Search results for: data security
24786 Intelligent Process Data Mining for Monitoring for Fault-Free Operation of Industrial Processes
Authors: Hyun-Woo Cho
Abstract:
The real-time fault monitoring and diagnosis of large scale production processes is helpful and necessary in order to operate industrial process safely and efficiently producing good final product quality. Unusual and abnormal events of the process may have a serious impact on the process such as malfunctions or breakdowns. This work try to utilize process measurement data obtained in an on-line basis for the safe and some fault-free operation of industrial processes. To this end, this work evaluated the proposed intelligent process data monitoring framework based on a simulation process. The monitoring scheme extracts the fault pattern in the reduced space for the reliable data representation. Moreover, this work shows the results of using linear and nonlinear techniques for the monitoring purpose. It has shown that the nonlinear technique produced more reliable monitoring results and outperforms linear methods. The adoption of the qualitative monitoring model helps to reduce the sensitivity of the fault pattern to noise.Keywords: process data, data mining, process operation, real-time monitoring
Procedia PDF Downloads 64024785 Rural Livelihood under a Changing Climate Pattern in the Zio District of Togo, West Africa
Authors: Martial Amou
Abstract:
This study was carried out to assess the situation of households’ livelihood under a changing climate pattern in the Zio district of Togo, West Africa. The study examined three important aspects: (i) assessment of households’ livelihood situation under a changing climate pattern, (ii) farmers’ perception and understanding of local climate change, (iii) determinants of adaptation strategies undertaken in cropping pattern to climate change. To this end, secondary sources of data, and survey data collected from 235 farmers in four villages in the study area were used. Adapted conceptual framework from Sustainable Livelihood Framework of DFID, two steps Binary Logistic Regression Model and descriptive statistics were used in this study as methodological approaches. Based on Sustainable Livelihood Approach (SLA), various factors revolving around the livelihoods of the rural community were grouped into social, natural, physical, human, and financial capital. Thus, the study came up that households’ livelihood situation represented by the overall livelihood index in the study area (34%) is below the standard average households’ livelihood security index (50%). The natural capital was found as the poorest asset (13%) and this will severely affect the sustainability of livelihood in the long run. The result from descriptive statistics and the first step regression (selection model) indicated that most of the farmers in the study area have clear understanding of climate change even though they do not have any idea about greenhouse gases as the main cause behind the issue. From the second step regression (output model) result, education, farming experience, access to credit, access to extension services, cropland size, membership of a social group, distance to the nearest input market, were found to be the significant determinants of adaptation measures undertaken in cropping pattern by farmers in the study area. Based on the result of this study, recommendations are made to farmers, policy makers, institutions, and development service providers in order to better target interventions which build, promote or facilitate the adoption of adaptation measures with potential to build resilience to climate change and then improve rural livelihood.Keywords: climate change, rural livelihood, cropping pattern, adaptation, Zio District
Procedia PDF Downloads 32524784 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory, synthetic data generation, traffic management
Procedia PDF Downloads 2624783 A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: machine learning, classification, predictive quality, hydraulics, supervised learning
Procedia PDF Downloads 21324782 Analysis of Cyber Activities of Potential Business Customers Using Neo4j Graph Databases
Authors: Suglo Tohari Luri
Abstract:
Data analysis is an important aspect of business performance. With the application of artificial intelligence within databases, selecting a suitable database engine for an application design is also very crucial for business data analysis. The application of business intelligence (BI) software into some relational databases such as Neo4j has proved highly effective in terms of customer data analysis. Yet what remains of great concern is the fact that not all business organizations have the neo4j business intelligence software applications to implement for customer data analysis. Further, those with the BI software lack personnel with the requisite expertise to use it effectively with the neo4j database. The purpose of this research is to demonstrate how the Neo4j program code alone can be applied for the analysis of e-commerce website customer visits. As the neo4j database engine is optimized for handling and managing data relationships with the capability of building high performance and scalable systems to handle connected data nodes, it will ensure that business owners who advertise their products at websites using neo4j as a database are able to determine the number of visitors so as to know which products are visited at routine intervals for the necessary decision making. It will also help in knowing the best customer segments in relation to specific goods so as to place more emphasis on their advertisement on the said websites.Keywords: data, engine, intelligence, customer, neo4j, database
Procedia PDF Downloads 19324781 Decision Making System for Clinical Datasets
Authors: P. Bharathiraja
Abstract:
Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.Keywords: decision making, data mining, normalization, fuzzy rule, classification
Procedia PDF Downloads 51724780 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models
Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales
Abstract:
The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.Keywords: concrete bridges, deterioration, Markov chains, probability matrix
Procedia PDF Downloads 33624779 Validation of Visibility Data from Road Weather Information Systems by Comparing Three Data Resources: Case Study in Ohio
Authors: Fan Ye
Abstract:
Adverse weather conditions, particularly those with low visibility, are critical to the driving tasks. However, the direct relationship between visibility distances and traffic flow/roadway safety is uncertain due to the limitation of visibility data availability. The recent growth of deployment of Road Weather Information Systems (RWIS) makes segment-specific visibility information available which can be integrated with other Intelligent Transportation System, such as automated warning system and variable speed limit, to improve mobility and safety. Before applying the RWIS visibility measurements in traffic study and operations, it is critical to validate the data. Therefore, an attempt was made in the paper to examine the validity and viability of RWIS visibility data by comparing visibility measurements among RWIS, airport weather stations, and weather information recorded by police in crash reports, based on Ohio data. The results indicated that RWIS visibility measurements were significantly different from airport visibility data in Ohio, but no conclusion regarding the reliability of RWIS visibility could be drawn in the consideration of no verified ground truth in the comparisons. It was suggested that more objective methods are needed to validate the RWIS visibility measurements, such as continuous in-field measurements associated with various weather events using calibrated visibility sensors.Keywords: RWIS, visibility distance, low visibility, adverse weather
Procedia PDF Downloads 25024778 Design and Simulation of All Optical Fiber to the Home Network
Authors: Rahul Malhotra
Abstract:
Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 55524777 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm
Authors: Vahid Bayrami Rad
Abstract:
In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability
Procedia PDF Downloads 6624776 Privatising Higher Education: Imparting Quality in Academics
Authors: Manish Khanna
Abstract:
Higher education seeks to preserve, transmit and advance knowledge. It is one of the most important instruments of change and progress. The observation of Kothari Commission (1964-66) is true even today; The destiny of India is now being shaped in her classrooms. This, we believe, is no more rhetoric. In the world based on science and technology it is education that determines the level of prosperity, welfare, and security of the people. On the quality and number of persons coming out of our schools and colleges will depend our success in the great enterprise of national reconstruction.Keywords: higher education, quality in academics, Kothari commission, privatising higher education
Procedia PDF Downloads 48124775 Measuring Stakeholder Engagement and Drivers of Success in Ethiopian Tourism Sector
Authors: Gezahegn Gizaw
Abstract:
The FDRE Tourism Training Institute organizes forums for debates, best practices exchange and focus group discussions to forge a sustainable and growing tourism sector while minimizing negative impacts on the environment, communities, and cultures. This study aimed at applying empirical research method to identify and quantify relative importance of success factors and individual engagement indicators that were identified in these forums. Response to the 12-question survey was collected from a total of 437 respondents in academic training institutes (212), business executive and employee (204) and non-academic government offices (21). Overall, capacity building was perceived as the most important driver of success for stakeholder engagement. Business executive and employee category rated capacity building as the most important driver of success (53%), followed by decision-making process (27%) and community participation (20%). Among educators and students, both capacity building and decision-making process were perceived as the most important factors (40% of respondents), whereas community participation was perceived as the most important success factor only by 20% of respondents. Individual engagement score in capacity building, decision-making process and community participation showed highest variability by educational level of participants (variance of 3.4% - 5.2%, p<0.001). Individual engagement score in capacity building was highly correlated to perceived benefit of training on improved efficiency, job security, higher customer satisfaction and self-esteem. On the other hand, individual engagement score in decision making process was highly correlated to its perceived benefit on lowering business costs, improving ability to meet the needs of a target market, job security, self-esteem and more teamwork. The study provides a set of recommendations that help educators, business executives and policy makers to maximize the individual and synergetic effect of training, decision making process on sustainability and growth of the tourism sector in Ethiopia.Keywords: engagement score, driver of success, capacity building, tourism
Procedia PDF Downloads 7724774 Wage Differentiation Patterns of Households Revisited for Turkey in Same Industry Employment: A Pseudo-Panel Approach
Authors: Yasin Kutuk, Bengi Yanik Ilhan
Abstract:
Previous studies investigate the wage differentiations among regions in Turkey between couples who work in the same industry and those who work in different industries by using the models that is appropriate for cross sectional data. However, since there is no available panel data for this investigation in Turkey, pseudo panels using repeated cross-section data sets of the Household Labor Force Surveys 2004-2014 are employed in order to open a new way to examine wage differentiation patterns. For this purpose, household heads are separated into groups with respect to their household composition. These groups’ membership is assumed to be fixed over time such as age groups, education, gender, and NUTS1 (12 regions) Level. The average behavior of them can be tracked overtime same as in the panel data. Estimates using the pseudo panel data would be consistent with the estimates using genuine panel data on individuals if samples are representative of the population which has fixed composition, characteristics. With controlling the socioeconomic factors, wage differentiation of household income is affected by social, cultural and economic changes after global economic crisis emerged in US. It is also revealed whether wage differentiation is changing among the birth cohorts.Keywords: wage income, same industry, pseudo panel, panel data econometrics
Procedia PDF Downloads 39724773 A New Approach for Improving Accuracy of Multi Label Stream Data
Authors: Kunal Shah, Swati Patel
Abstract:
Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets.Keywords: binary relevance, concept drift, data stream mining, MLSC, multiple window with buffer
Procedia PDF Downloads 58424772 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management
Procedia PDF Downloads 1424771 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection
Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada
Abstract:
With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.Keywords: machine learning, imbalanced data, data mining, big data
Procedia PDF Downloads 13024770 Automatic Detection of Traffic Stop Locations Using GPS Data
Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell
Abstract:
Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data
Procedia PDF Downloads 27524769 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data
Authors: Gayathri Nagarajan, L. D. Dhinesh Babu
Abstract:
Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform
Procedia PDF Downloads 24024768 New Approach for Constructing a Secure Biometric Database
Authors: A. Kebbeb, M. Mostefai, F. Benmerzoug, Y. Chahir
Abstract:
The multimodal biometric identification is the combination of several biometric systems. The challenge of this combination is to reduce some limitations of systems based on a single modality while significantly improving performance. In this paper, we propose a new approach to the construction and the protection of a multimodal biometric database dedicated to an identification system. We use a topological watermarking to hide the relation between face image and the registered descriptors extracted from other modalities of the same person for more secure user identification.Keywords: biometric databases, multimodal biometrics, security authentication, digital watermarking
Procedia PDF Downloads 39124767 A Novel Approach of Secret Communication Using Douglas-Peucker Algorithm
Authors: R. Kiruthika, A. Kannan
Abstract:
Steganography is the problem of hiding secret messages in 'innocent – looking' public communication so that the presence of the secret message cannot be detected. This paper introduces a steganographic security in terms of computational in-distinguishability from a channel of probability distributions on cover messages. This method first splits the cover image into two separate blocks using Douglas – Peucker algorithm. The text message and the image will be hided in the Least Significant Bit (LSB) of the cover image.Keywords: steganography, lsb, embedding, Douglas-Peucker algorithm
Procedia PDF Downloads 36324766 Analysis of Sediment Distribution around Karang Sela Coral Reef Using Multibeam Backscatter
Authors: Razak Zakariya, Fazliana Mustajap, Lenny Sharinee Sakai
Abstract:
A sediment map is quite important in the marine environment. The sediment itself contains thousands of information that can be used for other research. This study was conducted by using a multibeam echo sounder Reson T20 on 15 August 2020 at the Karang Sela (coral reef area) at Pulau Bidong. The study aims to identify the sediment type around the coral reef by using bathymetry and backscatter data. The sediment in the study area was collected as ground truthing data to verify the classification of the seabed. A dry sieving method was used to analyze the sediment sample by using a sieve shaker. PDS 2000 software was used for data acquisition, and Qimera QPS version 2.4.5 was used for processing the bathymetry data. Meanwhile, FMGT QPS version 7.10 processes the backscatter data. Then, backscatter data were analyzed by using the maximum likelihood classification tool in ArcGIS version 10.8 software. The result identified three types of sediments around the coral which were very coarse sand, coarse sand, and medium sand.Keywords: sediment type, MBES echo sounder, backscatter, ArcGIS
Procedia PDF Downloads 8624765 The Effect of Technology on Human Rights Rules
Authors: Adel Fathy Sadek Abdalla
Abstract:
The issue of respect for human rights in Southeast Asia has become a major concern and is attracting the attention of the international community. Basically, the Association of Southeast Asian Nations (ASEAN) made human rights one of its main issues and in the ASEAN Charter in 2008. Subsequently, the Intergovernmental Commission on Human Rights ASEAN Human Rights (AICHR) was established. AICHR is the Southeast Asia Human Rights Enforcement Commission charged with the responsibilities, functions and powers to promote and protect human rights. However, at the end of 2016, the protective function assigned to the AICHR was not yet fulfilled. This is shown by several cases of human rights violations that are still ongoing and have not yet been solved. One case that has recently come to light is human rights violations against the Rohingya people in Myanmar. Using a legal-normative approach, the study examines the urgency of establishing a human rights tribunal in Southeast Asia capable of making a decision binding on ASEAN members or guilty parties. Data shows ASEAN needs regional courts to deal with human rights abuses in the ASEAN region. In addition, the study also highlights three important factors that ASEAN should consider when establishing a human rights tribunal, namely: Volume. a significant difference in terms of democracy and human rights development among the members, a consistent implementation of the principle of non-interference and the financial issue of the continuation of the court.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security.
Procedia PDF Downloads 4024764 A Named Data Networking Stack for Contiki-NG-OS
Authors: Sedat Bilgili, Alper K. Demir
Abstract:
The current Internet has become the dominant use with continuing growth in the home, medical, health, smart cities and industrial automation applications. Internet of Things (IoT) is an emerging technology to enable such applications in our lives. Moreover, Named Data Networking (NDN) is also emerging as a Future Internet architecture where it fits the communication needs of IoT networks. The aim of this study is to provide an NDN protocol stack implementation running on the Contiki operating system (OS). Contiki OS is an OS that is developed for constrained IoT devices. In this study, an NDN protocol stack that can work on top of IEEE 802.15.4 link and physical layers have been developed and presented.Keywords: internet of things (IoT), named-data, named data networking (NDN), operating system
Procedia PDF Downloads 17124763 How Does Paradoxical Leadership Enhance Organizational Success?
Authors: Wageeh A. Nafei
Abstract:
This paper explores the role of Paradoxical Leadership (PL) in enhancing Organizational Success (OS) at private hospitals in Egypt. Based on the collected data from employees in private hospitals (doctors, nursing staff, and administrative staff). The researcher has adopted a sampling method to collect data for the study. The appropriate statistical methods, such as Alpha Correlation Coefficient (ACC), Confirmatory Factor Analysis (CFA), and Multiple Regression Analysis (MRA), are used to analyze the data and test the hypotheses. The research has reached a number of results, the most important of which are (1) there is a statistical relationship between the independent variable represented by PL and the dependent variable represented by Organizational Success (OS). The paradoxical leader encourages employees to express their opinions and builds a work environment characterized by flexibility and independence. Also, the paradoxical leader works to support specialized work teams, which leads to the creation of new ideas, on the one hand, and contributes to the achievement of outstanding performance on the other hand. (2) the mentality of the paradoxical leader is flexible and capable of absorbing all suggestions from all employees. Also, the paradoxical leader is interested in enhancing cooperation among them and provides an opportunity to transfer experience and increase knowledge-sharing. Also, the sharing of knowledge creates the necessary diversity that helps the organization to obtain rich external information and enables the organization to deal with a rapidly changing environment. (3) The PL approach helps in facing the paradoxical demands of employees. A paradoxical leader plays an important role in reducing the feeling of instability in the work environment and lack of job security, reducing negative feelings for employees, restoring balance in the work environment, improving the well-being of employees, and increasing the degree of job satisfaction of employees in the organization. The study referred to a number of recommendations, the most important of which are (1) the leaders of the organizations must listen to the views of employees and their needs and move away from the official method of control. The leader should give sufficient freedom to employees to participate in decision-making and maintain enough space among them. The treatment between the leaders and employees must be based on friendliness, (2) the need for organizational leaders to pay attention to sharing knowledge among employees through training courses. The leader should make sure that every information provided by the employee is valuable and useful, which can be used to solve a problem that may face his/her colleagues at work, (3) the need for organizational leaders to pay attention to sharing knowledge among employees through brainstorming sessions. The leader should ensure that employees obtain knowledge from their colleagues and share ideas and information among them. This is in addition to motivating employees to complete their work in a new creative way, which leads to employees’ not feeling bored of repeating the same routine procedures in the organization.Keywords: paradoxical leadership, organizational success, human resourece, management
Procedia PDF Downloads 5824762 Location Privacy Preservation of Vehicle Data In Internet of Vehicles
Authors: Ying Ying Liu, Austin Cooke, Parimala Thulasiraman
Abstract:
Internet of Things (IoT) has attracted a recent spark in research on Internet of Vehicles (IoV). In this paper, we focus on one research area in IoV: preserving location privacy of vehicle data. We discuss existing location privacy preserving techniques and provide a scheme for evaluating these techniques under IoV traffic condition. We propose a different strategy in applying Differential Privacy using k-d tree data structure to preserve location privacy and experiment on real world Gowalla data set. We show that our strategy produces differentially private data, good preservation of utility by achieving similar regression accuracy to the original dataset on an LSTM (Long Term Short Term Memory) neural network traffic predictor.Keywords: differential privacy, internet of things, internet of vehicles, location privacy, privacy preservation scheme
Procedia PDF Downloads 17924761 Next-Gen Solutions: How Generative AI Will Reshape Businesses
Authors: Aishwarya Rai
Abstract:
This study explores the transformative influence of generative AI on startups, businesses, and industries. We will explore how large businesses can benefit in the area of customer operations, where AI-powered chatbots can improve self-service and agent effectiveness, greatly increasing efficiency. In marketing and sales, generative AI could transform businesses by automating content development, data utilization, and personalization, resulting in a substantial increase in marketing and sales productivity. In software engineering-focused startups, generative AI can streamline activities, significantly impacting coding processes and work experiences. It can be extremely useful in product R&D for market analysis, virtual design, simulations, and test preparation, altering old workflows and increasing efficiency. Zooming into the retail and CPG industry, industry findings suggest a 1-2% increase in annual revenues, equating to $400 billion to $660 billion. By automating customer service, marketing, sales, and supply chain management, generative AI can streamline operations, optimizing personalized offerings and presenting itself as a disruptive force. While celebrating economic potential, we acknowledge challenges like external inference and adversarial attacks. Human involvement remains crucial for quality control and security in the era of generative AI-driven transformative innovation. This talk provides a comprehensive exploration of generative AI's pivotal role in reshaping businesses, recognizing its strategic impact on customer interactions, productivity, and operational efficiency.Keywords: generative AI, digital transformation, LLM, artificial intelligence, startups, businesses
Procedia PDF Downloads 7624760 Case Study: Institutionalization of CSR Activities of MRGC through an NGO (OSDI)
Authors: Aasim Siddiqui
Abstract:
In a country where 45.6 per cent of the total population lives below the poverty line, according to the Human Development Report 2014 by UNDP, an increasing number of private companies are now dedicating their resources to remedy this situation of chronic poverty. Most corporations in Pakistan now have a separate and dedicated department for Corporate Social Responsibility (CSR), albeit with varying goals and hence different strategies for achieving those goals. Similarly, Marine Group of Companies (MRGC) also has a robust CSR policy which the group implements through a Non-Government Organization (NGO) called Organization for Social Development Initiatives (OSDI). This organization, which operates under the ambit of MRGC’s CSR division, has a concentrated focus on helping the poorest communities in the rural areas of Pakistan to break out of intergenerational poverty. This paper maps the theoretical strategies as well as practical activities undertaken by OSDI for poverty alleviation via rural development in Pakistan. To obtain in-depth information of demographics, livelihood and socio-economic indicators in OSDI’s focused districts; a combination of quantitative and qualitative research methodologies was used during the course of this research. The paper highlights and explains OSDI’s unique three-pronged approach which aims at reducing poverty through income generation via the livelihood assistance program and through the provision of access to the most basic services (including health and education) via the community development and food security programs. Modeled on the concept of capacity building, OSDI’s modus operandi is centered on disbursing timely microcredit facilities to farmers who can benefit from these funds by investing in productive assets to foster financial capability for the future. With a focus on increasing the income of poor farmers, OSDI’s approach is to integrate all the socio-economic facets: education, health and sanitation and food security, to induce a sustained positive impact on their living standards.Keywords: CSR, poverty, rural, sustainability
Procedia PDF Downloads 24624759 Evolutional Substitution Cipher on Chaotic Attractor
Authors: Adda Ali-Pacha, Naima Hadj-Said
Abstract:
Nowadays, the security of information is primarily founded on the calculation of algorithms that confidentiality depend on the number of bits necessary to define a cryptographic key. In this work, we introduce a new chaotic cryptosystem that we call evolutional substitution cipher on a chaotic attractor. In this research paper, we take the Henon attractor. The evolutional substitution cipher on Henon attractor is based on the principle of monoalphabetic cipher and it associates the plaintext at a succession of real numbers calculated from the attractor equations.Keywords: cryptography, substitution cipher, chaos theory, Henon attractor, evolutional substitution cipher
Procedia PDF Downloads 42924758 Investigating Data Normalization Techniques in Swarm Intelligence Forecasting for Energy Commodity Spot Price
Authors: Yuhanis Yusof, Zuriani Mustaffa, Siti Sakira Kamaruddin
Abstract:
Data mining is a fundamental technique in identifying patterns from large data sets. The extracted facts and patterns contribute in various domains such as marketing, forecasting, and medical. Prior to that, data are consolidated so that the resulting mining process may be more efficient. This study investigates the effect of different data normalization techniques, which are Min-max, Z-score, and decimal scaling, on Swarm-based forecasting models. Recent swarm intelligence algorithms employed includes the Grey Wolf Optimizer (GWO) and Artificial Bee Colony (ABC). Forecasting models are later developed to predict the daily spot price of crude oil and gasoline. Results showed that GWO works better with Z-score normalization technique while ABC produces better accuracy with the Min-Max. Nevertheless, the GWO is more superior that ABC as its model generates the highest accuracy for both crude oil and gasoline price. Such a result indicates that GWO is a promising competitor in the family of swarm intelligence algorithms.Keywords: artificial bee colony, data normalization, forecasting, Grey Wolf optimizer
Procedia PDF Downloads 47624757 Collision Theory Based Sentiment Detection Using Discourse Analysis in Hadoop
Authors: Anuta Mukherjee, Saswati Mukherjee
Abstract:
Data is growing everyday. Social networking sites such as Twitter are becoming an integral part of our daily lives, contributing a large increase in the growth of data. It is a rich source especially for sentiment detection or mining since people often express honest opinion through tweets. However, although sentiment analysis is a well-researched topic in text, this analysis using Twitter data poses additional challenges since these are unstructured data with abbreviations and without a strict grammatical correctness. We have employed collision theory to achieve sentiment analysis in Twitter data. We have also incorporated discourse analysis in the collision theory based model to detect accurate sentiment from tweets. We have also used the retweet field to assign weights to certain tweets and obtained the overall weightage of a topic provided in the form of a query. Hadoop has been exploited for speed. Our experiments show effective results.Keywords: sentiment analysis, twitter, collision theory, discourse analysis
Procedia PDF Downloads 535