Search results for: Arantza Del Valle Gómez
16 Anisakidosis in Turkey: Serological Survey and Risk for Humans
Authors: E. Akdur Öztürk, F. İrvasa Bilgiç, A. Ludovisi , O. Gülbahar, D. Dirim Erdoğan, M. Korkmaz, M. Á. Gómez Morales
Abstract:
Anisakidosis is a zoonotic human fish-borne parasitic disease caused by accidental ingestion of anisakid third-stage larvae (L3) of members of the Anisakidae family present in infected marine fish or cephalopods. Infection with anisakid larvae can lead to gastric, intestinal, extra-gastrointestinal and gastroallergic forms of the disease. Anisakid parasites have been reported in almost all seas, particularly in the Mediterranean Sea. There is a remarkably high level of risk exposure to these zoonotic parasites as they are present in economically and ecologically important fish of Europe. Anisakid L3 larvae have been also detected in several fish species from the Aegean Sea. Turkey is a peninsular country surrounded by Black, Aegean and the Mediterranean Sea. In this country, fishing habit and fishery product consumption are highly common. In recent years, there was also an increase in the consumption of raw fish due to the increasing interest in the cuisine of the Far East countries. In different regions of Turkey, A. simplex (inMerluccius Merluccius Scomber japonicus, Trachurus mediterraneus, Sardina pilchardus, Engraulis encrasicolus, etc.), Anisakis spp., Contraceucum spp., Pseudoterronova spp. and, C. aduncum were identified as well. Although it is accepted both the presence of anisakid parasites in fish and fishery products in Turkey and the presence of Turkish people with allergic manifestations after fish consumption, there are no reports of human anisakiasis in this country. Given the high prevalence of anisakid parasites in the country, the absence of reports is likely not due to the absence of clinical cases rather to the unavailability of diagnostic tools and the low awareness of the presence of this infection. The aim of the study was to set up an IgE-Western Blot (WB) based test to detect the anisakidosis sensitization among Turkish people with a history of allergic manifestation related to fish consumption. To this end, crude worm antigens (CWA) and allergen enriched fraction (50-66% ) were prepared from L3 of A. simplex (s.l.) collected from Lepidopus caudatus fished in the Mediterranean Sea. These proteins were electrophoretically separated and transferred into the nitrocellulose membranes. By WB, specific proteins recognized by positive control serum samples from sensitized patients were visualized on nitrocellulose membranes by a colorimetric reaction. The CWA and 50–66% fraction showed specific bands, mainly due to Ani s 1 (20-22 kD) and Ani s 4 (9-10 kD). So far, a total of 7 serum samples from people with allergic manifestation and positive skin prick test (SPT) after fish consumption, have been tested and all of them resulted negative by WB, indicating the lack of sensitization to anisakids. This preliminary study allowed to set up a specific test and evidence the lack of correlation between both tests, SPT and WB. However, the sample size should be increased to estimate the anisakidosis burden in Turkish people.Keywords: anisakidosis, fish parasite, serodiagnosis, Turkey
Procedia PDF Downloads 13915 Cultural Adaptation of an Appropriate Intervention Tool for Mental Health among the Mohawk in Quebec
Authors: Liliana Gomez Cardona, Mary McComber, Kristyn Brown, Arlene Laliberté, Outi Linnaranta
Abstract:
The history of colonialism and more contemporary political issues have resulted in the exposure of Kanien'kehá:ka: non (Kanien'kehá:ka of Kahnawake) to challenging and even traumatic experiences. Colonization, religious missions, residential schools as well as economic and political marginalization are the factors that have challenged the wellbeing and mental health of these populations. In psychiatry, screening for mental illness is often done using questionnaires with which the patient is expected to respond to how often he/she has certain symptoms. However, the Indigenous view of mental wellbeing may not fit well with this approach. Moreover, biomedical treatments do not always meet the needs of Indigenous people because they do not understand the culture and traditional healing methods that persist in many communities. Assess whether the questionnaires used to measure symptoms, commonly used in psychiatry are appropriate and culturally safe for the Mohawk in Quebec. Identify the most appropriate tool to assess and promote wellbeing and follow the process necessary to improve its cultural sensitivity and safety for the Mohawk population. Qualitative, collaborative, and participatory action research project which respects First Nations protocols and the principles of ownership, control, access, and possession (OCAP). Data collection based on five focus groups with stakeholders working with these populations and members of Indigenous communities. Thematic analysis of the data collected and emerging through an advisory group that led a revision of the content, use, and cultural and conceptual relevance of the instruments. The questionnaires measuring psychiatric symptoms face significant limitations in the local indigenous context. We present the factors that make these tools not relevant among Mohawks. Although the scale called Growth and Empowerment Measure (GEM) was originally developed among Indigenous in Australia, the Mohawk in Quebec found that this tool comprehends critical aspects of their mental health and wellbeing more respectfully and accurately than questionnaires focused on measuring symptoms. We document the process of cultural adaptation of this tool which was supported by community members to create a culturally safe tool that helps in growth and empowerment. The cultural adaptation of the GEM provides valuable information about the factors affecting wellbeing and contributes to mental health promotion. This process improves mental health services by giving health care providers useful information about the Mohawk population and their clients. We believe that integrating this tool in interventions can help create a bridge to improve communication between the Indigenous cultural perspective of the patient and the biomedical view of health care providers. Further work is needed to confirm the clinical utility of this tool in psychological and psychiatric intervention along with social and community services.Keywords: cultural adaptation, cultural safety, empowerment, Mohawks, mental health, Quebec
Procedia PDF Downloads 15314 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker
Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation
Procedia PDF Downloads 2213 Intermodal Strategies for Redistribution of Agrifood Products in the EU: The Case of Vegetable Supply Chain from Southeast of Spain
Authors: Juan C. Pérez-Mesa, Emilio Galdeano-Gómez, Jerónimo De Burgos-Jiménez, José F. Bienvenido-Bárcena, José F. Jiménez-Guerrero
Abstract:
Environmental cost and transport congestion on roads resulting from product distribution in Europe have to lead to the creation of various programs and studies seeking to reduce these negative impacts. In this regard, apart from other institutions, the European Commission (EC) has designed plans in recent years promoting a more sustainable transportation model in an attempt to ultimately shift traffic from the road to the sea by using intermodality to achieve a model rebalancing. This issue proves especially relevant in supply chains from peripheral areas of the continent, where the supply of certain agrifood products is high. In such cases, the most difficult challenge is managing perishable goods. This study focuses on new approaches that strengthen the modal shift, as well as the reduction of externalities. This problem is analyzed by attempting to promote intermodal system (truck and short sea shipping) for transport, taking as point of reference highly perishable products (vegetables) exported from southeast Spain, which is the leading supplier to Europe. Methodologically, this paper seeks to contribute to the literature by proposing a different and complementary approach to establish a comparison between intermodal and the “only road” alternative. For this purpose, the multicriteria decision is utilized in a p-median model (P-M) adapted to the transport of perishables and to a means of shipping selection problem, which must consider different variables: transit cost, including externalities, time, and frequency (including agile response time). This scheme avoids bias in decision-making processes. By observing the results, it can be seen that the influence of the externalities as drivers of the modal shift is reduced when transit time is introduced as a decision variable. These findings confirm that the general strategies, those of the EC, based on environmental benefits lose their capacity for implementation when they are applied to complex circumstances. In general, the different estimations reveal that, in the case of perishables, intermodality would be a secondary and viable option only for very specific destinations (for example, Hamburg and nearby locations, the area of influence of London, Paris, and the Netherlands). Based on this framework, the general outlook on this subject should be modified. Perhaps the government should promote specific business strategies based on new trends in the supply chain, not only on the reduction of externalities, and find new approaches that strengthen the modal shift. A possible option is to redefine ports, conceptualizing them as digitalized redistribution and coordination centers and not only as areas of cargo exchange.Keywords: environmental externalities, intermodal transport, perishable food, transit time
Procedia PDF Downloads 9612 Co-Smoldered Digestate Ash as Additive for Anaerobic Digestion of Berry Fruit Waste: Stability and Enhanced Production Rate
Authors: Arinze Ezieke, Antonio Serrano, William Clarke, Denys Villa-Gomez
Abstract:
Berry cultivation results in discharge of high organic strength putrescible solid waste which potentially contributes to environmental degradation, making it imperative to assess options for its complete management. Anaerobic digestion (AD) could be an ideal option when the target is energy generation; however, due to berry fruit characteristics high carbohydrate composition, the technology could be limited by its high alkalinity requirement which suggests dosing of additives such as buffers and trace elements supplement. Overcoming this limitation in an economically viable way could entail replacement of synthetic additives with recycled by-product waste. Consequently, ash from co-smouldering of high COD characteristic AD digestate and coco-coir could be a promising material to be used to enhance the AD of berry fruit waste, given its characteristic high pH, alkalinity and metal concentrations which is typical of synthetic additives. Therefore, the aim of the research was to evaluate the stability and process performance from the AD of BFW when ash from co-smoldered digestate and coir are supplemented as alkalinity and trace elements (TEs) source. Series of batch experiments were performed to ascertain the necessity for alkalinity addition and to see whether the alkalinity and metals in the co-smouldered digestate ash can provide the necessary buffer and TEs for AD of berry fruit waste. Triplicate assays were performed in batch systems following I/S of 2 (in VS), using serum bottles (160 mL) sealed and placed in a heated room (35±0.5 °C), after creating anaerobic conditions. Control experiment contained inoculum and substrates only, and inoculum, substrate and NaHCO3 for optimal total alkalinity concentration and TEs assays, respectively. Total alkalinity concentration refers to alkalinity of inoculum and the additives. The alkalinity and TE potential of the ash were evaluated by supplementing ash (22.574 g/kg) of equivalent total alkalinity concentration to that of the pre-determined optimal from NaHCO3, and by dosing ash (0.012 – 7.574 g/kg) of varying concentrations of specific essential TEs (Co, Fe, Ni, Se), respectively. The result showed a stable process at all examined conditions. Supplementation of 745 mg/L CaCO3 NaHCO3 resulted to an optimum TAC of 2000 mg/L CaCO3. Equivalent ash supplementation of 22.574 g/kg allowed the achievement of this pre-determined optimum total alkalinity concentration, resulting to a stable process with a 92% increase in the methane production rate (323 versus 168 mL CH4/ (gVS.d)), but a 36% reduction in the cumulative methane production (103 versus 161 mL CH4/gVS). Addition of ashes at incremental dosage as TEs source resulted to a reduction in the Cumulative methane production, with the highest dosage of 7.574 g/kg having the highest effect of -23.5%; however, the seemingly immediate bioavailability of TE at this high dosage allowed for a +15% increase in the methane production rate. With an increased methane production rate, the results demonstrated that the ash at high dosages could be an effective supplementary material for either a buffered or none buffered berry fruit waste AD system.Keywords: anaerobic digestion, alkalinity, co-smoldered digestate ash, trace elements
Procedia PDF Downloads 12011 Rapid Atmospheric Pressure Photoionization-Mass Spectrometry (APPI-MS) Method for the Detection of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans in Real Environmental Samples Collected within the Vicinity of Industrial Incinerators
Authors: M. Amo, A. Alvaro, A. Astudillo, R. Mc Culloch, J. C. del Castillo, M. Gómez, J. M. Martín
Abstract:
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) of course comprise a range of highly toxic compounds that may exist as particulates within the air or accumulate within water supplies, soil, or vegetation. They may be created either ubiquitously or naturally within the environment as a product of forest fires or volcanic eruptions. It is only since the industrial revolution, however, that it has become necessary to closely monitor their generation as a byproduct of manufacturing/combustion processes, in an effort to mitigate widespread contamination events. Of course, the environmental concentrations of these toxins are expected to be extremely low, therefore highly sensitive and accurate methods are required for their determination. Since ionization of non-polar compounds through electrospray and APCI is difficult and inefficient, we evaluate the performance of a novel low-flow Atmospheric Pressure Photoionization (APPI) source for the trace detection of various dioxins and furans using rapid Mass Spectrometry workflows. Air, soil and biota (vegetable matter) samples were collected monthly during one year from various locations within the vicinity of an industrial incinerator in Spain. Analytes were extracted and concentrated using soxhlet extraction in toluene and concentrated by rotavapor and nitrogen flow. Various ionization methods as electrospray (ES) and atmospheric pressure chemical ionization (APCI) were evaluated, however, only the low-flow APPI source was capable of providing the necessary performance, in terms of sensitivity, required for detecting all targeted analytes. In total, 10 analytes including 2,3,7,8-tetrachlorodibenzodioxin (TCDD) were detected and characterized using the APPI-MS method. Both PCDDs and PCFDs were detected most efficiently in negative ionization mode. The most abundant ion always corresponded to the loss of a chlorine and addition of an oxygen, yielding [M-Cl+O]- ions. MRM methods were created in order to provide selectivity for each analyte. No chromatographic separation was employed; however, matrix effects were determined to have a negligible impact on analyte signals. Triple Quadrupole Mass Spectrometry was chosen because of its unique potential for high sensitivity and selectivity. The mass spectrometer used was a Sciex´s Qtrap3200 working in negative Multi Reacting Monitoring Mode (MRM). Typically mass detection limits were determined to be near the 1-pg level. The APPI-MS2 technology applied to the detection of PCDD/Fs allows fast and reliable atmospheric analysis, minimizing considerably operational times and costs, with respect other technologies available. In addition, the limit of detection can be easily improved using a more sensitive mass spectrometer since the background in the analysis channel is very low. The APPI developed by SEADM allows polar and non-polar compounds ionization with high efficiency and repeatability.Keywords: atmospheric pressure photoionization-mass spectrometry (APPI-MS), dioxin, furan, incinerator
Procedia PDF Downloads 20410 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance
Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning
Procedia PDF Downloads 299 Negative Environmental Impacts on Marine Seismic Survey Activities
Authors: Katherine Del Carmen Camacho Zorogastua, Victor Hugo Gallo Ramos, Jhon Walter Gomez Lora
Abstract:
Marine hydrocarbon exploration (oil and natural gas) activities are developed using 2D, 3D and 4D seismic prospecting techniques where sound waves are directed from a seismic vessel emitted every few seconds depending on the variety of air compressors, which cross the layers of rock at the bottom of the sea and are reflected to the surface of the water. Hydrophones receive and record the reflected energy signals for cross-sectional mapping of the lithological profile in order to identify possible areas where hydrocarbon deposits can be formed. However, they produce several significant negative environmental impacts on the marine ecosystem and in the social and economic sectors. Therefore, the objective of the research is to publicize the negative impacts and environmental measures that must be carried out during the development of these activities to prevent and mitigate water quality, the population involved (fishermen) and the marine biota (e.g., Cetaceans, fish) that are the most vulnerable. The research contains technical environmental aspects based on bibliographic sources of environmental studies approved by the Peruvian authority, research articles, undergraduate and postgraduate theses, books, guides, and manuals from Spain, Australia, Canada, Brazil, and Mexico. It describes the negative impacts on the environment and population (fishing sector), environmental prevention, mitigation, recovery and compensation measures that must be properly implemented and the cases of global sea species stranding, for which international experiences from Spain, Madagascar, Mexico, Ecuador, Uruguay, and Peru were referenced. Negative impacts on marine fauna, seawater quality, and the socioeconomic sector (fishermen) were identified. Omission or inadequate biological monitoring in mammals could alter their ability to communicate, feed, and displacement resulting in their stranding and death. In fish, they cause deadly damage to physical-physiological type and in their behavior. Inadequate wastewater treatment and waste management could increase the organic load and oily waste on seawater quality in violation of marine flora and fauna. The possible estrangement of marine resources (fish) affects the economic sector as they carry out their fishing activity for consumption or sale. Finally, it is concluded from the experiences gathered from Spain, Madagascar, Mexico, Ecuador, Uruguay, and Peru that there is a cause and effect relationship between the inadequate development of seismic exploration activities (cause) and marine species strandings (effect) since over the years, stranded or dead marine mammals have been detected on the shores of the sea in areas of seismic acquisition of hydrocarbons. In this regard, it is recommended to establish technical procedures, guidelines, and protocols for the monitoring of marine species in order to contribute to the conservation of hydrobiological resources.Keywords: 3D seismic prospecting, cetaceans, significant environmental impacts, prevention, mitigation, recovery, environmental compensation
Procedia PDF Downloads 1848 Innovation Outputs from Higher Education Institutions: A Case Study of the University of Waterloo, Canada
Authors: Wendy De Gomez
Abstract:
The University of Waterloo is situated in central Canada in the Province of Ontario- one hour from the metropolitan city of Toronto. For over 30 years, it has held Canada’s top spot as the most innovative university; and has been consistently ranked in the top 25 computer science and top 50 engineering schools in the world. Waterloo benefits from the federal government’s over 100 domestic innovation policies which have assisted in the country’s 15th place global ranking in the World Intellectual Property Organization’s (WIPO) 2022 Global Innovation Index. Yet undoubtedly, the University of Waterloo’s unique characteristics are what propels its innovative creativeness forward. This paper will provide a contextual definition of innovation in higher education and then demonstrate the five operational attributes that contribute to the University of Waterloo’s innovative reputation. The methodology is based on statistical analyses obtained from ranking bodies such as the QS World University Rankings, a secondary literature review related to higher education innovation in Canada, and case studies that exhibit the operationalization of the attributes outlined below. The first attribute is geography. Specifically, the paper investigates the network structure effect of the Toronto-Waterloo high-tech corridor and the resultant industrial relationships built there. The second attribute is University Policy 73-Intellectal Property Rights. This creator-owned policy grants all ownership to the creator/inventor regardless of the use of the University of Waterloo property or funding. Essentially, through the incentivization of IP ownership by all researchers, further commercialization and entrepreneurship are formed. Third, this IP policy works hand in hand with world-renowned business incubators such as the Accelerator Centre in the dedicated research and technology park and velocity, a 14-year-old facility that equips and guides founders to build and scale companies. Communitech, a 25-year-old provincially backed facility in the region, also works closely with the University of Waterloo to build strong teams, access capital, and commercialize products. Fourth, Waterloo’s co-operative education program contributes 31% of all co-op participants to the Canadian economy. Home to the world’s largest co-operative education program, data shows that over 7,000 from around the world recruit Waterloo students for short- and long-term placements- directly contributing to the student’s ability to learn and optimize essential employment skills when they graduate. Finally, the students themselves at Waterloo are exceptional. The entrance average ranges from the low 80s to the mid-90s depending on the program. In computer, electrical, mechanical, mechatronics, and systems design engineering, to have a 66% chance of acceptance, the applicant’s average must be 95% or above. Singularly, none of these five attributes could lead to the university’s outstanding track record of innovative creativity, but when bundled up into a 1000 acre- 100 building main campus with 6 academic faculties, 40,000+ students, and over 1300 world-class faculty, the recipe for success becomes quite evident.Keywords: IP policy, higher education, economy, innovation
Procedia PDF Downloads 697 Cuban's Supply Chains Development Model: Qualitative and Quantitative Impact on Final Consumers
Authors: Teresita Lopez Joy, Jose A. Acevedo Suarez, Martha I. Gomez Acosta, Ana Julia Acevedo Urquiaga
Abstract:
Current trends in business competitiveness indicate the need to manage businesses as supply chains and not in isolation. The use of strategies aimed at maximum satisfaction of customers in a network and based on inter-company cooperation; contribute to obtaining successful joint results. In the Cuban economic context, the development of productive linkages to achieve integrated management of supply chains is considering a key aspect. In order to achieve this jump, it is necessary to develop acting capabilities in the entities that make up the chains through a systematic procedure that allows arriving at a management model in consonance with the environment. The objective of the research focuses on: designing a model and procedure for the development of integrated management of supply chains in economic entities. The results obtained are: the Model and the Procedure for the Development of the Supply Chains Integrated Management (MP-SCIM). The Model is based on the development of logistics in the network actors, the joint work between companies, collaborative planning and the monitoring of a main indicator according to the end customers. The application Procedure starts from the well-founded need for development in a supply chain and focuses on training entrepreneurs as doers. The characterization and diagnosis is done to later define the design of the network and the relationships between the companies. It takes into account the feedback as a method of updating the conditions and way to focus the objectives according to the final customers. The MP-SCIM is the result of systematic work with a supply chain approach in companies that have consolidated as coordinators of their network. The cases of the edible oil chain and explosives for construction sector reflect results of more remarkable advances since they have applied this approach for more than 5 years and maintain it as a general strategy of successful development. The edible oil trading company experienced a jump in sales. In 2006, the company started the analysis in order to define the supply chain, apply diagnosis techniques, define problems and implement solutions. The involvement of the management and the progressive formation of performance capacities in the personnel allowed the application of tools according to the context. The company that coordinates the explosives chain for construction sector shows adequate training with independence and opportunity in the face of different situations and variations of their business environment. The appropriation of tools and techniques for the analysis and implementation of proposals is a characteristic feature of this case. The coordinating entity applies integrated supply chain management to its decisions based on the timely training of the necessary action capabilities for each situation. Other cases of study and application that validate these tools are also detailed in this paper, and they highlight the results of generalization in the quantitative and qualitative improvement according to the final clients. These cases are: teaching literature in universities, agricultural products of local scope and medicine supply chains.Keywords: integrated management, logistic system, supply chain management, tactical-operative planning
Procedia PDF Downloads 1526 Learning-Teaching Experience about the Design of Care Applications for Nursing Professionals
Authors: A. Gonzalez Aguna, J. M. Santamaria Garcia, J. L. Gomez Gonzalez, R. Barchino Plata, M. Fernandez Batalla, S. Herrero Jaen
Abstract:
Background: Computer Science is a field that transcends other disciplines of knowledge because it allows to support all kinds of physical and mental tasks. Health centres have a greater number and complexity of technological devices and the population consume and demand services derived from technology. Also, nursing education plans have included competencies related to and, even, courses about new technologies are offered to health professionals. However, nurses still limit their performance to the use and evaluation of products previously built. Objective: Develop a teaching-learning methodology for acquiring skills on designing applications for care. Methodology: Blended learning teaching with a group of graduate nurses through official training within a Master's Degree. The study sample was selected by intentional sampling without exclusion criteria. The study covers from 2015 to 2017. The teaching sessions included a four-hour face-to-face class and between one and three tutorials. The assessment was carried out by written test consisting of the preparation of an IEEE 830 Standard Specification document where the subject chosen by the student had to be a problem in the area of care. Results: The sample is made up of 30 students: 10 men and 20 women. Nine students had a degree in nursing, 20 diploma in nursing and one had a degree in Computer Engineering. Two students had a degree in nursing specialty through residence and two in equivalent recognition by exceptional way. Except for the engineer, no subject had previously received training in this regard. All the sample enrolled in the course received the classroom teaching session, had access to the teaching material through a virtual area and maintained at least one tutoring. The maximum of tutorials were three with an hour in total. Among the material available for consultation was an example of a document drawn up based on the IEEE Standard with an issue not related to care. The test to measure competence was completed by the whole group and evaluated by a multidisciplinary teaching team of two computer engineers and two nurses. Engineers evaluated the correctness of the characteristics of the document and the degree of comprehension in the elaboration of the problem and solution elaborated nurses assessed the relevance of the chosen problem statement, the foundation, originality and correctness of the proposed solution and the validity of the application for clinical practice in care. The results were of an average grade of 8.1 over 10 points, a range between 6 and 10. The selected topic barely coincided among the students. Examples of care areas selected are care plans, family and community health, delivery care, administration and even robotics for care. Conclusion: The applied methodology of learning-teaching for the design of technologies demonstrates the success in the training of nursing professionals. The role of expert is essential to create applications that satisfy the needs of end users. Nursing has the possibility, the competence and the duty to participate in the process of construction of technological tools that are going to impact in care of people, family and community.Keywords: care, learning, nursing, technology
Procedia PDF Downloads 1345 Closing the Gap: Efficient Voxelization with Equidistant Scanlines and Gap Detection
Authors: S. Delgado, C. Cerrada, R. S. Gómez
Abstract:
This research introduces an approach to voxelizing the surfaces of triangular meshes with efficiency and accuracy. Our method leverages parallel equidistant scan-lines and introduces a Gap Detection technique to address the limitations of existing approaches. We present a comprehensive study showcasing the method's effectiveness, scalability, and versatility in different scenarios. Voxelization is a fundamental process in computer graphics and simulations, playing a pivotal role in applications ranging from scientific visualization to virtual reality. Our algorithm focuses on enhancing the voxelization process, especially for complex models and high resolutions. One of the major challenges in voxelization in the Graphics Processing Unit (GPU) is the high cost of discovering the same voxels multiple times. These repeated voxels incur in costly memory operations with no useful information. Our scan-line-based method ensures that each voxel is detected exactly once when processing the triangle, enhancing performance without compromising the quality of the voxelization. The heart of our approach lies in the use of parallel, equidistant scan-lines to traverse the interiors of triangles. This minimizes redundant memory operations and avoids revisiting the same voxels, resulting in a significant performance boost. Moreover, our method's computational efficiency is complemented by its simplicity and portability. Written as a single compute shader in Graphics Library Shader Language (GLSL), it is highly adaptable to various rendering pipelines and hardware configurations. To validate our method, we conducted extensive experiments on a diverse set of models from the Stanford repository. Our results demonstrate not only the algorithm's efficiency, but also its ability to produce 26 tunnel free accurate voxelizations. The Gap Detection technique successfully identifies and addresses gaps, ensuring consistent and visually pleasing voxelized surfaces. Furthermore, we introduce the Slope Consistency Value metric, quantifying the alignment of each triangle with its primary axis. This metric provides insights into the impact of triangle orientation on scan-line based voxelization methods. It also aids in understanding how the Gap Detection technique effectively improves results by targeting specific areas where simple scan-line-based methods might fail. Our research contributes to the field of voxelization by offering a robust and efficient approach that overcomes the limitations of existing methods. The Gap Detection technique fills a critical gap in the voxelization process. By addressing these gaps, our algorithm enhances the visual quality and accuracy of voxelized models, making it valuable for a wide range of applications. In conclusion, "Closing the Gap: Efficient Voxelization with Equidistant Scan-lines and Gap Detection" presents an effective solution to the challenges of voxelization. Our research combines computational efficiency, accuracy, and innovative techniques to elevate the quality of voxelized surfaces. With its adaptable nature and valuable innovations, this technique could have a positive influence on computer graphics and visualization.Keywords: voxelization, GPU acceleration, computer graphics, compute shaders
Procedia PDF Downloads 704 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning
Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene
Procedia PDF Downloads 223 Chain Networks on Internationalization of SMEs: Co-Opetition Strategies in Agrifood Sector
Authors: Emilio Galdeano-Gómez, Juan C. Pérez-Mesa, Laura Piedra-Muñoz, María C. García-Barranco, Jesús Hernández-Rubio
Abstract:
The situation in which firms engage in simultaneous cooperation and competition with each other is a phenomenon known as co-opetition. This scenario has received increasing attention in business economics and management analyses. In the domain of supply chain networks and for small and medium-sized enterprises, SMEs, these strategies are of greater relevance given the complex environment of globalization and competition in open markets. These firms face greater challenges regarding technology and access to specific resources due to their limited capabilities and limited market presence. Consequently, alliances and collaborations with both buyers and suppliers prove to be key elements in overcoming these constraints. However, rivalry and competition are also regarded as major factors in successful internationalization processes, as they are drivers for firms to attain a greater degree of specialization and to improve efficiency, for example enabling them to allocate scarce resources optimally and providing incentives for innovation and entrepreneurship. The present work aims to contribute to the literature on SMEs’ internationalization strategies. The sample is constituted by a panel data of marketing firms from the Andalusian food sector and a multivariate regression analysis is developed, measuring variables of co-opetition and international activity. The hierarchical regression equations method has been followed, thus resulting in three estimated models: the first one excluding the variables indicative of channel type, while the latter two include the international retailer chain and wholesaler variable. The findings show that the combination of several factors leads to a complex scenario of inter-organizational relationships of cooperation and competition. In supply chain management analyses, these relationships tend to be classified as either buyer-supplier (vertical level) or supplier-supplier relationships (horizontal level). Several buyers and suppliers tend to participate in supply chain networks, and in which the form of governance (hierarchical and non-hierarchical) influences cooperation and competition strategies. For instance, due to their market power and/or their closeness to the end consumer, some buyers (e.g. large retailers in food markets) can exert an influence on the selection and interaction of several of their intermediate suppliers, thus endowing certain networks in the supply chain with greater stability. This hierarchical influence may in turn allow these suppliers to develop their capabilities (e.g. specialization) to a greater extent. On the other hand, for those suppliers that are outside these networks, this environment of hierarchy, characterized by a “hub firm” or “channel master”, may provide an incentive for developing their co-opetition relationships. These results prove that the analyzed firms have experienced considerable growth in sales to new foreign markets, mainly in Europe, dealing with large retail chains and wholesalers as main buyers. This supply industry is predominantly made up of numerous SMEs, which has implied a certain disadvantage when dealing with the buyers, as negotiations have traditionally been held on an individual basis and in the face of high competition among suppliers. Over recent years, however, cooperation among these marketing firms has become more common, for example regarding R&D, promotion, scheduling of production and sales.Keywords: co-petition networks, international supply chain, maketing agrifood firms, SMEs strategies
Procedia PDF Downloads 782 Thermally Conductive Polymer Nanocomposites Based on Graphene-Related Materials
Authors: Alberto Fina, Samuele Colonna, Maria del Mar Bernal, Orietta Monticelli, Mauro Tortello, Renato Gonnelli, Julio Gomez, Chiara Novara, Guido Saracco
Abstract:
Thermally conductive polymer nanocomposites are of high interest for several applications including low-temperature heat recovery, heat exchangers in a corrosive environment and heat management in electronics and flexible electronics. In this paper, the preparation of thermally conductive nanocomposites exploiting graphene-related materials is addressed, along with their thermal characterization. In particular, correlations between 1- chemical and physical features of the nanoflakes and 2- processing conditions with the heat conduction properties of nanocomposites is studied. Polymers are heat insulators; therefore, the inclusion of conductive particles is the typical solution to obtain a sufficient thermal conductivity. In addition to traditional microparticles such as graphite and ceramics, several nanoparticles have been proposed, including carbon nanotubes and graphene, for the use in polymer nanocomposites. Indeed, thermal conductivities for both carbon nanotubes and graphenes were reported in the wide range of about 1500 to 6000 W/mK, despite such property may decrease dramatically as a function of the size, number of layers, the density of topological defects, re-hybridization defects as well as on the presence of impurities. Different synthetic techniques have been developed, including mechanical cleavage of graphite, epitaxial growth on SiC, chemical vapor deposition, and liquid phase exfoliation. However, the industrial scale-up of graphene, defined as an individual, single-atom-thick sheet of hexagonally arranged sp2-bonded carbons still remains very challenging. For large scale bulk applications in polymer nanocomposites, some graphene-related materials such as multilayer graphenes (MLG), reduced graphene oxide (rGO) or graphite nanoplatelets (GNP) are currently the most interesting graphene-based materials. In this paper, different types of graphene-related materials were characterized for their chemical/physical as well as for thermal properties of individual flakes. Two selected rGOs were annealed at 1700°C in vacuum for 1 h to reduce defectiveness of the carbon structure. Thermal conductivity increase of individual GNP with annealing was assessed via scanning thermal microscopy. Graphene nano papers were prepared from both conventional RGO and annealed RGO flakes. Characterization of the nanopapers evidenced a five-fold increase in the thermal diffusivity on the nano paper plane for annealed nanoflakes, compared to pristine ones, demonstrating the importance of structural defectiveness reduction to maximize the heat dissipation performance. Both pristine and annealed RGO were used to prepare polymer nanocomposites, by melt reactive extrusion. Thermal conductivity showed two- to three-fold increase in the thermal conductivity of the nanocomposite was observed for high temperature treated RGO compared to untreated RGO, evidencing the importance of using low defectivity nanoflakes. Furthermore, the study of different processing paremeters (time, temperature, shear rate) during the preparation of poly (butylene terephthalate) nanocomposites evidenced a clear correlation with the dispersion and fragmentation of the GNP nanoflakes; which in turn affected the thermal conductivity performance. Thermal conductivity of about 1.7 W/mK, i.e. one order of magnitude higher than for pristine polymer, was obtained with 10%wt of annealed GNPs, which is in line with state of the art nanocomposites prepared by more complex and less upscalable in situ polymerization processes.Keywords: graphene, graphene-related materials, scanning thermal microscopy, thermally conductive polymer nanocomposites
Procedia PDF Downloads 2631 Production of Insulin Analogue SCI-57 by Transient Expression in Nicotiana benthamiana
Authors: Adriana Muñoz-Talavera, Ana Rosa Rincón-Sánchez, Abraham Escobedo-Moratilla, María Cristina Islas-Carbajal, Miguel Ángel Gómez-Lim
Abstract:
The highest rates of diabetes incidence and prevalence worldwide will increase the number of diabetic patients requiring insulin or insulin analogues. Then, current production systems would not be sufficient to meet the future market demands. Therefore, developing efficient expression systems for insulin and insulin analogues are needed. In addition, insulin analogues with better pharmacokinetics and pharmacodynamics properties and without mitogenic potential will be required. SCI-57 (single chain insulin-57) is an insulin analogue having 10 times greater affinity to the insulin receptor, higher resistance to thermal degradation than insulin, native mitogenicity and biological effect. Plants as expression platforms have been used to produce recombinant proteins because of their advantages such as cost-effectiveness, posttranslational modifications, absence of human pathogens and high quality. Immunoglobulin production with a yield of 50% has been achieved by transient expression in Nicotiana benthamiana (Nb). The aim of this study is to produce SCI-57 by transient expression in Nb. Methodology: DNA sequence encoding SCI-57 was cloned in pICH31070. This construction was introduced into Agrobacterium tumefaciens by electroporation. The resulting strain was used to infiltrate leaves of Nb. In order to isolate SCI-57, leaves from transformed plants were incubated 3 hours with the extraction buffer therefore filtrated to remove solid material. The resultant protein solution was subjected to anion exchange chromatography on an FPLC system and ultrafiltration to purify SCI-57. Detection of SCI-57 was made by electrophoresis pattern (SDS-PAGE). Protein band was digested with trypsin and the peptides were analyzed by Liquid chromatography tandem-mass spectrometry (LC-MS/MS). A purified protein sample (20µM) was analyzed by ESI-Q-TOF-MS to obtain the ionization pattern and the exact molecular weight determination. Chromatography pattern and impurities detection were performed using RP-HPLC using recombinant insulin as standard. The identity of the SCI-57 was confirmed by anti-insulin ELISA. The total soluble protein concentration was quantified by Bradford assay. Results: The expression cassette was verified by restriction mapping (5393 bp fragment). The SDS-PAGE of crude leaf extract (CLE) of transformed plants, revealed a protein of about 6.4 kDa, non-present in CLE of untransformed plants. The LC-MS/MS results displayed one peptide with a high score that matches SCI-57 amino acid sequence in the sample, confirming the identity of SCI-57. From the purified SCI-57 sample (PSCI-57) the most intense charge state was 1069 m/z (+6) on the displayed ionization pattern corresponding to the molecular weight of SCI-57 (6412.6554 Da). The RP-HPLC of the PSCI-57 shows the presence of a peak with similar retention time (rt) and UV spectroscopic profile to the insulin standard (SCI-57 rt=12.96 and insulin rt=12.70 min). The collected SCI-57 peak had ELISA signal. The total protein amount in CLE from transformed plants was higher compared to untransformed plants. Conclusions: Our results suggest the feasibility to produce insulin analogue SCI-57 by transient expression in Nicotiana benthamiana. Further work is being undertaken to evaluate the biological activity by glucose uptake by insulin-sensitive and insulin-resistant murine and human cultured adipocytes.Keywords: insulin analogue, mass spectrometry, Nicotiana benthamiana, transient expression
Procedia PDF Downloads 348