction time, thus AWS had to compromise for both SRT and accuracy while solving JWs of longer syllable length.

Keywords: adults who stutter, phonological ability, working memory, encoding, jumbled words

Procedia PDF Downloads 240
3554 Effect of Social Media on Knowledge Work

Authors: Pekka Makkonen, Georgios Lampropoulos, Kerstin Siakas

Abstract:

This paper examines the impact of social media on knowledge work. It discloses and highlights which specific aspects, areas and tasks of knowledge work can be improved by the use of social media. Moreover, the study includes a survey about higher education students’ viewpoints in regard to the use of social media as a means to enhance knowledge work and knowledge sharing. The analysis has been conducted based both on empirical data and on discussions about the sources dealing with knowledge work and how it can be enhanced by using social media. The results show that social media can improve knowledge work, knowledge building and maintenance tasks in which communication, information sharing and collaboration play a vital role. Additionally, by using social media, personal, collaborative and supplementary work activities can be enhanced. Based on the results of the study, we suggest how knowledge work can be enhanced when using the contemporary information and communications technologies (ICTs) of the 21st century and recommend future directions towards improving knowledge work.

Keywords: knowledge work, social media, social media services, improving work performance

Procedia PDF Downloads 161
3553 The Application of Bayesian Heuristic for Scheduling in Real-Time Private Clouds

Authors: Sahar Sohrabi

Abstract:

The emergence of Cloud data centers has revolutionized the IT industry. Private Clouds in specific provide Cloud services for certain group of customers/businesses. In a real-time private Cloud each task that is given to the system has a deadline that desirably should not be violated. Scheduling tasks in a real-time private CLoud determine the way available resources in the system are shared among incoming tasks. The aim of the scheduling policy is to optimize the system outcome which for a real-time private Cloud can include: energy consumption, deadline violation, execution time and the number of host switches. Different scheduling policies can be used for scheduling. Each lead to a sub-optimal outcome in a certain settings of the system. A Bayesian Scheduling strategy is proposed for scheduling to further improve the system outcome. The Bayesian strategy showed to outperform all selected policies. It also has the flexibility in dealing with complex pattern of incoming task and has the ability to adapt.

Keywords: cloud computing, scheduling, real-time private cloud, bayesian

Procedia PDF Downloads 359
3552 Integrating Explicit Instruction and Problem-Solving Approaches for Efficient Learning

Authors: Slava Kalyuga

Abstract:

There are two opposing major points of view on the optimal degree of initial instructional guidance that is usually discussed in the literature by the advocates of the corresponding learning approaches. Using unguided or minimally guided problem-solving tasks prior to explicit instruction has been suggested by productive failure and several other instructional theories, whereas an alternative approach - using fully guided worked examples followed by problem solving - has been demonstrated as the most effective strategy within the framework of cognitive load theory. An integrated approach discussed in this paper could combine the above frameworks within a broader theoretical perspective which would allow bringing together their best features and advantages in the design of learning tasks for STEM education. This paper represents a systematic review of the available empirical studies comparing the above alternative sequences of instructional methods to explore effects of several possible moderating factors. The paper concludes that different approaches and instructional sequences should coexist within complex learning environments. Selecting optimal sequences depends on such factors as specific goals of learner activities, types of knowledge to learn, levels of element interactivity (task complexity), and levels of learner prior knowledge. This paper offers an outline of a theoretical framework for the design of complex learning tasks in STEM education that would integrate explicit instruction and inquiry (exploratory, discovery) learning approaches in ways that depend on a set of defined specific factors.

Keywords: cognitive load, explicit instruction, exploratory learning, worked examples

Procedia PDF Downloads 126
3551 EEG Correlates of Trait and Mathematical Anxiety during Lexical and Numerical Error-Recognition Tasks

Authors: Alexander N. Savostyanov, Tatiana A. Dolgorukova, Elena A. Esipenko, Mikhail S. Zaleshin, Margherita Malanchini, Anna V. Budakova, Alexander E. Saprygin, Tatiana A. Golovko, Yulia V. Kovas

Abstract:

EEG correlates of mathematical and trait anxiety level were studied in 52 healthy Russian-speakers during execution of error-recognition tasks with lexical, arithmetic and algebraic conditions. Event-related spectral perturbations were used as a measure of brain activity. The ERSP plots revealed alpha/beta desynchronizations within a 500-3000 ms interval after task onset and slow-wave synchronization within an interval of 150-350 ms. Amplitudes of these intervals reflected the accuracy of error recognition, and were differently associated with the three conditions. The correlates of anxiety were found in theta (4-8 Hz) and beta2 (16-20 Hz) frequency bands. In theta band the effects of mathematical anxiety were stronger expressed in lexical, than in arithmetic and algebraic condition. The mathematical anxiety effects in theta band were associated with differences between anterior and posterior cortical areas, whereas the effects of trait anxiety were associated with inter-hemispherical differences. In beta1 and beta2 bands effects of trait and mathematical anxiety were directed oppositely. The trait anxiety was associated with increase of amplitude of desynchronization, whereas the mathematical anxiety was associated with decrease of this amplitude. The effect of mathematical anxiety in beta2 band was insignificant for lexical condition but was the strongest in algebraic condition. EEG correlates of anxiety in theta band could be interpreted as indexes of task emotionality, whereas the reaction in beta2 band is related to tension of intellectual resources.

Keywords: EEG, brain activity, lexical and numerical error-recognition tasks, mathematical and trait anxiety

Procedia PDF Downloads 561
3550 Learning Based on Computer Science Unplugged in Computer Science Education: Design, Development, and Assessment

Authors: Eiko Takaoka, Yoshiyuki Fukushima, Koichiro Hirose, Tadashi Hasegawa

Abstract:

Although all high school students in Japan are required to learn informatics, many of them do not learn this topic sufficiently. In response to this situation, we propose a support package for high school informatics classes. To examine what students learned and if they sufficiently understood the context of the lessons, a questionnaire survey was distributed to 186 students. We analyzed the results of the questionnaire and determined the weakest units, which were “basic computer configuration” and “memory and secondary storage”. We then developed a package for teaching these units. We propose that our package be applied in high school classrooms.

Keywords: computer science unplugged, computer science outreach, high school curriculum, experimental evaluation

Procedia PDF Downloads 387
3549 Identity Verification Based on Multimodal Machine Learning on Red Green Blue (RGB) Red Green Blue-Depth (RGB-D) Voice Data

Authors: LuoJiaoyang, Yu Hongyang

Abstract:

In this paper, we experimented with a new approach to multimodal identification using RGB, RGB-D and voice data. The multimodal combination of RGB and voice data has been applied in tasks such as emotion recognition and has shown good results and stability, and it is also the same in identity recognition tasks. We believe that the data of different modalities can enhance the effect of the model through mutual reinforcement. We try to increase the three modalities on the basis of the dual modalities and try to improve the effectiveness of the network by increasing the number of modalities. We also implemented the single-modal identification system separately, tested the data of these different modalities under clean and noisy conditions, and compared the performance with the multimodal model. In the process of designing the multimodal model, we tried a variety of different fusion strategies and finally chose the fusion method with the best performance. The experimental results show that the performance of the multimodal system is better than that of the single modality, especially in dealing with noise, and the multimodal system can achieve an average improvement of 5%.

Keywords: multimodal, three modalities, RGB-D, identity verification

Procedia PDF Downloads 70
3548 The Importance of Applying Established Web Site Design Principles on an Online Performance Management System

Authors: R. W. Brown, P. J. Blignaut

Abstract:

An online performance management system was evaluated, and recommendations were made to improve the system. The study shows the effects of not adhering to the established web design principles and conventions. Furthermore, the study indicates that if the online performance management system is not well designed, it may have negative effects on the overall usability of the system and these negative effects will have consequences for both the employer and employees. The evaluation was done in terms of the usability metrics of effectiveness, efficiency and user satisfaction. Effectiveness was measured in terms of the success rate with which users could execute prescribed tasks in a sandbox system. Efficiency was expressed in terms of the time it took participants to understand what is expected of them and to execute the tasks. Post-test questionnaires were used in order to determine the satisfaction of the participants. Recommendations were made to improve the usability of the online performance management system.

Keywords: eye tracking, human resource management, performance management, usability

Procedia PDF Downloads 205
3547 A Tutorial on Network Security: Attacks and Controls

Authors: Belbahi Ahlam

Abstract:

With the phenomenal growth in the Internet, network security has become an integral part of computer and information security. In order to come up with measures that make networks more secure, it is important to learn about the vulnerabilities that could exist in a computer network and then have an understanding of the typical attacks that have been carried out in such networks. The first half of this paper will expose the readers to the classical network attacks that have exploited the typical vulnerabilities of computer networks in the past and solutions that have been adopted since then to prevent or reduce the chances of some of these attacks. The second half of the paper will expose the readers to the different network security controls including the network architecture, protocols, standards and software/ hardware tools that have been adopted in modern day computer networks.

Keywords: network security, attacks and controls, computer and information, solutions

Procedia PDF Downloads 455
3546 TransDrift: Modeling Word-Embedding Drift Using Transformer

Authors: Nishtha Madaan, Prateek Chaudhury, Nishant Kumar, Srikanta Bedathur

Abstract:

In modern NLP applications, word embeddings are a crucial backbone that can be readily shared across a number of tasks. However, as the text distributions change and word semantics evolve over time, the downstream applications using the embeddings can suffer if the word representations do not conform to the data drift. Thus, maintaining word embeddings to be consistent with the underlying data distribution is a key problem. In this work, we tackle this problem and propose TransDrift, a transformer-based prediction model for word embeddings. Leveraging the flexibility of the transformer, our model accurately learns the dynamics of the embedding drift and predicts future embedding. In experiments, we compare with existing methods and show that our model makes significantly more accurate predictions of the word embedding than the baselines. Crucially, by applying the predicted embeddings as a backbone for downstream classification tasks, we show that our embeddings lead to superior performance compared to the previous methods.

Keywords: NLP applications, transformers, Word2vec, drift, word embeddings

Procedia PDF Downloads 91
3545 Refined Edge Detection Network

Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni

Abstract:

Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.

Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone

Procedia PDF Downloads 102
3544 The Current Use of Computer Technology in Arabic Language

Authors: Saad Alkahtani

Abstract:

This study aims to identify the extent to which the faculty members who teach Arabic to speakers of other languages in Arabic language institutes at Saudi universities use computer technologies such as language laboratories, websites, software programs, and learning management system (LMS). It also seeks to identify critical difficulties that hinder the use of these technologies by faculty members. The population of the study consisted of 103 faculty members in four Arabic language institutes at Saudi universities. The results of the study showed a disparity in the use of computer technologies in teaching Arabic to non-native speakers. The means of degree of use ranged from 1.20 through 2.83. The study also identified difficulties limiting the use of computer technology in teaching Arabic. And the means of averages of difficulty of use ranged from 1.50 to 2.89. The differences were not statistically significant among the institutes (at 0.05).

Keywords: Arabic language programs, computer technology, using technology in teaching Arabic language, Arabic as a second language, computer skills

Procedia PDF Downloads 462
3543 Investigating Early Markers of Alzheimer’s Disease Using a Combination of Cognitive Tests and MRI to Probe Changes in Hippocampal Anatomy and Functionality

Authors: Netasha Shaikh, Bryony Wood, Demitra Tsivos, Michael Knight, Risto Kauppinen, Elizabeth Coulthard

Abstract:

Background: Effective treatment of dementia will require early diagnosis, before significant brain damage has accumulated. Memory loss is an early symptom of Alzheimer’s disease (AD). The hippocampus, a brain area critical for memory, degenerates early in the course of AD. The hippocampus comprises several subfields. In contrast to healthy aging where CA3 and dentate gyrus are the hippocampal subfields with most prominent atrophy, in AD the CA1 and subiculum are thought to be affected early. Conventional clinical structural neuroimaging is not sufficiently sensitive to identify preferential atrophy in individual subfields. Here, we will explore the sensitivity of new magnetic resonance imaging (MRI) sequences designed to interrogate medial temporal regions as an early marker of Alzheimer’s. As it is likely a combination of tests may predict early Alzheimer’s disease (AD) better than any single test, we look at the potential efficacy of such imaging alone and in combination with standard and novel cognitive tasks of hippocampal dependent memory. Methods: 20 patients with mild cognitive impairment (MCI), 20 with mild-moderate AD and 20 age-matched healthy elderly controls (HC) are being recruited to undergo 3T MRI (with sequences designed to allow volumetric analysis of hippocampal subfields) and a battery of cognitive tasks (including Paired Associative Learning from CANTAB, Hopkins Verbal Learning Test and a novel hippocampal-dependent abstract word memory task). AD participants and healthy controls are being tested just once whereas patients with MCI will be tested twice a year apart. We will compare subfield size between groups and correlate subfield size with cognitive performance on our tasks. In the MCI group, we will explore the relationship between subfield volume, cognitive test performance and deterioration in clinical condition over a year. Results: Preliminary data (currently on 16 participants: 2 AD; 4 MCI; 9 HC) have revealed subfield size differences between subject groups. Patients with AD perform with less accuracy on tasks of hippocampal-dependent memory, and MCI patient performance and reaction times also differ from healthy controls. With further testing, we hope to delineate how subfield-specific atrophy corresponds with changes in cognitive function, and characterise how this progresses over the time course of the disease. Conclusion: Novel sequences on a MRI scanner such as those in route in clinical use can be used to delineate hippocampal subfields in patients with and without dementia. Preliminary data suggest that such subfield analysis, perhaps in combination with cognitive tasks, may be an early marker of AD.

Keywords: Alzheimer's disease, dementia, memory, cognition, hippocampus

Procedia PDF Downloads 573
3542 Developing Communicative Skills in Foreign Languages by Video Tasks

Authors: Ekaterina G. Lipatova

Abstract:

The developing potential of a video task in teaching foreign languages involves the opportunities to improve four aspects of speech production process: listening, reading, speaking and writing. A video represents the sequence of actions, realized in the pictures logically connected and verbalized speech flow that simplifies and stimulates the process of perception. In this connection listening skills of students are developed effectively as well as their intellectual properties such as synthesizing, analyzing and generalizing the information. In terms of teaching capacity, a video task, in our opinion, is more stimulating than a traditional listening, since it involves the student into the plot of the communicative situation, emotional background and potentially makes them react to the gist in the cognitive and communicative ways. To be an effective method of teaching the video task should be structured in the way of psycho-linguistic characteristics of speech production process, in other words, should include three phases: before-watching, while-watching and after-watching. The system of tasks provided to each phase might involve the situations on reflecting to the video content in the forms of filling-the-gap tasks, multiple choice, True-or-False tasks (reading skills), exercises on expressing the opinion, project fulfilling (writing and speaking skills). In the before-watching phase we offer the students to adjust their perception mechanism to the topic and the problem of the chosen video by such task as “what do you know about such a problem?”, “is it new for you?”, “have you ever faced the situation of…?”. Then we proceed with the lexical and grammatical analysis of language units that form the body of a speech sample to lessen the perception and develop the student’s lexicon. The goal of while-watching phase is to build the student’s awareness about the problem presented in the video and challenge their inner attitude towards what they have seen by identifying the mistakes in the statements about the video content or making the summary, justifying their understanding. Finally, we move on to development of their speech skills within the communicative situation they observed and learnt by stimulating them to search the similar ideas in their backgrounds and represent them orally or in the written form or express their own opinion on the problem. It is compulsory to highlight, that a video task should contain the urgent, valid and interesting event related to the future profession of the student, since it will help to activate cognitive, emotional, verbal and ethic capacity of students. Also, logically structured video tasks are easily integrated into the system of e-learning and can provide the opportunity for the students to work with the foreign language on their own.

Keywords: communicative situation, perception mechanism, speech production process, speech skills

Procedia PDF Downloads 245
3541 A Focus Group Study of Student's Attitude towards University Teachers and Semester System

Authors: Sehrish Khan

Abstract:

The present study investigated the attitude of university students towards semester system and teachers with a specific objective of finding problems faced by students in semester system. 10 focus group discussions were conducted among students in five Universities of Hazara Division of KPK regarding their knowledge and attitudes about semester system and problems they faced due to this system and teacher’s attitude. The key findings were the problems like favoritism, gender biased ness, racial biased ness, biased ness in marking, relative marking, harassment, using students for personal tasks and authoritarian attitude from teachers’ side and the heavy tasks in less time which are causing stress among students. It was recommended that proper training and monitoring system should be maintained for evaluation of teachers to minimize the corruption in this sacred profession and maximize the optimal functioning. The information gathered in this research can be used to develop training modules for University teachers.

Keywords: university teachers, favoritism, biasedness, harassment

Procedia PDF Downloads 362
3540 Genetic Algorithms for Feature Generation in the Context of Audio Classification

Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes

Abstract:

Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.

Keywords: feature generation, feature learning, genetic algorithm, music information retrieval

Procedia PDF Downloads 435
3539 Self-Government Health Policy Programs as a Form of Implementation of Public Health Tasks in Poland

Authors: T. Holecki, J. Wozniak-Holecka, K. Sobczyk

Abstract:

Development, implementation, and evaluation of the effects of health policy programs, resulting from the identified health needs and health status of residents, is the own task of all local government units in Poland. This is due to the obligation to provide access to healthcare services to all residents and the implementation of tasks in the field of health promotion based on specific legal acts. Until the end of 2016 local governments financed health policy programs only with their own funds. Currently, there are additional resources available from the public health insurance subsidising up to 80% of health policy programs costs in cities with a population under 5 thousand people and up to 40% in bigger cities. Changes in legal provisions do not translate automatically to increased involvement of local government units in the implementation of public health tasks. The main objective of the study was to assess the actual impact of the new legal regulation on financing local health policy programs on the engagement of local administration in this area of public health activity. To achieve this aim, we analyzed difference in the number of local governments developing and implementing health policy programs before and after the new law came into force. The aim of the study was also to estimate the level of expenditures incurred by self-government units and the National Health Fund to cover the costs of health policy programs. In the first stage of the project, legal acts concerning the subject of research and financial data published by the National Health Fund were analyzed. The material for the second, main stage of the study was the detailed financial data obtained from the National Health Fund and data obtained from local government units. The results present the situation in Poland in territorial terms, divided into 16 voivodships.

Keywords: health care system, health policy programs, local self-governments, public health

Procedia PDF Downloads 156
3538 Using Visualization Techniques to Support Common Clinical Tasks in Clinical Documentation

Authors: Jonah Kenei, Elisha Opiyo

Abstract:

Electronic health records, as a repository of patient information, is nowadays the most commonly used technology to record, store and review patient clinical records and perform other clinical tasks. However, the accurate identification and retrieval of relevant information from clinical records is a difficult task due to the unstructured nature of clinical documents, characterized in particular by a lack of clear structure. Therefore, medical practice is facing a challenge thanks to the rapid growth of health information in electronic health records (EHRs), mostly in narrative text form. As a result, it's becoming important to effectively manage the growing amount of data for a single patient. As a result, there is currently a requirement to visualize electronic health records (EHRs) in a way that aids physicians in clinical tasks and medical decision-making. Leveraging text visualization techniques to unstructured clinical narrative texts is a new area of research that aims to provide better information extraction and retrieval to support clinical decision support in scenarios where data generated continues to grow. Clinical datasets in electronic health records (EHR) offer a lot of potential for training accurate statistical models to classify facets of information which can then be used to improve patient care and outcomes. However, in many clinical note datasets, the unstructured nature of clinical texts is a common problem. This paper examines the very issue of getting raw clinical texts and mapping them into meaningful structures that can support healthcare professionals utilizing narrative texts. Our work is the result of a collaborative design process that was aided by empirical data collected through formal usability testing.

Keywords: classification, electronic health records, narrative texts, visualization

Procedia PDF Downloads 118
3537 The Development of Congeneric Elicited Writing Tasks to Capture Language Decline in Alzheimer Patients

Authors: Lise Paesen, Marielle Leijten

Abstract:

People diagnosed with probable Alzheimer disease suffer from an impairment of their language capacities; a gradual impairment which affects both their spoken and written communication. Our study aims at characterising the language decline in DAT patients with the use of congeneric elicited writing tasks. Within these tasks, a descriptive text has to be written based upon images with which the participants are confronted. A randomised set of images allows us to present the participants with a different task on every encounter, thus allowing us to avoid a recognition effect in this iterative study. This method is a revision from previous studies, in which participants were presented with a larger picture depicting an entire scene. In order to create the randomised set of images, existing pictures were adapted following strict criteria (e.g. frequency, AoA, colour, ...). The resulting data set contained 50 images, belonging to several categories (vehicles, animals, humans, and objects). A pre-test was constructed to validate the created picture set; most images had been used before in spoken picture naming tasks. Hence the same reaction times ought to be triggered in the typed picture naming task. Once validated, the effectiveness of the descriptive tasks was assessed. First, the participants (n=60 students, n=40 healthy elderly) performed a typing task, which provided information about the typing speed of each individual. Secondly, two descriptive writing tasks were carried out, one simple and one complex. The simple task contains 4 images (1 animal, 2 objects, 1 vehicle) and only contains elements with high frequency, a young AoA (<6 years), and fast reaction times. Slow reaction times, a later AoA (≥ 6 years) and low frequency were criteria for the complex task. This task uses 6 images (2 animals, 1 human, 2 objects and 1 vehicle). The data were collected with the keystroke logging programme Inputlog. Keystroke logging tools log and time stamp keystroke activity to reconstruct and describe text production processes. The data were analysed using a selection of writing process and product variables, such as general writing process measures, detailed pause analysis, linguistic analysis, and text length. As a covariate, the intrapersonal interkey transition times from the typing task were taken into account. The pre-test indicated that the new images lead to similar or even faster reaction times compared to the original images. All the images were therefore used in the main study. The produced texts of the description tasks were significantly longer compared to previous studies, providing sufficient text and process data for analyses. Preliminary analysis shows that the amount of words produced differed significantly between the healthy elderly and the students, as did the mean length of production bursts, even though both groups needed the same time to produce their texts. However, the elderly took significantly more time to produce the complex task than the simple task. Nevertheless, the amount of words per minute remained comparable between simple and complex. The pauses within and before words varied, even when taking personal typing abilities (obtained by the typing task) into account.

Keywords: Alzheimer's disease, experimental design, language decline, writing process

Procedia PDF Downloads 274
3536 Performance Evaluation of Task Scheduling Algorithm on LCQ Network

Authors: Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad

Abstract:

The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and distributed computing system. This paper deals with the problem of dynamic scheduling on a special type of multiprocessor architecture known as Linear Crossed Cube (LCQ) network. This proposed multiprocessor is a hybrid network which combines the features of both linear type of architectures as well as cube based architectures. Two standard dynamic scheduling schemes namely Minimum Distance Scheduling (MDS) and Two Round Scheduling (TRS) schemes are implemented on the LCQ network. Parallel tasks are mapped and the imbalance of load is evaluated on different set of processors in LCQ network. The simulations results are evaluated and effort is made by means of through analysis of the results to obtain the best solution for the given network in term of load imbalance left and execution time. The other performance matrices like speedup and efficiency are also evaluated with the given dynamic algorithms.

Keywords: dynamic algorithm, load imbalance, mapping, task scheduling

Procedia PDF Downloads 451
3535 ViraPart: A Text Refinement Framework for Automatic Speech Recognition and Natural Language Processing Tasks in Persian

Authors: Narges Farokhshad, Milad Molazadeh, Saman Jamalabbasi, Hamed Babaei Giglou, Saeed Bibak

Abstract:

The Persian language is an inflectional subject-object-verb language. This fact makes Persian a more uncertain language. However, using techniques such as Zero-Width Non-Joiner (ZWNJ) recognition, punctuation restoration, and Persian Ezafe construction will lead us to a more understandable and precise language. In most of the works in Persian, these techniques are addressed individually. Despite that, we believe that for text refinement in Persian, all of these tasks are necessary. In this work, we proposed a ViraPart framework that uses embedded ParsBERT in its core for text clarifications. First, used the BERT variant for Persian followed by a classifier layer for classification procedures. Next, we combined models outputs to output cleartext. In the end, the proposed model for ZWNJ recognition, punctuation restoration, and Persian Ezafe construction performs the averaged F1 macro scores of 96.90%, 92.13%, and 98.50%, respectively. Experimental results show that our proposed approach is very effective in text refinement for the Persian language.

Keywords: Persian Ezafe, punctuation, ZWNJ, NLP, ParsBERT, transformers

Procedia PDF Downloads 217
3534 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network

Authors: Ziying Wu, Danfeng Yan

Abstract:

Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.

Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network

Procedia PDF Downloads 118