Search results for: complexity level
12038 Indicator-Based Approach for Assessing Socio Economic Vulnerability of Dairy Farmers to Impacts of Climate Variability and Change in India
Authors: Aparna Radhakrishnan, Jancy Gupta, R. Dileepkumar
Abstract:
This paper aims at assessing the Socio Economic Vulnerability (SEV) of dairy farmers to Climate Variability and Change (CVC) in 3 states of Western Ghat region in India. For this purpose, a composite SEV index has been developed on the basis of functional relationships amongst sensitivity, exposure and adaptive capacity using 30 indicators related to dairy farming underlying the principles of Intergovernmental Panel on Climate Change and Fussel framework for nomenclature of vulnerable situation. Household level data were collected through Participatory Rural Appraisal and personal interviews of 540 dairy farmers of nine taluks, three each from a district selected from Kerala, Karnataka and Maharashtra, complemented by thirty years of gridded weather data. The data were normalized and then combined into three indices for sensitivity, exposure and adaptive capacity, which were then averaged with weights given using principal component analysis, to obtain the overall SEV index. Results indicated that the taluks of Western Ghats are vulnerable to CVC. The dairy farmers of Pulpally taluka were most vulnerable having the SEV score +1.24 and 42.66% farmers under high-level vulnerability category. Even though the taluks are geographically closer, there is wide variation in SEV components. Policies for incentivizing the ‘climate risk adaptation’ costs for small and marginal farmers and livelihood infrastructure for mitigating risks and promoting grass root level innovations are necessary to sustain dairy farming of the region.Keywords: climate change, dairy, vulnerability, livelihoods, adaptation strategies
Procedia PDF Downloads 41912037 One-Dimension Model for Positive Displacement Pump with Cavitation Algorithm
Authors: Francesco Rizzuto, Matthew Stickland, Stephan Hannot
Abstract:
The simulation of a positive displacement pump system with commercial software for Computer Fluid Dynamics (CFD), will result in an enormous computational effort due to the complexity of the pump system. This drawback restricts the use of it to a specific part of the pump in one simulation. This research focuses on developing an algorithm that provides a suitable result in agreement with experiment data, without that computational effort. The compressible equations are solved with an explicit algorithm. A comparison is presented between the FV method with Monotonic Upwind scheme for Conservative Laws (MUSCL) with slope limiter and experimental results. The source term for cavitation and friction is introduced into the algorithm with a slipping strategy and solved with a 4th order Runge-Kutta scheme (RK4). Different pumps are modeled and analyzed to evaluate the flexibility of the code. The simulation required minimal computation time and resources without compromising the accuracy of the simulation results. Therefore, this algorithm highlights the feasibility of pressure pulsation simulation as a design tool for an industrial purpose.Keywords: cavitation, diaphragm, DVCM, finite volume, MUSCL, positive displacement pump
Procedia PDF Downloads 15512036 A Basic Understanding of Viral Disease and Education Level Influences Disease Risk Perception, Disease Severity Perception, and Mask Wearing Behavior During the COVID-19 Pandemic
Authors: Ilse Kreme
Abstract:
To the best of this author’s knowledge, no studies have been identified on the connection between a refusal to engage in health-protective behaviors and a basic understanding of viral biology among community college students, faculty, and staff during the COVID-19 pandemic. Lack of scientific knowledge could prevent understanding of why these behaviors are important to prevent the community spread of COVID-19, even when they are not shown to offer much individual protection. In this study, a possible correlation was examined between a basic knowledge level of viral disease that comes from having taken a college biology course and disease perceptions of COVID-19. In particular, disease risk perception, disease severity percept and mask-wearing behaviors were examined as they correlated with having taken an undergraduate biology course. The effect of covariates of age, gender, and education level were investigated along with the main dependent variables. A representative sample of the population included students, faculty, and staff at Paradise Valley Community College (PVCC) in Phoenix, Arizona. Participants were recruited by an email sent to all students, faculty, and staff at PVCC using an all-college email distribution. Disease risk and severity perception were assessed with the Brief Illness Perception Questionnaire 5 (BIP-Q5), which was modified to include questions measuring participant age, education level, and whether they took or ever took a college biology course. Two additional questions measured compliance of willingness to wear a face mask. The results showed an effect of gender on mask-wearing behavior and a correlation between having taken a biology course and disease severity perception. No differences were seen in mask-wearing behavior and disease risk perception as a result of having taken a biology course. These findings suggest that taking an undergraduate biology course leads to a greater awareness of COVID-19 disease severity through an understanding of the basic biological principles of viral disease transmission. The results can be used to modify existing health education strategies. Further research is needed on how to best reach target audiences in all education brackets.Keywords: COVID-19, education, gender, mask wearing, disease risk perception, disease severity perception
Procedia PDF Downloads 10512035 Fast and Accurate Model to Detect Ictal Waveforms in Electroencephalogram Signals
Authors: Piyush Swami, Bijaya Ketan Panigrahi, Sneh Anand, Manvir Bhatia, Tapan Gandhi
Abstract:
Visual inspection of electroencephalogram (EEG) signals to detect epileptic signals is very challenging and time-consuming task even for any expert neurophysiologist. This problem is most challenging in under-developed and developing countries due to shortage of skilled neurophysiologists. In the past, notable research efforts have gone in trying to automate the seizure detection process. However, due to high false alarm detections and complexity of the models developed so far, have vastly delimited their practical implementation. In this paper, we present a novel scheme for epileptic seizure detection using empirical mode decomposition technique. The intrinsic mode functions obtained were then used to calculate the standard deviations. This was followed by probability density based classifier to discriminate between non-ictal and ictal patterns in EEG signals. The model presented here demonstrated very high classification rates ( > 97%) without compromising the statistical performance. The computation timings for each testing phase were also very low ( < 0.029 s) which makes this model ideal for practical applications.Keywords: electroencephalogram (EEG), epilepsy, ictal patterns, empirical mode decomposition
Procedia PDF Downloads 40612034 Animal Welfare Violations during Treatment at Different Level of Veterinary Hospitals
Authors: Aparna Datta, Mahabub Alam
Abstract:
Animal welfare is comparatively new area of research in Bangladesh and welfare concern for animal is increasing day by day. The study was conducted to investigate the animal welfare violations during treatment at different level of hospitals in Bangladesh and India. This study was conducted between January and May, 2017. The recorded data (N=180) were categorized into eight major types of violation like - delay in starting treatment, non-specific treatment, surgery without anesthesia, use of unsterilized needle, rough and painful handling, fearful approach, multiple pricking during injection and use of blunt needle. Categorized groups were analyzed according to different hospitals like Upazila Veterinary Hospitals, Bangladesh (UVHs), SAQ-Teaching Veterinary Hospital, Bangladesh (SAQTVH) and Veterinary College and Research Institute, India (VCRI). Among all hospitals, violation during treatment more frequently occurred in UVH. Among all violations, surgery without anesthesia was only found in UVH (80%) and it was belong to considerable number of cases (80%). In the view of other major violations like - non-specific treatment was 69% in UVHs, 13% in SAQTVH and 5% in VCRI. Use of unsterilized instruments during treatment was also higher in UVHs (65%) than SAQTVH (5%) and VCRI (1%). But delay in starting treatment varied insignificantly and it was 26-42% across the different levels of hospitals. Although multiple pricking during injection was found 30% cases in UVH, but statistical variations with other level of hospitals were unnoticed (p>0.05). The findings of this study will help to take necessary steps to control violation against animal welfare during treatment. A comprehensive study considering all levels of hospitals including field treatment is also recommended to find out the welfare violations during treatment.Keywords: animal welfare, treatment, veterinary hospitals, violations
Procedia PDF Downloads 15612033 Commercialization of Technologies, Productivity and Problems of Technological Audit in the Russian Economy
Authors: E. A. Tkachenko, E. M. Rogova, A. S. Osipenko
Abstract:
The problems of technological development for the Russian Federation take on special significance in the context of modernization of the production base. The complexity of the position of the Russian economy is that it cannot be attributed fully to developing ones. Russia is a strong industrial power that has gone through the processes of destructive de-industrialization in the conditions of changing its economic and political structure. The need to find ways for re-industrialization is not a unique task for the economies of industrially developed countries. Under the influence of production outsourcing for 20 years, the industrial potential of leading economies of the world was regressed against the backdrop of the ascent of China, a new industrial giant. Therefore, methods, tools, and techniques utilized for industrial renaissance in EU may be used to achieve a technological leap in the Russian Federation, especially since the temporary gap of 5-7 years makes it possible to analyze best practices and use those technological transfer tools that have shown the greatest efficiency. In this article, methods of technological transfer are analyzed, the role of technological audit is justified, and factors are analyzed that influence the successful process of commercialization of technologies.Keywords: technological transfer, productivity, technological audit, commercialization of technologies
Procedia PDF Downloads 21412032 Education as an Important Correlate for Age at Marriage in Bangladesh
Authors: Forhana Rahman Noor, Shafia Jannat Khanam
Abstract:
A girl’s schooling is disrupted by the very act of marriage which requires her to move away from home and her school area to live with her husband’s family, according to custom and practice. Once in her new home, her husband or her in-laws decide her continuation of schooling. A plethora of research has confirmed the inter-relationship between education and age at marriage of girls. The primary data was collected from both urban and rural area in Bangladesh. The study revealed that mean age at marriage for girls was 15.69 years, as a whole and it was lower (15.21 years) in the rural area than that of the urban area (17.13 years). These readings confirm early marriage still exists. The most important determinant of age at marriage was found as low education level of the girls. The bi-variate analysis of this study discovered the relationship or association between education and age at marriage. The study also found the education level of husbands of girls has a significant effect on age at marriage of a girl.Keywords: education, girl, age at marriage, correlate, Bangladesh
Procedia PDF Downloads 33112031 Exploring the Importance of Different Product Cues on the Selection for Chocolate from the Consumer Perspective
Authors: Ezeni Brzovska, Durdana Ozretic-Dosen
Abstract:
The purpose of this paper is to deepen the understanding of the product cues that influence purchase decision for a specific product category – chocolate, and to identify demographic differences in the buying behavior. ANOVA was employed for analyzing the significance level for nine product cues, and the survey showed statistically significant differences among different age and gender groups, and between respondents with different levels of education. From the theoretical perspective, the study adds to the existing knowledge by contributing with the research results from the new environment (Southeast Europe, Macedonia), which has been neglected so far. Establishing the level of significance for the product cues that affect buying behavior in the chocolate consumption context might help managers to improve marketing decision-making, and better meet consumer needs through identifying opportunities for packaging innovations and/or personalization toward different target groups.Keywords: chocolate consumption context, chocolate selection, demographic characteristics, product cues
Procedia PDF Downloads 25312030 The Combined Methodology To Detect Onboard Driver Fatigue
Authors: K. Senthil Nathan, P. Rajasekaran
Abstract:
Fatigue is a feeling of extreme physical or mental tiredness. Almost everyone becomes fatigued at some time, but driver’s fatigue is a serious problem that leads to thousands of automobile crashes each year. Fatigue process is often a change from the alertness and vigor state to the tiredness and weakness state. It is not only accompanied by drowsiness but also has a negative impact on mood. There have been studies to detect and quantify fatigue from the measurement of physiology variables such as electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG). This project involves a multimodal sensing of driver’s drowsiness. The first method is to count the eye blinking rate. In the second level, we authenticate the results of eye blink module with a grip sensor. The Flexiforce sensor is placed over the steering wheel. In the third level, the activities are sensed, the time elapsed from the driver’s last activity is counted here. The activities in the sense: Changing gear, applying brake, pressing sound horns, and turning the steering wheel. Absence of these activities is also an indicator of fatigue.Keywords: eye blink sensor, Flexiforce sensor, EEG, EOG, EMG
Procedia PDF Downloads 48312029 Control Configuration System as a Key Element in Distributed Control System
Authors: Goodarz Sabetian, Sajjad Moshfe
Abstract:
Control system for hi-tech industries could be realized generally and deeply by a special document. Vast heavy industries such as power plants with a large number of I/O signals are controlled by a distributed control system (DCS). This system comprises of so many parts from field level to high control level, and junior instrument engineers may be confused by this enormous information. The key document which can solve this problem is “control configuration system diagram” for each type of DCS. This is a road map that covers all of activities respect to control system in each industrial plant and inevitable to be studied by whom corresponded. It plays an important role from designing control system start point until the end; deliver the system to operate. This should be inserted in bid documents, contracts, purchasing specification and used in different periods of project EPC (engineering, procurement, and construction). Separate parts of DCS are categorized here in order of importance and a brief description and some practical plan is offered. This article could be useful for all instrument and control engineers who worked is EPC projects.Keywords: control, configuration, DCS, power plant, bus
Procedia PDF Downloads 49112028 Movement Optimization of Robotic Arm Movement Using Soft Computing
Authors: V. K. Banga
Abstract:
Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.Keywords: artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic
Procedia PDF Downloads 29712027 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization
Authors: Yihao Kuang, Bowen Ding
Abstract:
With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graph and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improve strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain better and more efficient inference effect by introducing PPO into knowledge inference technology.Keywords: reinforcement learning, PPO, knowledge inference, supervised learning
Procedia PDF Downloads 6712026 Deep Learning for SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network
Procedia PDF Downloads 6912025 Investigation of Dynamic Characteristic of Planetary Gear Set Based On Three-Axes Torque Measurement
Authors: Masao Nakagawa, Toshiki Hirogaki, Eiichi Aoyama, Mohamed Ali Ben Abbes
Abstract:
A planetary gear set is widely used in hybrid vehicles as the power distribution system or in electric vehicles as the high reduction system, but due to its complexity with planet gears, its dynamic characteristic is not fully understood. There are many reports on two-axes driving or displacement of the planet gears under these conditions, but only few reports deal with three-axes driving. A three-axes driving condition is tested using three-axes torque measurement and focuses on the dynamic characteristic around the planet gears in this report. From experimental result, it was confirmed that the transition forces around the planet gears were balanced and the torques were also balanced around the instantaneous rotation center. The meshing frequency under these conditions was revealed to be the harmonics of two meshing frequencies; meshing frequency of the ring gear and that of the planet gears. The input power of the ring gear is distributed to the carrier and the sun gear in the dynamic sequential change of three fixed conditions; planet, star and solar modes.Keywords: dynamic characteristic, gear, planetary gear set, torque measuring
Procedia PDF Downloads 38112024 The Gender Digital Divide in Education: The Case of Students from Rural Area from Republic of Moldova
Authors: Bărbuță Alina
Abstract:
The inter-causal relationship between social inequalities and the digital divide raises the relation issue of gender and information and communication technologies (ICT) - a key element in achieving sustainable development. In preparing generations as future digital citizens and for active socio-economic participation, ICT plays a key role in respecting gender equality. Although several studies over the years have shown that gender plays an important role in digital exclusion, in recent years, many studies with a focus on economically developed or developing countries identify an improvement in these aspects and a gap narrowing. By measuring students' digital competencies level, this paper aims to identify and analyse the existing gender digital inequalities among students. Our analyses are based on a sample of 1526 middle school students residing in rural areas from Republic of Moldova (54.2% girls, mean age 14,00, SD = 1.02). During the online survey they filled in a questionnaire adapted from the (yDSI) ”The Youth Digital Skills Indicator”. The instrument measures the level of five digital competence areas indicated in The European Digital Competence Framework (DigiCom 2.3.). Our results, based on t-test, indicate that depending on gender, there are no statistically significant differences regarding the levels of digital skills in 3 areas: Information navigation and processing; Communication and interaction; Problem solving. However, were identified significant differences in the level of digital skills in the area of ”Digital content creation” [t(1425) = 4.20, p = .000] and ”Safety” [t(1421) = 2.49, p = .000], with higher scores recorded by girls. Our results contradicts the general stereotype regarding the low level of digital competence among girls, in our sample girls scores being on pear with boys and even bigger in knowledge related to digital content creation and online safety skills. Additional investigations related to boys competence on digital safety are necessary as the implication of their low scores on this dimension may suggest boys exposure to digital threats.Keywords: digital divide, education, gender digital divide, digital literacy, remote learning
Procedia PDF Downloads 10212023 The Application of Active Learning to Develop Creativity in General Education
Authors: Chalermwut Wijit
Abstract:
This research is conducted in order to 1) study the result of applying “Active Learning” in general education subject to develop creativity 2) explore problems and obstacles in applying Active Learning in general education subject to improve the creativity in 1780 undergraduate students who registered this subject in the first semester 2013. The research is implemented by allocating the students into several groups of 10 -15 students and assigning them to design the activities for society under the four main conditions including 1) require no financial resources 2) practical 3) can be attended by every student 4) must be accomplished within 2 weeks. The researcher evaluated the creativity prior and after the study. Ultimately, the problems and obstacles from creating activity are evaluated from the open-ended questions in the questionnaires. The study result states that overall average scores on students’ ability increased significantly in terms of creativity, analytical ability and the synthesis, the complexity of working plan and team working. It can be inferred from the outcome that active learning is one of the most efficient methods in developing creativity in general education.Keywords: creative thinking, active learning, general education, social sustainability
Procedia PDF Downloads 18412022 Human C-Cbl and Cbl-b Proteins Are More Highly Expressed in the Thymus Compared to the Testis
Authors: Mazo Kone, Rachida Salah, Harir Noria
Abstract:
Background and objectives: c-Cbl and Cbl-b are two members of the Cbl family proteins, with a crucial role of downregulation of tyrosine kinase receptors. They act as E3 ubiquitin ligases and are multivalent adaptor proteins, making them important in maintaining homeostasis in the body. This study investigated the expression level in thymus and testis in normal conditions. Methods: The expression level was assessed by immunochemistry of tissue microarrays of normal thymus and testis biopsies. Results: Cbl-b and c-Cbl proteins were found to be highly expressed in normal testis and thymus, indicated as yellowish brown granules in the cytomembrane and cytoplasm compared to controls. The c-Cbl appears to be more highly expressed than the Cbl-b in the thymus, while c-Cbl appears slightly stronger than Cbl-b in the testis. The thymus was found with a higher grade compared to the testis. Conclusion: In this work we concluded, that in normal condition, thymus tissue expresses more Cbl family proteins(c-Cbl and Cbl-b) than the testis tissue in humans.Keywords: Human C-Cbl proteins, Human Cbl-b protein, Testis, Thymus
Procedia PDF Downloads 23312021 Statistical Comparison of Ensemble Based Storm Surge Forecasting Models
Authors: Amin Salighehdar, Ziwen Ye, Mingzhe Liu, Ionut Florescu, Alan F. Blumberg
Abstract:
Storm surge is an abnormal water level caused by a storm. Accurate prediction of a storm surge is a challenging problem. Researchers developed various ensemble modeling techniques to combine several individual forecasts to produce an overall presumably better forecast. There exist some simple ensemble modeling techniques in literature. For instance, Model Output Statistics (MOS), and running mean-bias removal are widely used techniques in storm surge prediction domain. However, these methods have some drawbacks. For instance, MOS is based on multiple linear regression and it needs a long period of training data. To overcome the shortcomings of these simple methods, researchers propose some advanced methods. For instance, ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast. This application creates a better forecast of sea level using a combination of several instances of the Bayesian Model Averaging (BMA). An ensemble dressing method is based on identifying best member forecast and using it for prediction. Our contribution in this paper can be summarized as follows. First, we investigate whether the ensemble models perform better than any single forecast. Therefore, we need to identify the single best forecast. We present a methodology based on a simple Bayesian selection method to select the best single forecast. Second, we present several new and simple ways to construct ensemble models. We use correlation and standard deviation as weights in combining different forecast models. Third, we use these ensembles and compare with several existing models in literature to forecast storm surge level. We then investigate whether developing a complex ensemble model is indeed needed. To achieve this goal, we use a simple average (one of the simplest and widely used ensemble model) as benchmark. Predicting the peak level of Surge during a storm as well as the precise time at which this peak level takes place is crucial, thus we develop a statistical platform to compare the performance of various ensemble methods. This statistical analysis is based on root mean square error of the ensemble forecast during the testing period and on the magnitude and timing of the forecasted peak surge compared to the actual time and peak. In this work, we analyze four hurricanes: hurricanes Irene and Lee in 2011, hurricane Sandy in 2012, and hurricane Joaquin in 2015. Since hurricane Irene developed at the end of August 2011 and hurricane Lee started just after Irene at the beginning of September 2011, in this study we consider them as a single contiguous hurricane event. The data set used for this study is generated by the New York Harbor Observing and Prediction System (NYHOPS). We find that even the simplest possible way of creating an ensemble produces results superior to any single forecast. We also show that the ensemble models we propose generally have better performance compared to the simple average ensemble technique.Keywords: Bayesian learning, ensemble model, statistical analysis, storm surge prediction
Procedia PDF Downloads 30912020 Spatio-Temporal Properties of p53 States Raised by Glucose
Authors: Md. Jahoor Alam
Abstract:
Recent studies suggest that Glucose controls several lifesaving pathways. Glucose molecule is reported to be responsible for the production of ROS (reactive oxygen species). In the present work, a p53-MDM2-Glucose model is developed in order to study spatiotemporal properties of the p53 pathway. The systematic model is mathematically described. The model is numerically simulated using high computational facility. It is observed that the variation in glucose concentration level triggers the system at different states, namely, oscillation death (stabilized), sustain and damped oscillations which correspond to various cellular states. The transition of these states induced by glucose is phase transition-like behaviour. Further, the amplitude of p53 dynamics with the variation of glucose concentration level follows power law behaviour, As(k) ~ kϒ, where, ϒ is a constant. Further Stochastic approach is needed for understanding of realistic behaviour of the model. The present model predicts the variation of p53 states under the influence of glucose molecule which is also supported by experimental facts reported by various research articles.Keywords: oscillation, temporal behavior, p53, glucose
Procedia PDF Downloads 30412019 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objetives
Authors: Mingyu Xie, Mietek Brdys
Abstract:
The paper develops a non-linear model predictive control (NMPC) of water quality in drinking water distribution systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives
Procedia PDF Downloads 31712018 Cluster-Based Exploration of System Readiness Levels: Mathematical Properties of Interfaces
Authors: Justin Fu, Thomas Mazzuchi, Shahram Sarkani
Abstract:
A key factor in technological immaturity in defense weapons acquisition is lack of understanding critical integrations at the subsystem and component level. To address this shortfall, recent research in integration readiness level (IRL) combines with technology readiness level (TRL) to form a system readiness level (SRL). SRL can be enriched with more robust quantitative methods to provide the program manager a useful tool prior to committing to major weapons acquisition programs. This research harnesses previous mathematical models based on graph theory, Petri nets, and tropical algebra and proposes a modification of the desirable SRL mathematical properties such that a tightly integrated (multitude of interfaces) subsystem can display a lower SRL than an inherently less coupled subsystem. The synthesis of these methods informs an improved decision tool for the program manager to commit to expensive technology development. This research ties the separately developed manufacturing readiness level (MRL) into the network representation of the system and addresses shortfalls in previous frameworks, including the lack of integration weighting and the over-importance of a single extremely immature component. Tropical algebra (based on the minimum of a set of TRLs or IRLs) allows one low IRL or TRL value to diminish the SRL of the entire system, which may not be reflective of actuality if that component is not critical or tightly coupled. Integration connections can be weighted according to importance and readiness levels are modified to be a cardinal scale (based on an analytic hierarchy process). Integration arcs’ importance are dependent on the connected nodes and the additional integrations arcs connected to those nodes. Lack of integration is not represented by zero, but by a perfect integration maturity value. Naturally, the importance (or weight) of such an arc would be zero. To further explore the impact of grouping subsystems, a multi-objective genetic algorithm is then used to find various clusters or communities that can be optimized for the most representative subsystem SRL. This novel calculation is then benchmarked through simulation and using past defense acquisition program data, focusing on the newly introduced Middle Tier of Acquisition (rapidly field prototypes). The model remains a relatively simple, accessible tool, but at higher fidelity and validated with past data for the program manager to decide major defense acquisition program milestones.Keywords: readiness, maturity, system, integration
Procedia PDF Downloads 9212017 Algebraic Coupled Level Set-Volume of Fluid Method with Capillary Pressure Treatment for Surface Tension Dominant Two-Phase Flows
Authors: Majid Haghshenas, James Wilson, Ranganathan Kumar
Abstract:
In this study, an Algebraic Coupled Level Set-Volume of Fluid (A-CLSVOF) method with capillary pressure treatment is proposed for the modeling of two-phase capillary flows. The Volume of Fluid (VOF) method is utilized to incorporate one-way coupling with the Level Set (LS) function in order to further improve the accuracy of the interface curvature calculation and resulting surface tension force. The capillary pressure is determined and treated independently of the hydrodynamic pressure in the momentum balance in order to maintain consistency between cell centered and interpolated values, resulting in a reduction in parasitic currents. In this method, both VOF and LS functions are transported where the new volume fraction determines the interface seed position used to reinitialize the LS field. The Hamilton-Godunov function is used with a second order (in space and time) discretization scheme to produce a signed distance function. The performance of the current methodology has been tested against some common test cases in order to assess the reduction in non-physical velocities and improvements in the interfacial pressure jump. The cases of a static drop, non-linear Rayleigh-Taylor instability and finally a droplets impact on a liquid pool were simulated to compare the performance of the present method to other well-known methods in the area of parasitic current reduction, interface location evolution and overall agreement with experimental results.Keywords: two-phase flow, capillary flow, surface tension force, coupled LS with VOF
Procedia PDF Downloads 35812016 Estimation of Fourier Coefficients of Flux Density for Surface Mounted Permanent Magnet (SMPM) Generators by Direct Search Optimization
Authors: Ramakrishna Rao Mamidi
Abstract:
It is essential for Surface Mounted Permanent Magnet (SMPM) generators to determine the performance prediction and analyze the magnet’s air gap flux density wave shape. The flux density wave shape is neither a pure sine wave or square wave nor a combination. This is due to the variation of air gap reluctance between the stator and permanent magnets. The stator slot openings and the number of slots make the wave shape highly complicated. To reduce the complexity of analysis, approximations are made to the wave shape using Fourier analysis. In contrast to the traditional integration method, the Fourier coefficients, an and bn, are obtained by direct search method optimization. The wave shape with optimized coefficients gives a wave shape close to the desired wave shape. Harmonics amplitudes are worked out and compared with initial values. It can be concluded that the direct search method can be used for estimating Fourier coefficients for irregular wave shapes.Keywords: direct search, flux plot, fourier analysis, permanent magnets
Procedia PDF Downloads 21612015 Quantum Engine Proposal using Two-level Atom Like Manipulation and Relativistic Motoring Control
Authors: Montree Bunruangses, Sonath Bhattacharyya, Somchat Sonasang, Preecha Yupapin
Abstract:
A two-level system is manipulated by a microstrip add-drop circuit configured as an atom like system for wave-particle behavior investigation when its traveling speed along the circuit perimeter is the speed of light. The entangled pair formed by the upper and lower sideband peaks is bound by the angular displacement, which is given by 0≤θ≤π/2. The control signals associated with 3-peak signal frequencies are applied by the external inputs via the microstrip add-drop multiplexer ports, where they are time functions without the space term involved. When a system satisfies the speed of light conditions, the mass term has been changed to energy based on the relativistic limit described by the Lorentz factor and Einstein equation. The different applied frequencies can be utilized to form the 3-phase torques that can be applied for quantum engines. The experiment will use the two-level system circuit and be conducted in the laboratory. The 3-phase torques will be recorded and investigated for quantum engine driving purpose. The obtained results will be compared to the simulation. The optimum amplification of torque can be obtained by the resonant successive filtering operation. Torque will be vanished when the system is balanced at the stopped position, where |Time|=0, which is required to be a system stability condition. It will be discussed for future applications. A larger device may be tested in the future for realistic use. A synchronous and asynchronous driven motor is also discussed for the warp drive use.Keywords: quantum engine, relativistic motor, 3-phase torque, atomic engine
Procedia PDF Downloads 6312014 Analysis of Initial Entry-Level Technology Course Impacts on STEM Major Selection
Authors: Ethan Shafer, Timothy Graziano
Abstract:
This research seeks to answer whether first-year courses at institutions of higher learning can impact STEM major selection. Unlike many universities, an entry-level technology course (often referred to as CS0) is required for all United States Military Academy (USMA) students–regardless of major–in their first year of attendance. Students at the academy choose their major at the end of their first year of studies. Through student responses to a multi-semester survey, this paper identifies a number of factors that potentially influence STEM major selection. Student demographic data, pre-existing exposure and access to technology, perceptions of STEM subjects, and initial desire for a STEM major are captured before and after taking a CS0 course. An analysis of factors that contribute to student perception of STEM and major selection are presented. This work provides recommendations and suggestions for institutions currently providing or looking to provide CS0-like courses to their students.Keywords: education, STEM, pedagogy, digital literacy
Procedia PDF Downloads 12112013 Through Integrated Project Management and Systems Engineering to Support System Design Development: A Project Management-based Systems Engineering Approach
Authors: Xiaojing Gao, James Njuguna
Abstract:
This paper emphasizes the importance of integrating project management and systems engineering for innovative system design and production development. The research highlights the need for a flexible approach that unifies these disciplines, as their isolation often leads to communication challenges and complexity within multidisciplinary teams. The paper aims to elucidate the intricate relationship between project management and systems engineering, recommending the consolidation of engineering disciplines into a single lifecycle for improved support of the design and development process. The research identifies a synergy between these disciplines, focusing on streamlining information communication during product design and development. The insights gained from this process can lead to product design optimization. Additionally, the paper introduces a proposed Project Management-Based Systems Engineering (PMBSE) framework, emphasizing effective communication, efficient processes, and advanced tools to enhance product development outcomes within the product lifecycle.Keywords: system engineering, product design and development, project management, cross-disciplinary
Procedia PDF Downloads 7812012 The Development of Speaking Using Folk Tales Based on Performance Activities for Early Childhood Student
Authors: Yaowaluck Ruampol, Suthakorn Wasupokin
Abstract:
The research on the development of speaking using folk tales based on performance activities aimed to (1) study the development of speaking skill for early- childhood students, and (2) evaluate the development of speaking skill before and after speaking activities. Ten students of Kindergarten level 2, who have enrolled in the subject of the research for speaking development of semester 2 in 2013 were purposively selected as the research cohort. The research tools were lesson plans for speaking activities and pre-post test for speaking development that were approved as content validity and reliability (IOC=.66-1.00,α=0.967). The research found that the development of speaking skill of the research samples before using performance activities on folk tales in developing speaking skill was in the normal high level. Additionally, the results appeared that the preschoolers after applying speaking skill on performance activities also imaginatively created their speaking skill.Keywords: speaking development, folk tales, performance activities, early-childhood students
Procedia PDF Downloads 34112011 Dynamic Log Parsing and Intelligent Anomaly Detection Method Combining Retrieval Augmented Generation and Prompt Engineering
Authors: Liu Linxin
Abstract:
As system complexity increases, log parsing and anomaly detection become more and more important in ensuring system stability. However, traditional methods often face the problems of insufficient adaptability and decreasing accuracy when dealing with rapidly changing log contents and unknown domains. To this end, this paper proposes an approach LogRAG, which combines RAG (Retrieval Augmented Generation) technology with Prompt Engineering for Large Language Models, applied to log analysis tasks to achieve dynamic parsing of logs and intelligent anomaly detection. By combining real-time information retrieval and prompt optimisation, this study significantly improves the adaptive capability of log analysis and the interpretability of results. Experimental results show that the method performs well on several public datasets, especially in the absence of training data, and significantly outperforms traditional methods. This paper provides a technical path for log parsing and anomaly detection, demonstrating significant theoretical value and application potential.Keywords: log parsing, anomaly detection, retrieval-augmented generation, prompt engineering, LLMs
Procedia PDF Downloads 2912010 New Tools and New Ways; Changing the Nature of Leadership and Future Challenges
Authors: Harun Ozdemirci
Abstract:
Complexity and chaos are the characteristics of our new world today. Either business or governmental sector, inner and outer environment changes in all aspects. To ensure leaders to guide organizations accurately and effectively, leaders also must change their attitudes towards this changing world . We need new tools, new mindsets and new views for new century. Every leader have to operate within an cerative and innovative way of thinking. But how it will occur and at which direction it will be managed or directed? What kind of abilities and attitudes make leader compatible with this ever-changing and ambigous environment? Leader who will lead in the future must have some special skillls. But how can we develop these skills and behaviours? What must be the mindset of a future leader? This paper searchs for answers of some of these questions. But asking questions is more important than giving answers to them. Innovation and creativity have been at the centerpiece of our lives for some years. But we don’t know how to manage and how to tackle with the challenges come up with this new situation. This new world order compel us to take some new positions against new employees who have different types of lives and habits, new productivity processes, new adversaries… Future environment will not be the same as we experience before. So, our responses to this new environment can not be the same as our predecessors gave. We have to innovate new ways of thinking, and new tools for solving new type of problems.Keywords: innovation, creativity, leader, future, liberal arts
Procedia PDF Downloads 27212009 Incentivize Contracting Partners of Public Projects
Authors: Sai On Cheung, Qiuwen Ma, Fong Chung Lee
Abstract:
Due to increased project complexity and technological advancement in the last decade, the designers and contractors are expected to put more efforts to achieve project goals. To render extra efforts from the agents, incentivization has become one of the primary strategies for the client. Despite increased academia interest in the design of incentive strategies, there is still a need for discussion about the underlying motivations and favourable conditions to make incentives effective. Therefore, this study focuses on the effects of motivations and favourable conditions for the use of incentives in public projects. Questionnaire survey is used as the data collection tool. The questionnaire survey was piloted through interviews with professionals from Hong Kong public sector. A total of 100 responses were collected for this survey. Accountability and organizational effectiveness were found to be the prime objectives of incentives installed by public clients. Furthermore, a list of favourable conditions for incentivization and its consequent effects on cost, schedule, risk and public opinions were identified. To conclude, this study analyses the means and ends of the use of incentives in public projects in Hong Kong.Keywords: incentives, public accountability, project effectiveness, public opinions
Procedia PDF Downloads 68