Search results for: most important contemporary challenges
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20487

Search results for: most important contemporary challenges

87 Computer-Integrated Surgery of the Human Brain, New Possibilities

Authors: Ugo Galvanetto, Pirto G. Pavan, Mirco Zaccariotto

Abstract:

The discipline of Computer-integrated surgery (CIS) will provide equipment able to improve the efficiency of healthcare systems and, which is more important, clinical results. Surgeons and machines will cooperate in new ways that will extend surgeons’ ability to train, plan and carry out surgery. Patient specific CIS of the brain requires several steps: 1 - Fast generation of brain models. Based on image recognition of MR images and equipped with artificial intelligence, image recognition techniques should differentiate among all brain tissues and segment them. After that, automatic mesh generation should create the mathematical model of the brain in which the various tissues (white matter, grey matter, cerebrospinal fluid …) are clearly located in the correct positions. 2 – Reliable and fast simulation of the surgical process. Computational mechanics will be the crucial aspect of the entire procedure. New algorithms will be used to simulate the mechanical behaviour of cutting through cerebral tissues. 3 – Real time provision of visual and haptic feedback A sophisticated human-machine interface based on ergonomics and psychology will provide the feedback to the surgeon. The present work will address in particular point 2. Modelling the cutting of soft tissue in a structure as complex as the human brain is an extremely challenging problem in computational mechanics. The finite element method (FEM), that accurately represents complex geometries and accounts for material and geometrical nonlinearities, is the most used computational tool to simulate the mechanical response of soft tissues. However, the main drawback of FEM lies in the mechanics theory on which it is based, classical continuum Mechanics, which assumes matter is a continuum with no discontinuity. FEM must resort to complex tools such as pre-defined cohesive zones, external phase-field variables, and demanding remeshing techniques to include discontinuities. However, all approaches to equip FEM computational methods with the capability to describe material separation, such as interface elements with cohesive zone models, X-FEM, element erosion, phase-field, have some drawbacks that make them unsuitable for surgery simulation. Interface elements require a-priori knowledge of crack paths. The use of XFEM in 3D is cumbersome. Element erosion does not conserve mass. The Phase Field approach adopts a diffusive crack model instead of describing true tissue separation typical of surgical procedures. Modelling discontinuities, so difficult when using computational approaches based on classical continuum Mechanics, is instead easy for novel computational methods based on Peridynamics (PD). PD is a non-local theory of mechanics formulated with no use of spatial derivatives. Its governing equations are valid at points or surfaces of discontinuity, and it is, therefore especially suited to describe crack propagation and fragmentation problems. Moreover, PD does not require any criterium to decide the direction of crack propagation or the conditions for crack branching or coalescence; in the PD-based computational methods, cracks develop spontaneously in the way which is the most convenient from an energy point of view. Therefore, in PD computational methods, crack propagation in 3D is as easy as it is in 2D, with a remarkable advantage with respect to all other computational techniques.

Keywords: computational mechanics, peridynamics, finite element, biomechanics

Procedia PDF Downloads 84
86 Long-Term Tillage, Lime Matter and Cover Crop Effects under Heavy Soil Conditions in Northern Lithuania

Authors: Aleksandras Velykis, Antanas Satkus

Abstract:

Clay loam and clay soils are typical for northern Lithuania. These soils are susceptible to physical degradation in the case of intensive use of heavy machinery for field operations. However, clayey soils having poor physical properties by origin require more intensive tillage to maintain proper physical condition for grown crops. Therefore not only choice of suitable tillage system is very important for these soils in the region, but also additional search of other measures is essential for good soil physical state maintenance. Research objective: To evaluate the long-term effects of different intensity tillage as well as its combinations with supplementary agronomic practices on improvement of soil physical conditions and environmental sustainability. The experiment examined the influence of deep and shallow ploughing, ploughless tillage, combinations of ploughless tillage with incorporation of lime sludge and cover crop for green manure and application of the same cover crop for mulch without autumn tillage under spring and winter crop growing conditions on clay loam (27% clay, 50% silt, 23% sand) Endocalcaric Endogleyic Cambisol. Methods: The indicators characterizing the impact of investigated measures were determined using the following methods and devices: Soil dry bulk density – by Eijkelkamp cylinder (100 cm3), soil water content – by weighing, soil structure – by Retsch sieve shaker, aggregate stability – by Eijkelkamp wet sieving apparatus, soil mineral nitrogen – in 1 N KCL extract using colorimetric method. Results: Clay loam soil physical state (dry bulk density, structure, aggregate stability, water content) depends on tillage system and its combination with additional practices used. Application of cover crop winter mulch without tillage in autumn, ploughless tillage and shallow ploughing causes the compaction of bottom (15-25 cm) topsoil layer. However, due to ploughless tillage the soil dry bulk density in subsoil (25-35 cm) layer is less compared to deep ploughing. Soil structure in the upper (0-15 cm) topsoil layer and in the seedbed (0-5 cm), prepared for spring crops is usually worse when applying the ploughless tillage or cover crop mulch without autumn tillage. Application of lime sludge under ploughless tillage conditions helped to avoid the compaction and structure worsening in upper topsoil layer, as well as increase aggregate stability. Application of reduced tillage increased soil water content at upper topsoil layer directly after spring crop sowing. However, due to reduced tillage the water content in all topsoil markedly decreased when droughty periods lasted for a long time. Combination of reduced tillage with cover crop for green manure and winter mulch is significant for preserving the environment. Such application of cover crops reduces the leaching of mineral nitrogen into the deeper soil layers and environmental pollution. This work was supported by the National Science Program ‘The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems’ [grant number SIT-9/2015] funded by the Research Council of Lithuania.

Keywords: clay loam, endocalcaric endogleyic cambisol, mineral nitrogen, physical state

Procedia PDF Downloads 230
85 Identifying Effective Strategies to Promote Vietnamese Fashion Brands in an Internationally Dominated Market

Authors: Lam Hong Lan, Gabor Sarlos

Abstract:

It is hard to search for best practices in promotion for local fashion brands in Vietnam as the industry is still very young. Local fashion start-ups have grown quickly in the last five years, thanks in part to the internet and social media. However, local designer/owners can face a huge challenge when competing with international brands in the Vietnamese market – and few local case studies are available for guidance. In response, this paper studied how local small- to medium-sized enterprises (SMEs) promote to their target customers in order to compete with international brands. Knowledge of both successful and unsuccessful approaches generated by this study is intended to both contribute to the academic literature on local fashion in Vietnam as well as to help local designers to learn from and improve their brand-building strategy. The primary study featured qualitative data collection via semi-structured depth interviews. Transcription and data analysis were conducted manually in order to identify success factors that local brands should consider as part of their promotion strategy. Purposive sampling of SMEs identified five designers in Ho Chi Minh City (the biggest city in Vietnam) and three designers in Hanoi (the second biggest) as interviewees. Participant attributes included: born in the 1980s or 1990s; familiar with internet and social media; designer/owner of a successful local fashion brand in the key middle market and/or mass market segments (which are crucial to the growth of local brands). A secondary study was conducted using social listening software to gather further qualitative data on what were considered to be successful or unsuccessful approaches to local fashion brand promotion on social media. Both the primary and secondary studies indicated that local designers had maximized their promotion budget by using owned media and earned media instead of paid media. Findings from the qualitative interviews indicate that internet and social media have been used as effective promotion platforms by local fashion start-ups. Facebook and Instagram were the most popular social networks used by the SMEs interviewed, and these social platforms were believed to offer a more affordable promotional strategy than traditional media such as TV and/or print advertising. Online stores were considered an important factor in helping the SMEs to reach customers beyond the physical store. Furthermore, a successful online store allowed some SMEs to reduce their business rental costs by maintaining their physical store in a cheaper, less central city area as opposed to a more traditional city center store location. In addition, the small comparative size of the SMEs allowed them to be more attentive to their customers, leading to higher customer satisfaction and rate of return. In conclusion, this study found that these kinds of cost savings helped the SMEs interviewed to focus their scarce resources on producing unique, high-quality collections in order to differentiate themselves from international brands. Facebook and Instagram were the main platforms used for promotion and brand-building. The main challenge to this promotion strategy identified by the SMEs interviewed was to continue to find innovative ways to maximize the impact of a limited marketing budget.

Keywords: Vietnam, SMEs, fashion brands, promotion, marketing, social listening

Procedia PDF Downloads 127
84 Complete Genome Sequence Analysis of Pasteurella multocida Subspecies multocida Serotype A Strain PMTB2.1

Authors: Shagufta Jabeen, Faez J. Firdaus Abdullah, Zunita Zakaria, Nurulfiza M. Isa, Yung C. Tan, Wai Y. Yee, Abdul R. Omar

Abstract:

Pasteurella multocida (PM) is an important veterinary opportunistic pathogen particularly associated with septicemic pasteurellosis, pneumonic pasteurellosis and hemorrhagic septicemia in cattle and buffaloes. P. multocida serotype A has been reported to cause fatal pneumonia and septicemia. Pasteurella multocida subspecies multocida of serotype A Malaysian isolate PMTB2.1 was first isolated from buffaloes died of septicemia. In this study, the genome of P. multocida strain PMTB2.1 was sequenced using third-generation sequencing technology, PacBio RS2 system and analyzed bioinformatically via de novo analysis followed by in-depth analysis based on comparative genomics. Bioinformatics analysis based on de novo assembly of PacBio raw reads generated 3 contigs followed by gap filling of aligned contigs with PCR sequencing, generated a single contiguous circular chromosome with a genomic size of 2,315,138 bp and a GC content of approximately 40.32% (Accession number CP007205). The PMTB2.1 genome comprised of 2,176 protein-coding sequences, 6 rRNA operons and 56 tRNA and 4 ncRNAs sequences. The comparative genome sequence analysis of PMTB2.1 with nine complete genomes which include Actinobacillus pleuropneumoniae, Haemophilus parasuis, Escherichia coli and five P. multocida complete genome sequences including, PM70, PM36950, PMHN06, PM3480, PMHB01 and PMTB2.1 was carried out based on OrthoMCL analysis and Venn diagram. The analysis showed that 282 CDs (13%) are unique to PMTB2.1and 1,125 CDs with orthologs in all. This reflects overall close relationship of these bacteria and supports the classification in the Gamma subdivision of the Proteobacteria. In addition, genomic distance analysis among all nine genomes indicated that PMTB2.1 is closely related with other five Pasteurella species with genomic distance less than 0.13. Synteny analysis shows subtle differences in genetic structures among different P.multocida indicating the dynamics of frequent gene transfer events among different P. multocida strains. However, PM3480 and PM70 exhibited exceptionally large structural variation since they were swine and chicken isolates. Furthermore, genomic structure of PMTB2.1 is more resembling that of PM36950 with a genomic size difference of approximately 34,380 kb (smaller than PM36950) and strain-specific Integrative and Conjugative Elements (ICE) which was found only in PM36950 is absent in PMTB2.1. Meanwhile, two intact prophages sequences of approximately 62 kb were found to be present only in PMTB2.1. One of phage is similar to transposable phage SfMu. The phylogenomic tree was constructed and rooted with E. coli, A. pleuropneumoniae and H. parasuis based on OrthoMCL analysis. The genomes of P. multocida strain PMTB2.1 were clustered with bovine isolates of P. multocida strain PM36950 and PMHB01 and were separated from avian isolate PM70 and swine isolates PM3480 and PMHN06 and are distant from Actinobacillus and Haemophilus. Previous studies based on Single Nucleotide Polymorphism (SNPs) and Multilocus Sequence Typing (MLST) unable to show a clear phylogenetic relatedness between Pasteurella multocida and the different host. In conclusion, this study has provided insight on the genomic structure of PMTB2.1 in terms of potential genes that can function as virulence factors for future study in elucidating the mechanisms behind the ability of the bacteria in causing diseases in susceptible animals.

Keywords: comparative genomics, DNA sequencing, phage, phylogenomics

Procedia PDF Downloads 190
83 Numerical Prediction of Width Crack of Concrete Dapped-End Beams

Authors: Jatziri Y. Moreno-Martinez, Arturo Galvan, Xavier Chavez Cardenas, Hiram Arroyo

Abstract:

Several methods have been utilized to study the prediction of cracking of concrete structural under loading. The finite element analysis is an alternative that shows good results. The aim of this work was the numerical study of the width crack in reinforced concrete beams with dapped ends, these are frequently found in bridge girders and precast concrete construction. Properly restricting cracking is an important aspect of the design in dapped ends, it has been observed that the cracks that exceed the allowable widths are unacceptable in an aggressive environment for reinforcing steel. For simulating the crack width, the discrete crack approach was considered by means of a Cohesive Zone (CZM) Model using a function to represent the crack opening. Two cases of dapped-end were constructed and tested in the laboratory of Structures and Materials of Engineering Institute of UNAM. The first case considers a reinforcement based on hangers as well as on vertical and horizontal ring, the second case considers 50% of the vertical stirrups in the dapped end to the main part of the beam were replaced by an equivalent area (vertically projected) of diagonal bars under. The loading protocol consisted on applying symmetrical loading to reach the service load. The models were performed using the software package ANSYS v. 16.2. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The reinforcement was introduced with smeared approach. Interface delamination was modeled by traditional fracture mechanics methods such as the nodal release technique adopting softening relationships between tractions and the separations, which in turn introduce a critical fracture energy that is also the energy required to break apart the interface surfaces. This technique is called CZM. The interface surfaces of the materials are represented by a contact elements Surface-to-Surface (CONTA173) with bonded (initial contact). The Mode I dominated bilinear CZM model assumes that the separation of the material interface is dominated by the displacement jump normal to the interface. Furthermore, the opening crack was taken into consideration according to the maximum normal contact stress, the contact gap at the completion of debonding, and the maximum equivalent tangential contact stress. The contact elements were placed in the crack re-entrant corner. To validate the proposed approach, the results obtained with the previous procedure are compared with experimental test. A good correlation between the experimental and numerical Load-Displacement curves was presented, the numerical models also allowed to obtain the load-crack width curves. In these two cases, the proposed model confirms the capability of predicting the maximum crack width, with an error of ± 30 %. Finally, the orientation of the crack is a fundamental for the prediction of crack width. The results regarding the crack width can be considered as good from the practical point view. Load-Displacement curve of the test and the location of the crack were able to obtain favorable results.

Keywords: cohesive zone model, dapped-end beams, discrete crack approach, finite element analysis

Procedia PDF Downloads 171
82 Developing and integrated Clinical Risk Management Model

Authors: Mohammad H. Yarmohammadian, Fatemeh Rezaei

Abstract:

Introduction: Improving patient safety in health systems is one of the main priorities in healthcare systems, so clinical risk management in organizations has become increasingly significant. Although several tools have been developed for clinical risk management, each has its own limitations. Aims: This study aims to develop a comprehensive tool that can complete the limitations of each risk assessment and management tools with the advantage of other tools. Methods: Procedure was determined in two main stages included development of an initial model during meetings with the professors and literature review, then implementation and verification of final model. Subjects and Methods: This study is a quantitative − qualitative research. In terms of qualitative dimension, method of focus groups with inductive approach is used. To evaluate the results of the qualitative study, quantitative assessment of the two parts of the fourth phase and seven phases of the research was conducted. Purposive and stratification sampling of various responsible teams for the selected process was conducted in the operating room. Final model verified in eight phases through application of activity breakdown structure, failure mode and effects analysis (FMEA), healthcare risk priority number (RPN), root cause analysis (RCA), FT, and Eindhoven Classification model (ECM) tools. This model has been conducted typically on patients admitted in a day-clinic ward of a public hospital for surgery in October 2012 to June. Statistical Analysis Used: Qualitative data analysis was done through content analysis and quantitative analysis done through checklist and edited RPN tables. Results: After verification the final model in eight-step, patient's admission process for surgery was developed by focus discussion group (FDG) members in five main phases. Then with adopted methodology of FMEA, 85 failure modes along with its causes, effects, and preventive capabilities was set in the tables. Developed tables to calculate RPN index contain three criteria for severity, two criteria for probability, and two criteria for preventability. Tree failure modes were above determined significant risk limitation (RPN > 250). After a 3-month period, patient's misidentification incidents were the most frequent reported events. Each RPN criterion of misidentification events compared and found that various RPN number for tree misidentification reported events could be determine against predicted score in previous phase. Identified root causes through fault tree categorized with ECM. Wrong side surgery event was selected by focus discussion group to purpose improvement action. The most important causes were lack of planning for number and priority of surgical procedures. After prioritization of the suggested interventions, computerized registration system in health information system (HIS) was adopted to prepare the action plan in the final phase. Conclusion: Complexity of health care industry requires risk managers to have a multifaceted vision. Therefore, applying only one of retrospective or prospective tools for risk management does not work and each organization must provide conditions for potential application of these methods in its organization. The results of this study showed that the integrated clinical risk management model can be used in hospitals as an efficient tool in order to improve clinical governance.

Keywords: failure modes and effective analysis, risk management, root cause analysis, model

Procedia PDF Downloads 251
81 Integrating Evidence Into Health Policy: Navigating Cross-Sector and Interdisciplinary Collaboration

Authors: Tessa Heeren

Abstract:

The following proposal pertains to the complex process of successfully implementing health policies that are based on public health research. A systematic review was conducted by myself and faculty at the Cluj School of Public Health in Romania. The reviewed articles covered a wide range of topics, such as barriers and facilitators to multi-sector collaboration, differences in professional cultures, and systemic obstacles. The reviewed literature identified communication, collaboration, user-friendly dissemination, and documentation of processes in the execution of applied research as important themes for the promotion of evidence in the public health decision-making process. This proposal fits into the Academy Health National Health Policy conference because it identifies and examines differences between the worlds of research and politics. Implications and new insights for federal and/or state health policy: Recommendations made based on the findings of this research include using politically relevant levers to promote research (e.g. campaign donors, lobbies, established parties, etc.), modernizing dissemination practices, and reforms in which the involvement of external stakeholders is facilitated without relying on invitations from individual policy makers. Description of how evidence and/or data was or could be used: The reviewed articles illustrated shortcomings and areas for improvement in policy research processes and collaborative development. In general, the evidence base in the field of integrating research into policy lacks critical details of the actual process of developing evidence based policy. This shortcoming in logistical details creates a barrier for potential replication of collaborative efforts described in studies. Potential impact of the presentation for health policy: The reviewed articles focused on identifying barriers and facilitators that arise in cross sector collaboration, rather than the process and impact of integrating evidence into policy. In addition, the type of evidence used in policy was rarely specified, and widely varying interpretations of the definition of evidence complicated overall conclusions. Background: Using evidence to inform public health decision making processes has been proven effective; however, it is not clear how research is applied in practice. Aims: The objectives of the current study were to assess the extent to which evidence is used in public health decision-making process. Methods: To identify eligible studies, seven bibliographic databases, specifically, PubMed, Scopus, Cochrane Library, Science Direct, Web of Science, ClinicalKey, Health and Safety Science Abstract were screened (search dates: 1990 – September 2015); a general internet search was also conducted. Primary research and systematic reviews about the use of evidence in public health policy in Europe were included. The studies considered for inclusion were assessed by two reviewers, along with extracted data on objective, methods, population, and results. Data were synthetized as a narrative review. Results: Of 2564 articles initially identified, 2525 titles and abstracts were screened. Ultimately, 30 articles fit the research criteria by describing how or why evidence is used/not used in public health policy. The majority of included studies involved interviews and surveys (N=17). Study participants were policy makers, health care professionals, researchers, community members, service users, experts in public health.

Keywords: cross-sector, dissemination, health policy, policy implementation

Procedia PDF Downloads 227
80 Laboratory and Numerical Hydraulic Modelling of Annular Pipe Electrocoagulation Reactors

Authors: Alejandra Martin-Dominguez, Javier Canto-Rios, Velitchko Tzatchkov

Abstract:

Electrocoagulation is a water treatment technology that consists of generating coagulant species in situ by electrolytic oxidation of sacrificial anode materials triggered by electric current. It removes suspended solids, heavy metals, emulsified oils, bacteria, colloidal solids and particles, soluble inorganic pollutants and other contaminants from water, offering an alternative to the use of metal salts or polymers and polyelectrolyte addition for breaking stable emulsions and suspensions. The method essentially consists of passing the water being treated through pairs of consumable conductive metal plates in parallel, which act as monopolar electrodes, commonly known as ‘sacrificial electrodes’. Physicochemical, electrochemical and hydraulic processes are involved in the efficiency of this type of treatment. While the physicochemical and electrochemical aspects of the technology have been extensively studied, little is known about the influence of the hydraulics. However, the hydraulic process is fundamental for the reactions that take place at the electrode boundary layers and for the coagulant mixing. Electrocoagulation reactors can be open (with free water surface) and closed (pressurized). Independently of the type of rector, hydraulic head loss is an important factor for its design. The present work focuses on the study of the total hydraulic head loss and flow velocity and pressure distribution in electrocoagulation reactors with single or multiple concentric annular cross sections. An analysis of the head loss produced by hydraulic wall shear friction and accessories (minor head losses) is presented, and compared to the head loss measured on a semi-pilot scale laboratory model for different flow rates through the reactor. The tests included laminar, transitional and turbulent flow. The observed head loss was compared also to the head loss predicted by several known conceptual theoretical and empirical equations, specific for flow in concentric annular pipes. Four single concentric annular cross section and one multiple concentric annular cross section reactor configuration were studied. The theoretical head loss resulted higher than the observed in the laboratory model in some of the tests, and lower in others of them, depending also on the assumed value for the wall roughness. Most of the theoretical models assume that the fluid elements in all annular sections have the same velocity, and that flow is steady, uniform and one-dimensional, with the same pressure and velocity profiles in all reactor sections. To check the validity of such assumptions, a computational fluid dynamics (CFD) model of the concentric annular pipe reactor was implemented using the ANSYS Fluent software, demonstrating that pressure and flow velocity distribution inside the reactor actually is not uniform. Based on the analysis, the equations that predict better the head loss in single and multiple annular sections were obtained. Other factors that may impact the head loss, such as the generation of coagulants and gases during the electrochemical reaction, the accumulation of hydroxides inside the reactor, and the change of the electrode material with time, are also discussed. The results can be used as tools for design and scale-up of electrocoagulation reactors, to be integrated into new or existing water treatment plants.

Keywords: electrocoagulation reactors, hydraulic head loss, concentric annular pipes, computational fluid dynamics model

Procedia PDF Downloads 221
79 A Study of Seismic Design Approaches for Steel Sheet Piles: Hydrodynamic Pressures and Reduction Factors Using CFD and Dynamic Calculations

Authors: Helena Pera, Arcadi Sanmartin, Albert Falques, Rafael Rebolo, Xavier Ametller, Heiko Zillgen, Cecile Prum, Boris Even, Eric Kapornyai

Abstract:

Sheet piles system can be an interesting solution when dealing with harbors or quays designs. However, current design methods lead to conservative approaches due to the lack of specific basis of design. For instance, some design features still deal with pseudo-static approaches, although being a dynamic problem. Under this concern, the study particularly focuses on hydrodynamic water pressure definition and stability analysis of sheet pile system under seismic loads. During a seismic event, seawater produces hydrodynamic pressures on structures. Currently, design methods introduce hydrodynamic forces by means of Westergaard formulation and Eurocodes recommendations. They apply constant hydrodynamic pressure on the front sheet pile during the entire earthquake. As a result, the hydrodynamic load may represent 20% of the total forces produced on the sheet pile. Nonetheless, some studies question that approach. Hence, this study assesses the soil-structure-fluid interaction of sheet piles under seismic action in order to evaluate if current design strategies overestimate hydrodynamic pressures. For that purpose, this study performs various simulations by Plaxis 2D, a well-known geotechnical software, and CFD models, which treat fluid dynamic behaviours. Knowing that neither Plaxis nor CFD can resolve a soil-fluid coupled problem, the investigation imposes sheet pile displacements from Plaxis as input data for the CFD model. Then, it provides hydrodynamic pressures under seismic action, which fit theoretical Westergaard pressures if calculated using the acceleration at each moment of the earthquake. Thus, hydrodynamic pressures fluctuate during seismic action instead of remaining constant, as design recommendations propose. Additionally, these findings detect that hydrodynamic pressure contributes a 5% to the total load applied on sheet pile due to its instantaneous nature. These results are in line with other studies that use added masses methods for hydrodynamic pressures. Another important feature in sheet pile design is the assessment of the geotechnical overall stability. It uses pseudo-static analysis since the dynamic analysis cannot provide a safety calculation. Consequently, it estimates the seismic action. One of its relevant factors is the selection of the seismic reduction factor. A huge amount of studies discusses the importance of it but also about all its uncertainties. Moreover, current European standards do not propose a clear statement on that, and they recommend using a reduction factor equal to 1. This leads to conservative requirements when compared with more advanced methods. Under this situation, the study calibrates seismic reduction factor by fitting results from pseudo-static to dynamic analysis. The investigation concludes that pseudo-static analyses could reduce seismic action by 40-50%. These results are in line with some studies from Japanese and European working groups. In addition, it seems suitable to account for the flexibility of the sheet pile-soil system. Nevertheless, the calibrated reduction factor is subjected to particular conditions of each design case. Further research would contribute to specifying recommendations for selecting reduction factor values in the early stages of the design. In conclusion, sheet pile design still has chances for improving its design methodologies and approaches. Consequently, design could propose better seismic solutions thanks to advanced methods such as findings of this study.

Keywords: computational fluid dynamics, hydrodynamic pressures, pseudo-static analysis, quays, seismic design, steel sheet pile

Procedia PDF Downloads 145
78 Information Pollution: Exploratory Analysis of Subs-Saharan African Media’s Capabilities to Combat Misinformation and Disinformation

Authors: Muhammed Jamiu Mustapha, Jamiu Folarin, Stephen Obiri Agyei, Rasheed Ademola Adebiyi, Mutiu Iyanda Lasisi

Abstract:

The role of information in societal development and growth cannot be over-emphasized. It has remained an age-long strategy to adopt the information flow to make an egalitarian society. The same has become a tool for throwing society into chaos and anarchy. It has been adopted as a weapon of war and a veritable instrument of psychological warfare with a variety of uses. That is why some scholars posit that information could be deployed as a weapon to wreak “Mass Destruction" or promote “Mass Development". When used as a tool for destruction, the effect on society is like an atomic bomb which when it is released, pollutes the air and suffocates the people. Technological advancement has further exposed the latent power of information and many societies seem to be overwhelmed by its negative effect. While information remains one of the bedrock of democracy, the information ecosystem across the world is currently facing a more difficult battle than ever before due to information pluralism and technological advancement. The more the agents involved try to combat its menace, the difficult and complex it is proving to be curbed. In a region like Africa with dangling democracy enfolds with complexities of multi-religion, multi-cultures, inter-tribes, ongoing issues that are yet to be resolved, it is important to pay critical attention to the case of information disorder and find appropriate ways to curb or mitigate its effects. The media, being the middleman in the distribution of information, needs to build capacities and capabilities to separate the whiff of misinformation and disinformation from the grains of truthful data. From quasi-statistical senses, it has been observed that the efforts aimed at fighting information pollution have not considered the built resilience of media organisations against this disorder. Apparently, the efforts, resources and technologies adopted for the conception, production and spread of information pollution are much more sophisticated than approaches to suppress and even reduce its effects on society. Thus, this study seeks to interrogate the phenomenon of information pollution and the capabilities of select media organisations in Sub-Saharan Africa. In doing this, the following questions are probed; what are the media actions to curb the menace of information pollution? Which of these actions are working and how effective are they? And which of the actions are not working and why they are not working? Adopting quantitative and qualitative approaches and anchored on the Dynamic Capability Theory, the study aims at digging up insights to further understand the complexities of information pollution, media capabilities and strategic resources for managing misinformation and disinformation in the region. The quantitative approach involves surveys and the use of questionnaires to get data from journalists on their understanding of misinformation/disinformation and their capabilities to gate-keep. Case Analysis of select media and content analysis of their strategic resources to manage misinformation and disinformation is adopted in the study while the qualitative approach will involve an In-depth Interview to have a more robust analysis is also considered. The study is critical in the fight against information pollution for a number of reasons. One, it is a novel attempt to document the level of media capabilities to fight the phenomenon of information disorder. Two, the study will enable the region to have a clear understanding of the capabilities of existing media organizations to combat misinformation and disinformation in the countries that make up the region. Recommendations emanating from the study could be used to initiate, intensify or review existing approaches to combat the menace of information pollution in the region.

Keywords: disinformation, information pollution, misinformation, media capabilities, sub-Saharan Africa

Procedia PDF Downloads 166
77 Effects of School Culture and Curriculum on Gifted Adolescent Moral, Social, and Emotional Development: A Longitudinal Study of Urban Charter Gifted and Talented Programs

Authors: Rebekah Granger Ellis, Pat J. Austin, Marc P. Bonis, Richard B. Speaker, Jr.

Abstract:

Using two psychometric instruments, this study examined social and emotional intelligence and moral judgment levels of more than 300 gifted and talented high school students enrolled in arts-integrated, academic acceleration, and creative arts charter schools in an ethnically diverse large city in the southeastern United States. Gifted and talented individuals possess distinguishable characteristics; these frequently appear as strengths, but often serious problems accompany them. Although many gifted adolescents thrive in their environments, some struggle in their school and community due to emotional intensity, motivation and achievement issues, lack of peers and isolation, identification problems, sensitivity to expectations and feelings, perfectionism, and other difficulties. These gifted students endure and survive in school rather than flourish. Gifted adolescents face special intrapersonal, interpersonal, and environmental problems. Furthermore, they experience greater levels of stress, disaffection, and isolation than non-gifted individuals due to their advanced cognitive abilities. Therefore, it is important to examine the long-term effects of participation in various gifted and talented programs on the socio-affective development of these adolescents. Numerous studies have researched moral, social, and emotional development in the areas of cognitive-developmental, psychoanalytic, and behavioral learning; however, in almost all cases, these three facets have been studied separately leading to many divergent theories. Additionally, various frameworks and models purporting to encourage the different socio-affective branches of development have been debated in curriculum theory, yet research is inconclusive on the effectiveness of these programs. Most often studied is the socio-affective domain, which includes development and regulation of emotions; empathy development; interpersonal relations and social behaviors; personal and gender identity construction; and moral development, thinking, and judgment. Examining development in these domains can provide insight into why some gifted and talented adolescents are not always successful in adulthood despite advanced IQ scores. Particularly whether emotional, social and moral capabilities of gifted and talented individuals are as advanced as their intellectual abilities and how these are related to each other. This mixed methods longitudinal study examined students in urban gifted and talented charter schools for (1) socio-affective development levels and (2) whether a particular environment encourages developmental growth. Research questions guiding the study: (1) How do academically and artistically gifted 10th and 11th grade students perform on psychological scales of social and emotional intelligence and moral judgment? Do they differ from the normative sample? Do gender differences exist among gifted students? (2) Do adolescents who attend distinctive gifted charter schools differ in developmental profiles? Students’ performances on psychometric instruments were compared over time and by program type. Assessing moral judgment (DIT-2) and socio-emotional intelligence (BarOn EQ-I: YV), participants took pre-, mid-, and post-tests during one academic school year. Quantitative differences in growth on these psychological scales (individuals and school-wide) were examined. If a school showed change, qualitative artifacts (culture, curricula, instructional methodology, stakeholder interviews) provided insight for environmental correlation.

Keywords: gifted and talented programs, moral judgment, social and emotional intelligence, socio-affective education

Procedia PDF Downloads 198
76 The Impact of β Nucleating Agents and Carbon-Based Nanomaterials on Water Vapor Permeability of Polypropylene Composite Films

Authors: Glykeria A. Visvini, George Ν. Mathioudakis, Amaia Soto Beobide, George A. Voyiatzis

Abstract:

Polymer nanocomposites are materials in which a polymer matrix is reinforced with nanoscale inclusions, such as nanoparticles, nanoplates, or nanofibers. These nanoscale inclusions can significantly enhance the mechanical, thermal, electrical, and other properties of the polymer matrix, making them attractive for a wide range of industrial applications. These properties can be tailored by adjusting the type and the concentration of the nanoinclusions, which provides a high degree of flexibility in their design and development. An important property that polymeric membranes can exhibit is water vapor permeability (WVP). This can be accomplished by various methods, including the incorporation of micro/nano-fillers into the polymer matrix. In this way, a micro/nano-pore network can be formed, allowing water vapor to permeate through the membrane. At the same time, the membrane can be stretched uni- or bi-axially, creating aligned or cross-linked micropores in the composite, respectively, which can also increase the WVP. Nowadays, in industry, stretched films reinforced with CaCO3 develop micro-porosity sufficient to give them breathability characteristics. Carbon-based nanomaterials, such as graphene oxide (GO), are tentatively expected to be able to effectively improve the WVP of corresponding composite polymer films. The presence in the GO structure of various functional oxidizing groups enhances its ability to attract and channel water molecules, exploiting the unique large surface area of graphene that allows the rapid transport of water molecules. Polypropylene (PP) is widely used in various industrial applications due to its desirable properties, including good chemical resistance, excellent thermal stability, low cost, and easy processability. The specific properties of PP are highly influenced by its crystalline behavior, which is determined by its processing conditions. The development of the β-crystalline phase in PP, in combination with stretching, is anticipating improving the microporosity of the polymer matrix, thereby enhancing its WVP. The aim of present study is to create breathable PP composite membranes using carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanoplatelets (GNPs). Unlike traditional methods that rely on the drawing process to enhance the WVP of PP, this study intents to develop a low-cost approach using melt mixing with β-nucleating agents and carbon fillers to create highly breathable PP composite membranes. The study aims to investigate how the concentration of these additives affects the water vapor transport properties of the resulting PP films/membranes. The presence of β-nucleating agents and carbon fillers is expected to enhance β-phase growth in PP, while an alternation between β- and α-phase is expected to lead to improved microporosity and WVP. Our ambition is to develop highly breathable PP composite films with superior performance and at a lower cost compared to the benchmark. Acknowledgment: This research has been co‐financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call «Special Actions "AQUACULTURE"-"INDUSTRIAL MATERIALS"-"OPEN INNOVATION IN CULTURE"» (project code: Τ6YBP-00337)

Keywords: carbon based nanomaterials, nanocomposites, nucleating agent, polypropylene, water vapor permeability

Procedia PDF Downloads 90
75 Black-Box-Optimization Approach for High Precision Multi-Axes Forward-Feed Design

Authors: Sebastian Kehne, Alexander Epple, Werner Herfs

Abstract:

A new method for optimal selection of components for multi-axes forward-feed drive systems is proposed in which the choice of motors, gear boxes and ball screw drives is optimized. Essential is here the synchronization of electrical and mechanical frequency behavior of all axes because even advanced controls (like H∞-controls) can only control a small part of the mechanical modes – namely only those of observable and controllable states whose value can be derived from the positions of extern linear length measurement systems and/or rotary encoders on the motor or gear box shafts. Further problems are the unknown processing forces like cutting forces in machine tools during normal operation which make the estimation and control via an observer even more difficult. To start with, the open source Modelica Feed Drive Library which was developed at the Laboratory for Machine Tools, and Production Engineering (WZL) is extended from one axis design to the multi axes design. It is capable to simulate the mechanical, electrical and thermal behavior of permanent magnet synchronous machines with inverters, different gear boxes and ball screw drives in a mechanical system. To keep the calculation time down analytical equations are used for field and torque producing equivalent circuit, heat dissipation and mechanical torque at the shaft. As a first step, a small machine tool with a working area of 635 x 315 x 420 mm is taken apart, and the mechanical transfer behavior is measured with an impulse hammer and acceleration sensors. With the frequency transfer functions, a mechanical finite element model is built up which is reduced with substructure coupling to a mass-damper system which models the most important modes of the axes. The model is modelled with Modelica Feed Drive Library and validated by further relative measurements between machine table and spindle holder with a piezo actor and acceleration sensors. In a next step, the choice of possible components in motor catalogues is limited by derived analytical formulas which are based on well-known metrics to gain effective power and torque of the components. The simulation in Modelica is run with different permanent magnet synchronous motors, gear boxes and ball screw drives from different suppliers. To speed up the optimization different black-box optimization methods (Surrogate-based, gradient-based and evolutionary) are tested on the case. The objective that was chosen is to minimize the integral of the deviations if a step is given on the position controls of the different axes. Small values are good measures for a high dynamic axes. In each iteration (evaluation of one set of components) the control variables are adjusted automatically to have an overshoot less than 1%. It is obtained that the order of the components in optimization problem has a deep impact on the speed of the black-box optimization. An approach to do efficient black-box optimization for multi-axes design is presented in the last part. The authors would like to thank the German Research Foundation DFG for financial support of the project “Optimierung des mechatronischen Entwurfs von mehrachsigen Antriebssystemen (HE 5386/14-1 | 6954/4-1)” (English: Optimization of the Mechatronic Design of Multi-Axes Drive Systems).

Keywords: ball screw drive design, discrete optimization, forward feed drives, gear box design, linear drives, machine tools, motor design, multi-axes design

Procedia PDF Downloads 290
74 The Relationship between Fight-Flight-Freeze System, Level of Expressed Emotion in Family, and Emotion Regulation Difficulties of University Students: Comparison Experienced to Inexperienced Non-Suicidal Self-Injury Students (NSSI)

Authors: Hyojung Shin, Munhee Kweon

Abstract:

Non-suicide Self Injuri (NSSI) can be defined as the act of an individual who does not intend to die directly and intentionally damaging his or her body tissues. According to a study conducted by the Korean Ministry of Education in 2018, the NSSI is widely spreading among teenagers, with 7.9 percent of all middle school students and 6.4 percent of high school students reporting experience in NSSI. As such, it is understood that the first time of the NSSI is in adolescence. However, the NSSI may not start and stop at a certain time, but may last longer. However, despite the widespread prevalence of NSSI among teenagers, little is known about the process and maintenance of NSSI college students on a continuous development basis. Korea's NSSI research trends are mainly focused on individual internal vulnerabilities (high levels of painful emotions/awareness, lack of pain tolerance) and interpersonal vulnerabilities (poor communication skills and social problem solving), and little studies have been done on individuals' unique characteristics and environmental factors such as substrate or environmental vulnerability factors. In particular, environmental factors are associated with the occurrence of NSSI by acting as a vulnerability factor that can interfere with the emotional control of individuals, whereas individual factors play a more direct role by contributing to the maintenance of NSSI, so it is more important to consider this for personal environmental involvement in NSSI. This study focused on the Fight-Flight-Freeze System as a factor in the defensive avoidance system of Reward Sensitivity in individual factors. Also, Environmental factors include the level of expressed emotion in family. Wedig and Nock (2007) said that if parents with a self-critical cognitive style take the form of criticizing their children, the experience of NSSI increases. The high level of parental criticism is related to the increasing frequency of NSSI acts as well as to serious levels of NSSI. If the normal coping mechanism fails to control emotions, people want to overcome emotional difficulties even through NSSI, and emotional disturbances experienced by individuals within an unsupported social relationship increase vulnerability to NSSI. Based on these theories, this study is to find ways to prevent NSSI and intervene in counseling effectively by verifying the differences between the characteristics experienced NSSI persons and non-experienced NSSI persons. Therefore, the purpose of this research was to examine the relationship of Fight-Flight-Freeze System (FFFS), level of expressed emotion in family and emotion regulation difficulties, comparing those who experienced Non-Suicidal Self-Injury (NSSI) with those who did not experienced Non-Suicidal Self-Injury (NSSI). The data were collected from university students in Seoul Korea and Gyeonggi-do province. 99 subjects were experienced student of NSSI, while 375 were non- experienced student of NSSI. The results of this study are as follows. First, the result of t-test indicated that NSSI attempters showed a significant difference in fight-flight-freeze system, level of expressed emotion and emotion regulation difficulties, compared with non-attempters. Second, fight-flight-freeze system, level of expressed emotion in family and emotion regulation difficulties of NSSI attempters showed a significant difference in correlation. The correlation was significant only freeze system of fight-flight-freeze system, Level of expressed emotion in family and emotion regulation difficulties. Third, freeze system and level of expressed emotion in family predicted emotion regulation difficulties of NSSI attempters. Fight-freeze system and level of expressed emotion in family predicted emotion regulation difficulties of non-NSSI attempters. Lastly, Practical implications for counselors and limitations of this study are discussed.

Keywords: fight-flight-freeze system, level of expressed emotion in family, emotion regulation difficulty, non-suicidal self injury

Procedia PDF Downloads 113
73 Sustainability Framework for Water Management in New Zealand's Canterbury Region

Authors: Bryan Jenkins

Abstract:

Introduction: The expansion of irrigation in the Canterbury region has led to the sustainability limits being reached for water availability and the cumulative effects of land use intensification. The institutional framework under New Zealand’s Resource Management Act was found to be an inadequate basis for managing water at sustainability limits. An alternative paradigm for water management was developed based on collaborative governance and nested adaptive systems. This led to the formulation and implementation of the Canterbury Water Management Strategy. Methods: The nested adaptive system approach was adopted. Sustainability issues were identified at multiple spatial and time scales and defined potential failure pathways for the water resource system. These included biophysical and socio-economic issues such as water availability, cumulative effects on water quality due to land use intensification, projected changes in climate, public health, institutional arrangements, economic outcomes and externalities, and, social effects of changing technology. This led to the derivation of sustainability strategies to address these failure pathways. The collaborative governance approach involved stakeholder participation and community engagement to decide on a regional strategy; regional and zone committees of community and rūnanga (Māori groups) members to develop implementation programmes for the strategy; and, farmer collectives for operational management. Findings: The strategy identified improvements in the efficiency of use of water already allocated was more effective in improving water availability than a reliance on increased storage alone. New forms of storage with less adverse impacts were introduced, such as managed aquifer recharge and off-river storage. Reductions of nutrients from land use intensification by improving management practices has been a priority. Solutions packages for addressing the degradation of vulnerable lakes and rivers have been prepared. Biodiversity enhancement projects have been initiated. Greater involvement of Māori has led to the incorporation of kaitiakitanga (resource stewardship) into implementation programmes. Emerging issues are the need for improved integration of surface water and groundwater interactions, increased use of modelling of water and financial outcomes to guide decision making, and, equity in allocation among existing users as well as between existing and future users. Conclusions: However, sustainability analysis indicates that the proposed levels of management interventions are not sufficient to achieve community targets for water management. There is a need for more proactive recovery and rehabilitation measures. Managing to environmental limits is not sufficient, rather managing adaptive cycles is needed. Better measurement and management of water use efficiency is required. Proposed implementation packages are not sufficient to deliver desired water quality outcomes. Greater attention to targets important to environmental and recreational interests is needed to maintain trust in the collaborative process. Implementation programmes don’t adequately address climate change adaptations and greenhouse gas mitigation. Affordability is a constraint on adaptive capacity of farmers and communities. More funding mechanisms are required to implement proactive measures. The legislative and institutional framework needs to be changed to incorporate water framework legislation, regional sustainability strategies and water infrastructure coordination.

Keywords: collaborative governance, irrigation management, nested adaptive systems, sustainable water management

Procedia PDF Downloads 160
72 Bringing Together Student Collaboration and Research Opportunities to Promote Scientific Understanding and Outreach Through a Seismological Community

Authors: Michael Ray Brunt

Abstract:

China has been the site of some of the most significant earthquakes in history; however, earthquake monitoring has long been the provenance of universities and research institutions. The China Digital Seismographic Network was initiated in 1983 and improved significantly during 1992-1993. Data from the CDSN is widely used by government and research institutions, and, generally, this data is not readily accessible to middle and high school students. An educational seismic network in China is needed to provide collaboration and research opportunities for students and engaging students around the country in scientific understanding of earthquake hazards and risks while promoting community awareness. In 2022, the Tsinghua International School (THIS) Seismology Team, made up of enthusiastic students and facilitated by two experienced teachers, was established. As a group, the team’s objective is to install seismographs in schools throughout China, thus creating an educational seismic network that shares data from the THIS Educational Seismic Network (THIS-ESN) and facilitates collaboration. The THIS-ESN initiative will enhance education and outreach in China about earthquake risks and hazards, introduce seismology to a wider audience, stimulate interest in research among students, and develop students’ programming, data collection and analysis skills. It will also encourage and inspire young minds to pursue science, technology, engineering, the arts, and math (STEAM) career fields. The THIS-ESN utilizes small, low-cost RaspberryShake seismographs as a powerful tool linked into a global network, giving schools and the public access to real-time seismic data from across China, increasing earthquake monitoring capabilities in the perspective areas and adding to the available data sets regionally and worldwide helping create a denser seismic network. The RaspberryShake seismograph is compatible with free seismic data viewing platforms such as SWARM, RaspberryShake web programs and mobile apps are designed specifically towards teaching seismology and seismic data interpretation, providing opportunities to enhance understanding. The RaspberryShake is powered by an operating system embedded in the Raspberry Pi, which makes it an easy platform to teach students basic computer communication concepts by utilizing processing tools to investigate, plot, and manipulate data. THIS Seismology Team believes strongly in creating opportunities for committed students to become part of the seismological community by engaging in analysis of real-time scientific data with tangible outcomes. Students will feel proud of the important work they are doing to understand the world around them and become advocates spreading their knowledge back into their homes and communities, helping to improve overall community resilience. We trust that, in studying the results seismograph stations yield, students will not only grasp how subjects like physics and computer science apply in real life, and by spreading information, we hope students across the country can appreciate how and why earthquakes bear on their lives, develop practical skills in STEAM, and engage in the global seismic monitoring effort. By providing such an opportunity to schools across the country, we are confident that we will be an agent of change for society.

Keywords: collaboration, outreach, education, seismology, earthquakes, public awareness, research opportunities

Procedia PDF Downloads 74
71 Biophilic Design Strategies: Four Case-Studies from Northern Europe

Authors: Carmen García Sánchez

Abstract:

The UN's 17 Sustainable Development Goals – specifically the nº 3 and nº 11- urgently call for new architectural design solutions at different design scales to increase human contact with nature in the health and wellbeing promotion of primarily urban communities. The discipline of Interior Design offers an important alternative to large-scale nature-inclusive actions which are not always possible due to space limitations. These circumstances provide an immense opportunity to integrate biophilic design, a complex emerging and under-developed approach that pursues sustainable design strategies for increasing the human-nature connection through the experience of the built environment. Biophilic design explores the diverse ways humans are inherently inclined to affiliate with nature, attach meaning to and derive benefit from the natural world. It represents a biological understanding of architecture which categorization is still in progress. The internationally renowned Danish domestic architecture built in the 1950´s and early 1960´s - a golden age of Danish modern architecture - left a leading legacy that has greatly influenced the domestic sphere and has further led the world in terms of good design and welfare. This study examines how four existing post-war domestic buildings establish a dialogue with nature and her variations over time. The case-studies unveil both memorable and unique biophilic resources through sophisticated and original design expressions, where transformative processes connect the users to the natural setting and reflect fundamental ways in which they attach meaning to the place. In addition, fascinating analogies in terms of this nature interaction with particular traditional Japanese architecture inform the research. They embody prevailing lessons for our time today. The research methodology is based on a thorough literature review combined with a phenomenological analysis into how these case-studies contribute to the connection between humans and nature, after conducting fieldwork throughout varying seasons to document understanding in nature transformations multi-sensory perception (via sight, touch, sound, smell, time and movement) as a core research strategy. The cases´ most outstanding features have been studied attending the following key parameters: 1. Space: 1.1. Relationships (itineraries); 1.2. Measures/scale; 2. Context: Context: Landscape reading in different weather/seasonal conditions; 3. Tectonic: 3.1. Constructive joints, elements assembly; 3.2. Structural order; 4. Materiality: 4.1. Finishes, 4.2. Colors; 4.3. Tactile qualities; 5. Daylight interplay. Departing from an artistic-scientific exploration this groundbreaking study provides sustainable practical design strategies, perspectives, and inspiration to boost humans´ contact with nature through the experience of the interior built environment. Some strategies are associated with access to outdoor space or require ample space, while others can thrive in a dense urban context without direct access to the natural environment. The objective is not only to produce knowledge, but to phase in biophilic design in the built environment, expanding its theory and practice into a new dimension. Its long-term vision is to efficiently enhance the health and well-being of urban communities through daily interaction with Nature.

Keywords: sustainability, biophilic design, architectural design, interior design, nature, Danish architecture, Japanese architecture

Procedia PDF Downloads 109
70 Obesity and Lifestyle of Students in Roumanian Southeastern Region

Authors: Mariana Stuparu-Cretu, Doina-Carina Voinescu, Rodica-Mihaela Dinica, Daniela Borda, Camelia Vizireanu, Gabriela Iordachescu, Camelia Busila

Abstract:

Obesity is involved in the etiology or acceleration of progression of important non-communicable diseases, such as: metabolic, cardiovascular, rheumatological, oncological and depression. It is a need to prevent the obesity occurrence, like a key link in disease management. From this point of view, the best approach is to early educate youngsters upon the need for a healthy nutrition lifestyle associated with constant physical activities. The objective of the study was to assess correlations between weight condition, physical activities and food preferences of students from South East Romania. Questionnaires were applied on high school students in Galati: 1006 girls and 880 boys, aged between 14 and 19 years (being approved by Local School Inspectorate and the Ethics Committee of the 'Dunarea de Jos' University of Galati). The collected answers have been statistically processed by using the multivariate regression method (PLS2) by Unscramble X program (Camo, Norway). Multiple variables such as age group, body mass index, nutritional habits and physical activities were separately analysed, depending on gender and general mathematical models were proposed to explain the obesity trend at an early age. The study results show that overweight and obesity are present in less than a fifth of the adolescents who were surveyed. With a very small variation and a strong correlation of over 86% for 99% of the cases, a general preference for sweet foods, nocturnal eating associated with computer work and a reduced period of physical activity is noticed for girls. In addition, the overweight girls consume sweet juices and alcohol, although a percentage of them also practice the gym. There is also a percentage of the normoponderal girls that consume high caloric foods which predispose this group to turn into overweight cases in time. Within the studied group, statistics for the boys show a positive correlation of almost 87% for over 96% of cases. They prefer high calories foods, fast food, and sweet juices, and perform medium physical activities. Both overweight and underweight boys are more sedentary. Over 15% of girls and over a quarter of boys consume alcohol. All these bad eating habits seem to increase with age, for both sexes. To conclude, obesity and overweight assessed in adolescents in S-E Romania reveal nonsignificant percentage differences between boys and girls. However, young people in this area of the country are sedentary in general; a significant percentage prefers sweets / sweet juices / fast-food and practice computer nourishing. The authors consider that at this age, it is very useful to adapt nutritional education by new methods of food processing and market supply. This would require an early understanding of the difference among foods and nutrients and the benefits of physical activities integrated into the healthy current lifestyle, as a measure for preventing and managing non-communicable chronic diseases related to nutritional errors and sedentarism. Acknowledgment— This study has been partial founded by the Francophone University Agency, Project Réseau régional dans le domaine de la santé, la nutrition et la sécurité alimentaire (SaIN), no.21899/ 06.09.2017.

Keywords: adolescents, body mass index, nutritional habits, obesity, physical activity

Procedia PDF Downloads 261
69 Chronic Fatigue Syndrome/Myalgic Encephalomyelitis in Younger Children: A Qualitative Analysis of Families’ Experiences of the Condition and Perspective on Treatment

Authors: Amberly Brigden, Ali Heawood, Emma C. Anderson, Richard Morris, Esther Crawley

Abstract:

Background: Paediatric chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME) is characterised by persistent, disabling fatigue. Health services see patients below the age of 12. This age group experience high levels of disability, with low levels of school attendance, high levels of fatigue, anxiety, functional disability and pain. CFS/ME interventions have been developed for adolescents, but the developmental needs of younger children suggest treatment should be tailored to this age group. Little is known about how intervention should be delivered to this age group, and further work is needed to explore this. Qualitative research aids patient-centered design of health intervention. Methods: Five to 11-year-olds and their parents were recruited from a specialist CFS/ME service. Semi-structured interviews explored the families’ experience of the condition and perspectives on treatment. Interactive and arts-based methods were used. Interviews were audio-recorded, transcribed and analysed thematically. Qualitative Results: 14 parents and 7 children were interviewed. Early analysis of the interviews revealed the importance of the social-ecological setting of the child, which led to themes being developed in the context of Systems Theory. Theme one relates to the level of the child, theme two the family system, theme three the organisational and societal systems, and theme four cuts-across all levels. Theme1: The child’s capacity to describe, understand and manage their condition. Younger children struggled to describe their internal experiences, such as physical symptoms. Parents felt younger children did not understand some concepts of CFS/ME and did not have the capabilities to monitor and self-regulate their behaviour, as required by treatment. A spectrum of abilities was described; older children (10-11-year-olds) were more involved in clinical sessions and had more responsibility for self-management. Theme2: Parents’ responsibility for managing their child’s condition. Parents took responsibility for regulating their child’s behaviour in accordance with the treatment programme. They structured their child’s environment, gave direct instructions to their child, and communicated the needs of their child to others involved in care. Parents wanted their child to experience a 'normal' childhood and took steps to shield their child from medicalization, including diagnostic labels and clinical discussions. Theme3: Parental isolation and the role of organisational and societal systems. Parents felt unsupported in their role of managing the condition and felt negative responses from primary care health services and schools were underpinned by a lack of awareness and knowledge about CFS/ME in younger children. This sometimes led to a protracted time to diagnosis. Parents felt that schools have the potential important role in managing the child’s condition. Theme4: Complexity and uncertainty. Many parents valued specialist treatment (which included activity management, physiotherapy, sleep management, dietary advice, medical management and psychological support), but felt it needed to account for the complexity of the condition in younger children. Some parents expressed uncertainty about the diagnosis and the treatment programme. Conclusions: Interventions for younger children need to consider the 'systems' (family, organisational and societal) involved in the child’s care. Future research will include interviews with clinicians and schools supporting younger children with CFS/ME.

Keywords: chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME), pediatric, qualitative, treatment

Procedia PDF Downloads 142
68 Targeting Matrix Metalloprotease-9 to Reduce Coronary Artery Manifestations of Kawasaki’s Disease

Authors: Mohammadjavad Sotoudeheian, Navid Farahmandian

Abstract:

Kawasaki disease (KD) is the primary cause of acquired pediatric heart disease as an acute vasculitis. In children with prolonged fever, rash, and inflammation of the mucosa KD must be considered as a clinical diagnosis. There is a persuasive suggestion of immune-mediated damage as the pathophysiologic cascade of KD. For example, the invasion of cytotoxic T-cells supports a viral etiology and the inflammasome of the innate immune system is a critical component in the vasculitis formation in KD. Animal models of KD propose the cytokine profiles, such as increased IL-1 and GM-CSF, which cause vascular damage. CRP and IFN-γ elevated expression and the upregulation of IL-6, and IL-10 production are also described in previous studies. Untreated KD is a critical risk factor for coronary artery diseases and myocardial infarction. Vascular damage may encompass amplified T-cell activity. SMAD3 is an essential molecule in down-regulating T-cells and increasing expression of FoxP3. It has a critical effect in the differentiation of regulatory T-cells. The discrepancy of regulatory T-cells and pro-inflammatory Th17 has been studied in acute coronary syndrome during KD. However in the coronary artery damaged lymphocytes and IgA plasma cells are seen at the lesion locations, the major immune cells in the coronary lesions are monocytes/macrophages and neutrophils. These cells secrete TNF-α, and activates matrix metalloprotease (MMP)-9, reducing the integrity of vessels and prompting patients to arise aneurysm. MMPs can break down the components of the extracellular matrix and assist immune cell movement. IVIG as an effective form of treatment clarified the role of the immune system, which may target pathogenic antigens and regulate cytokine production. Several reports have revealed that in the coronary arteries, high expression of MMP-9 in monocyte/macrophage results in pathologic cascades. Curcumin is a potent antioxidant and anti-inflammatory molecule. Curcumin decreases the production of reactive oxygen and nitrogen species and inhibits transcription factors like AP-1 and NF-κB. Curcumin also contains the characteristics of inhibitory effects on MMPs, especially MMP-9. The upregulation of MMP-9 is an important cellular response. Curcumin treatment caused a reverse effect and down-regulates MMP-9 gene expression which may fund the anti-inflammatory effect. Curcumin inhibits MMP-9 expression via PKC and AMPK-dependent pathways in Human monocytes cells. Elevated expression and activity of MMP-9 are correlated with advanced vascular lesions. AMPK controls lipid metabolism and oxidation, and protein synthesis. AMPK is also necessary for the MMP-9 activity and THP-1 cell adhesion to endothelial cells. Curcumin was shown to inhibit the activation of AMPKα. Compound C (AMPK inhibitor) inhibits MMP-9 expression level. Therefore, through inactivating AMPKs and PKC, curcumin decreases the MMP-9 level, which results in inhibiting monocyte/macrophage differentiation. Compound C also suppress the phosphorylation of three major classes of MAP kinase signaling, suggesting that curcumin may suppress MMP-9 level by inactivation of MAPK pathways. MAPK cascades are activated to induce the expression of MMP-9. Curcumin inhibits MAPKs phosphorylation, which contributes to the down-regulation of MMP-9. This study demonstrated that the potential inhibitory properties of curcumin over MMP-9 lead to a therapeutic strategy to reduce the risk of coronary artery involvement during KD.

Keywords: MMP-9, coronary artery aneurysm, Kawasaki’s disease, curcumin, AMPK, immune system, NF-κB, MAPK

Procedia PDF Downloads 305
67 Preliminary Results on a Study of Antimicrobial Susceptibility Testing of Bacillus anthracis Strains Isolated during Anthrax Outbreaks in Italy from 2001 to 2017

Authors: Viviana Manzulli, Luigina Serrecchia, Adelia Donatiello, Valeria Rondinone, Sabine Zange, Alina Tscherne, Antonio Parisi, Antonio Fasanella

Abstract:

Anthrax is a zoonotic disease that affects a wide range of animal species (primarily ruminant herbivores), and can be transmitted to humans through consumption or handling of contaminated animal products. The etiological agent B.anthracis is able to survive in unfavorable environmental conditions by forming endospore which remain viable in the soil for many decades. Furthermore, B.anthracis is considered as one of the most feared agents to be potentially misused as a biological weapon and the importance of the disease and its treatment in humans has been underscored before the bioterrorism events in the United States in 2001. Due to the often fatal outcome of human cases, antimicrobial susceptibility testing plays especially in the management of anthrax infections an important role. In Italy, animal anthrax is endemic (predominantly found in the southern regions and on islands) and is characterized by sporadic outbreaks occurring mainly during summer. Between 2012 and 2017 single human cases of cutaneous anthrax occurred. In this study, 90 diverse strains of B.anthracis, isolated in Italy from 2001 to 2017, were screened to their susceptibility to sixteen clinically relevant antimicrobial agents by using the broth microdilution method. B.anthracis strains selected for this study belong to the strain collection stored at the Anthrax Reference Institute of Italy located inside the Istituto Zooprofilattico Sperimentale of Puglia and Basilicata. The strains were isolated at different time points and places from various matrices (human, animal and environmental). All strains are a representative of over fifty distinct MLVA 31 genotypes. The following antibiotics were used for testing: gentamicin, ceftriaxone, streptomycin, penicillin G, clindamycin, chloramphenicol, vancomycin, linezolid, cefotaxime, tetracycline, erythromycin, rifampin, amoxicillin, ciprofloxacin, doxycycline and trimethoprim. A standard concentration of each antibiotic was prepared in a specific diluent, which were then twofold serial diluted. Therefore, each wells contained: bacterial suspension of 1–5x104 CFU/mL in Mueller-Hinton Broth (MHB), the antibiotic to be tested at known concentration and resazurin, an indicator of cell growth. After incubation overnight at 37°C, the wells were screened for color changes caused by the resazurin: a change from purple to pink/colorless indicated cell growth. The lowest concentration of antibiotic that prevented growth represented the minimal inhibitory concentration (MIC). This study suggests that B.anthracis remains susceptible in vitro to many antibiotics, in addition to doxycycline (MICs ≤ 0,03 µg/ml), ciprofloxacin (MICs ≤ 0,03 µg/ml) and penicillin G (MICs ≤ 0,06 µg/ml), recommend by CDC for the treatment of human cases and for prophylactic use after exposure to the spores. In fact, the good activity of gentamicin (MICs ≤ 0,25 µg/ml), streptomycin (MICs ≤ 1 µg/ml), clindamycin (MICs ≤ 0,125 µg/ml), chloramphenicol(MICs ≤ 4 µg/ml), vancomycin (MICs ≤ 2 µg/ml), linezolid (MICs ≤ 2 µg/ml), tetracycline (MICs ≤ 0,125 µg/ml), erythromycin (MICs ≤ 0,25 µg/ml), rifampin (MICs ≤ 0,25 µg/ml), amoxicillin (MICs ≤ 0,06 µg/ml), towards all tested B.anthracis strains demonstrates an appropriate alternative choice for prophylaxis and/or treatment. All tested B.anthracis strains showed intermediate susceptibility to the cephalosporins (MICs ≥ 16 µg/ml) and resistance to trimethoprim (MICs ≥ 128 µg/ml).

Keywords: Bacillus anthracis, antibiotic susceptibility, treatment, minimum inhibitory concentration

Procedia PDF Downloads 218
66 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 78
65 Bicycle Tourism and Sharing Economy (C2C-Tourism): Analysis of the Reciprocity Behavior in the Case of Warmshowers

Authors: Jana Heimel, Franziska Drescher, Lauren Ugur, Graciela Kuchle

Abstract:

Sharing platforms are a widely investigated field. However, there is a research gap with a lack of focus on ‘real’ (non-profit-orientated) sharing platforms. The research project addresses this gap by conducting an empirical study on a private peer-to-peer (P2P) network to investigate cooperative behavior from a socio-psychological perspective. In recent years the conversion from possession to accessing is increasingly influencing different sectors, particularly the traveling industry. The number of people participating in hospitality exchange platforms like Airbnb, Couchsurfing, and Warmshowers (WS) is rapidly growing. WS is an increasingly popular online community that is linking cycling tourists and locals. It builds on the idea of the “sharing economy” as a not-for-profit hospitality network for bicycle tourists. Hosts not only provide a sleeping berth and warm shower free of charge but also offer additional services to their guests, such as cooking and washing clothes for them. According to previous studies, they are motivated by the idea of promoting cultural experience and forming new friendships. Trust and reciprocity are supposed to play major roles in the success of such platforms. The objective of this research project is to analyze the reciprocity behavior within the WS community. Reciprocity is the act of giving and taking among each other. Individuals feel obligated to return a favor and often expect to increase their own chances of receiving future benefits for themselves. Consequently, the drivers that incite giving and taking, as well as the motivation for hosts and guests, are examined. Thus, the project investigates a particular tourism offer that contributes to sustainable tourism by analyzing P2P resp. cyclist-to-cyclist, C2C) tourism. C2C tourism is characterized by special hospitality and generosity. To find out what motivations drive the hosts and which determinants drive the sharing cycling economy, an empirical study has been conducted globally through an online survey. The data was gathered through the WS community and comprised responses from more than 10,000 cyclists around the globe. Next to general information mostly comprising quantitative data on bicycle tourism (year/tour distance, duration and budget), qualitative information on traveling with WS as well as hosting was collected. The most important motivations for a traveler is to explore the local culture, to save money, and to make friends. The main reasons to host a guest are to promote the use of bicycles and to make friends, but also to give back and pay forward. WS members prefer to stay with/host cyclists. The results indicate that C2C tourists share homogenous characteristics and a similar philosophy, which is crucial for building mutual trust. Members of WS are generally extremely trustful. The study promotes an ecological form of tourism by combining sustainability, regionality, health, experience and the local communities' cultures. The empirical evidence found and analyzed, despite evident limitations, enabled us to shed light, especially on the issue of motivations and social capital, and on the functioning of ‘sharing’ platforms. Final research results are intended to promote C2C tourism around the globe to further replace conventional by sustainable tourism.

Keywords: bicycle tourism, homogeneity, reciprocity, sharing economy, trust

Procedia PDF Downloads 120
64 Understanding the Impact of Spatial Light Distribution on Object Identification in Low Vision: A Pilot Psychophysical Study

Authors: Alexandre Faure, Yoko Mizokami, éRic Dinet

Abstract:

These recent years, the potential of light in assisting visually impaired people in their indoor mobility has been demonstrated by different studies. Implementing smart lighting systems for selective visual enhancement, especially designed for low-vision people, is an approach that breaks with the existing visual aids. The appearance of the surface of an object is significantly influenced by the lighting conditions and the constituent materials of the objects. Appearance of objects may appear to be different from expectation. Therefore, lighting conditions lead to an important part of accurate material recognition. The main objective of this work was to investigate the effect of the spatial distribution of light on object identification in the context of low vision. The purpose was to determine whether and what specific lighting approaches should be preferred for visually impaired people. A psychophysical experiment was designed to study the ability of individuals to identify the smallest cube of a pair under different lighting diffusion conditions. Participants were divided into two distinct groups: a reference group of observers with normal or corrected-to-normal visual acuity and a test group, in which observers were required to wear visual impairment simulation glasses. All participants were presented with pairs of cubes in a "miniature room" and were instructed to estimate the relative size of the two cubes. The miniature room replicates real-life settings, adorned with decorations and separated from external light sources by black curtains. The correlated color temperature was set to 6000 K, and the horizontal illuminance at the object level at approximately 240 lux. The objects presented for comparison consisted of 11 white cubes and 11 black cubes of different sizes manufactured with a 3D printer. Participants were seated 60 cm away from the objects. Two different levels of light diffuseness were implemented. After receiving instructions, participants were asked to judge whether the two presented cubes were the same size or if one was smaller. They provided one of five possible answers: "Left one is smaller," "Left one is smaller but unsure," "Same size," "Right one is smaller," or "Right one is smaller but unsure.". The method of constant stimuli was used, presenting stimulus pairs in a random order to prevent learning and expectation biases. Each pair consisted of a comparison stimulus and a reference cube. A psychometric function was constructed to link stimulus value with the frequency of correct detection, aiming to determine the 50% correct detection threshold. Collected data were analyzed through graphs illustrating participants' responses to stimuli, with accuracy increasing as the size difference between cubes grew. Statistical analyses, including 2-way ANOVA tests, showed that light diffuseness had no significant impact on the difference threshold, whereas object color had a significant influence in low vision scenarios. The first results and trends derived from this pilot experiment clearly and strongly suggest that future investigations could explore extreme diffusion conditions to comprehensively assess the impact of diffusion on object identification. For example, the first findings related to light diffuseness may be attributed to the range of manipulation, emphasizing the need to explore how other lighting-related factors interact with diffuseness.

Keywords: Lighting, Low Vision, Visual Aid, Object Identification, Psychophysical Experiment

Procedia PDF Downloads 66
63 Cloud-Based Multiresolution Geodata Cube for Efficient Raster Data Visualization and Analysis

Authors: Lassi Lehto, Jaakko Kahkonen, Juha Oksanen, Tapani Sarjakoski

Abstract:

The use of raster-formatted data sets in geospatial analysis is increasing rapidly. At the same time, geographic data are being introduced into disciplines outside the traditional domain of geoinformatics, like climate change, intelligent transport, and immigration studies. These developments call for better methods to deliver raster geodata in an efficient and easy-to-use manner. Data cube technologies have traditionally been used in the geospatial domain for managing Earth Observation data sets that have strict requirements for effective handling of time series. The same approach and methodologies can also be applied in managing other types of geospatial data sets. A cloud service-based geodata cube, called GeoCubes Finland, has been developed to support online delivery and analysis of most important geospatial data sets with national coverage. The main target group of the service is the academic research institutes in the country. The most significant aspects of the GeoCubes data repository include the use of multiple resolution levels, cloud-optimized file structure, and a customized, flexible content access API. Input data sets are pre-processed while being ingested into the repository to bring them into a harmonized form in aspects like georeferencing, sampling resolutions, spatial subdivision, and value encoding. All the resolution levels are created using an appropriate generalization method, selected depending on the nature of the source data set. Multiple pre-processed resolutions enable new kinds of online analysis approaches to be introduced. Analysis processes based on interactive visual exploration can be effectively carried out, as the level of resolution most close to the visual scale can always be used. In the same way, statistical analysis can be carried out on resolution levels that best reflect the scale of the phenomenon being studied. Access times remain close to constant, independent of the scale applied in the application. The cloud service-based approach, applied in the GeoCubes Finland repository, enables analysis operations to be performed on the server platform, thus making high-performance computing facilities easily accessible. The developed GeoCubes API supports this kind of approach for online analysis. The use of cloud-optimized file structures in data storage enables the fast extraction of subareas. The access API allows for the use of vector-formatted administrative areas and user-defined polygons as definitions of subareas for data retrieval. Administrative areas of the country in four levels are available readily from the GeoCubes platform. In addition to direct delivery of raster data, the service also supports the so-called virtual file format, in which only a small text file is first downloaded. The text file contains links to the raster content on the service platform. The actual raster data is downloaded on demand, from the spatial area and resolution level required in each stage of the application. By the geodata cube approach, pre-harmonized geospatial data sets are made accessible to new categories of inexperienced users in an easy-to-use manner. At the same time, the multiresolution nature of the GeoCubes repository facilitates expert users to introduce new kinds of interactive online analysis operations.

Keywords: cloud service, geodata cube, multiresolution, raster geodata

Procedia PDF Downloads 144
62 Fe Modified Tin Oxide Thin Film Based Matrix for Reagentless Uric Acid Biosensing

Authors: Kashima Arora, Monika Tomar, Vinay Gupta

Abstract:

Biosensors have found potential applications ranging from environmental testing and biowarfare agent detection to clinical testing, health care, and cell analysis. This is driven in part by the desire to decrease the cost of health care and to obtain precise information more quickly about the health status of patient by the development of various biosensors, which has become increasingly prevalent in clinical testing and point of care testing for a wide range of biological elements. Uric acid is an important byproduct in human body and a number of pathological disorders are related to its high concentration in human body. In past few years, rapid growth in the development of new materials and improvements in sensing techniques have led to the evolution of advanced biosensors. In this context, metal oxide thin film based matrices due to their bio compatible nature, strong adsorption ability, high isoelectric point (IEP) and abundance in nature have become the materials of choice for recent technological advances in biotechnology. In the past few years, wide band-gap metal oxide semiconductors including ZnO, SnO₂ and CeO₂ have gained much attention as a matrix for immobilization of various biomolecules. Tin oxide (SnO₂), wide band gap semiconductor (Eg =3.87 eV), despite having multifunctional properties for broad range of applications including transparent electronics, gas sensors, acoustic devices, UV photodetectors, etc., it has not been explored much for biosensing purpose. To realize a high performance miniaturized biomolecular electronic device, rf sputtering technique is considered to be the most promising for the reproducible growth of good quality thin films, controlled surface morphology and desired film crystallization with improved electron transfer property. Recently, iron oxide and its composites have been widely used as matrix for biosensing application which exploits the electron communication feature of Fe, for the detection of various analytes using urea, hemoglobin, glucose, phenol, L-lactate, H₂O₂, etc. However, to the authors’ knowledge, no work is being reported on modifying the electronic properties of SnO₂ by implanting with suitable metal (Fe) to induce the redox couple in it and utilizing it for reagentless detection of uric acid. In present study, Fe implanted SnO₂ based matrix has been utilized for reagentless uric acid biosensor. Implantation of Fe into SnO₂ matrix is confirmed by energy-dispersive X-Ray spectroscopy (EDX) analysis. Electrochemical techniques have been used to study the response characteristics of Fe modified SnO₂ matrix before and after uricase immobilization. The developed uric acid biosensor exhibits a high sensitivity to about 0.21 mA/mM and a linear variation in current response over concentration range from 0.05 to 1.0 mM of uric acid besides high shelf life (~20 weeks). The Michaelis-Menten kinetic parameter (Km) is found to be relatively very low (0.23 mM), which indicates high affinity of the fabricated bioelectrode towards uric acid (analyte). Also, the presence of other interferents present in human serum has negligible effect on the performance of biosensor. Hence, obtained results highlight the importance of implanted Fe:SnO₂ thin film as an attractive matrix for realization of reagentless biosensors towards uric acid.

Keywords: Fe implanted tin oxide, reagentless uric acid biosensor, rf sputtering, thin film

Procedia PDF Downloads 184
61 Effect of Preoxidation on the Effectiveness of Gd₂O₃ Nanoparticles Applied as a Source of Active Element in the Crofer 22 APU Coated with a Protective-conducting Spinel Layer

Authors: Łukasz Mazur, Kamil Domaradzki, Maciej Bik, Tomasz Brylewski, Aleksander Gil

Abstract:

Interconnects used in solid oxide fuel and electrolyzer cells (SOFCₛ/SOECs) serve several important functions, and therefore interconnect materials must exhibit certain properties. Their thermal expansion coefficient needs to match that of the ceramic components of these devices – the electrolyte, anode and cathode. Interconnects also provide structural rigidity to the entire device, which is why interconnect materials must exhibit sufficient mechanical strength at high temperatures. Gas-tightness is also a prerequisite since they separate gas reagents, and they also must provide very good electrical contact between neighboring cells over the entire operating time. High-chromium ferritic steels meets these requirements to a high degree but are affected by the formation of a Cr₂O₃ scale, which leads to increased electrical resistance. The final criterion for interconnect materials is chemical inertness in relation to the remaining cell components. In the case of ferritic steels, this has proved difficult due to the formation of volatile and reactive oxyhydroxides observed when Cr₂O3 is exposed to oxygen and water vapor. This process is particularly harmful on the cathode side in SOFCs and the anode side in SOECs. To mitigate this, protective-conducting ceramic coatings can be deposited on an interconnect's surface. The area-specific resistance (ASR) of a single interconnect cannot exceed 0.1 m-2 at any point of the device's operation. The rate at which the CrO₃ scale grows on ferritic steels can be reduced significantly via the so-called reactive element effect (REE). Research has shown that the deposition of Gd₂O₃ nanoparticles on the surface of the Crofer 22 APU, already modified using a protective-conducting spinel layer, further improves the oxidation resistance of this steel. However, the deposition of the manganese-cobalt spinel layer is a rather complex process and is performed at high temperatures in reducing and oxidizing atmospheres. There was thus reason to believe that this process may reduce the effectiveness of Gd₂O₃ nanoparticles added as an active element source. The objective of the present study was, therefore, to determine any potential impact by introducing a preoxidation stage after the nanoparticle deposition and before the steel is coated with the spinel. This should have allowed the nanoparticles to incorporate into the interior of the scale formed on the steel. Different samples were oxidized for 7000 h in air at 1073 K under quasi-isothermal conditions. The phase composition, chemical composition, and microstructure of the oxidation products formed on the samples were determined using X-ray diffraction, Raman spectroscopy, and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. A four-point, two-probe DC method was applied to measure ASR. It was found that coating deposition does indeed reduce the beneficial effect of Gd₂O₃ addition, since the smallest mass gain and the lowest ASR value were determined for the sample for which the additional preoxidation stage had been performed. It can be assumed that during this stage, gadolinium incorporates into and segregates at grain boundaries in the thin Cr₂O₃ that is forming. This allows the Gd₂O₃ nanoparticles to be a more effective source of the active element.

Keywords: interconnects, oxide nanoparticles, reactive element effect, SOEC, SOFC

Procedia PDF Downloads 87
60 Gender Bias After Failure: How Crowd Lenders Disadvantage Female-Led Social Ventures

Authors: Caroline Lindlar, Eva Jakob

Abstract:

Female entrepreneurs often face significant barriers in accessing funding due to biases from business angels, venture capitalists, and financial institutions, which tend to favor male entrepreneurs. These biases contribute to persistent funding disparities, with female entrepreneurs receiving less financial support than their male counterparts. The situation worsens when female entrepreneurs have prior experiences with venture failure, which diminishes their attractiveness to traditional investors. Venture failure, defined as the cessation of operations due to declining revenues, rising costs, or ownership changes, plays a substantial role in shaping funding opportunities. In response, female entrepreneurs frequently turn to alternative funding sources such as crowdlending, where gender biases are often reversed in favor of women, particularly when their ventures emphasize social value creation. While existing research highlights the positive impact of gender on crowdfunding success, it remains unclear how venture failure, known to negatively bias female entrepreneurs in traditional funding contexts, interacts with the positive effects of gender in crowdlending. This interaction is particularly relevant because crowdlending often involves non-professional funders who make repeated investment decisions under uncertainty, based on limited information and past experiences. Given that approximately one-third of ventures fail to deliver promised returns, the role of gender bias after failure in crowdlending is an important area of investigation. This study addresses How failure affects crowd funders’ gender bias in future funding decisions? Drawing on social role and role congruity theory, we posit that societal perceptions of women as more communal conflict with the agentic qualities traditionally associated with entrepreneurship. This incongruence may result in reduced confidence in the success of female entrepreneurs after failure, limiting their access to future funding. However, we also hypothesize that social framing may mitigate this bias by aligning perceptions of female entrepreneurs with traits such as warmth and caring, enhancing their appeal after failure. To test these assertions, it conducted a between-subject audio vignette experiment with 155 participants who listened to entrepreneur pitches manipulated by gender (male vs. female) and venture framing (social vs. commercial). Participants made initial investment decisions, received failure-related news about the venture, and then made subsequent investment decisions. Pre-tests with 159 participants ensured the validity and reliability of the experimental manipulations. Moreover, we did a metric conjoint analysis with 100 participants, and they had to decide between different crowdfunding campaigns based on the attributes of previous failure, gender, and venture mission. it findings reveal that failure activates gender biases in crowdlending. Female-led ventures receive significantly less funding after failure compared to male-led ventures, suggesting the positive bias toward female entrepreneurs in the pre-funding phase does not persist post-failure. Moreover, framing a venture as socially oriented exacerbates the negative effect of failure for female entrepreneurs, as they secure fewer funds after failure compared to male entrepreneurs leading similar social ventures. This indicates that role-congruent framing does not mitigate gender bias after failure. This study contributes to research on gender in entrepreneurship by exploring how failure impacts future funding for female entrepreneurs. It also expands social crowdfunding literature by examining social value framing and adds to the entrepreneurial failure literature by focusing on crowd funders’ post-failure behavior.

Keywords: gender bias, crowdfunding, investment failure, investment behavior, social entrepreneurship

Procedia PDF Downloads 21
59 Biochemical and Antiviral Study of Peptides Isolated from Amaranthus hypochondriacus on Tomato Yellow Leaf Curl Virus Replication

Authors: José Silvestre Mendoza Figueroa, Anders Kvarnheden, Jesús Méndez Lozano, Edgar Antonio Rodríguez Negrete, Manuel Soriano García

Abstract:

Agroindustrial plants such as cereals and pseudo cereals offer a substantial source of biomacromolecules, as they contain large amounts per tissue-gram of proteins, polysaccharides and lipids in comparison with other plants. In particular, Amaranthus hypochondriacus seeds have high levels of proteins in comparison with other cereal and pseudo cereal species, which makes the plant a good source of bioactive molecules such as peptides. Geminiviruses are one principal class of pathogens that causes important economic losses in crops, affecting directly the development and production of the plant. One such virus is the Tomato yellow leaf curl virus (TYLCV), which affects mainly Solanacea family plants such as tomato species. The symptoms of the disease are curling of leaves, chlorosis, dwarfing and floral abortion. The aim of this work was to get peptides derived from enzymatic hydrolysis of globulins and albumins from amaranth seeds with specific recognition of the replication origin in the TYLCV genome, and to test the antiviral activity on host plants with the idea to generate a direct control of this viral infection. Globulins and albumins from amaranth were extracted, the fraction was enzymatically digested with papain, and the aromatic peptides fraction was selected for further purification. Six peptides were tested against the replication origin (OR) using affinity assays, surface resonance plasmon and fluorescent titration, and two of these peptides showed high affinity values to the replication origin of the virus, dissociation constant values were calculated and showed specific interaction between the peptide Ampep1 and the OR. An in vitro replication test of the total TYLCV DNA was performed, in which the peptide AmPep1 was added in different concentrations to the system reaction, which resulted in a decrease of viral DNA synthesis when the peptide concentration increased. Also, we showed that the peptide can decrease the complementary DNA chain of the virus in Nicotiana benthamiana leaves, confirming that the peptide binds to the OR and that its expected mechanism of action is to decrease the replication rate of the viral genome. In an infection assay, N. benthamiana plants were agroinfected with TYLCV-Israel and TYLCV-Guasave. After confirming systemic infection, the peptide was infiltrated in new infected leaves, and the plants treated with the peptide showed a decrease of virus symptoms and viral titer. In order to confirm the antiviral activity in a commercial crop, tomato plants were infected with TYLCV. After confirming systemic infection, plants were infiltrated with peptide solution as above, and the symptom development was monitored 21 days after treatment, showing that tomato plants treated with peptides had lower symptom rates and viral titer. The peptide was also tested against other begomovirus such as Pepper huasteco yellow vein virus (PHYVV-Guasave), showing a decrease of symptoms in N. benthamiana infected plants. The model of direct biochemical control of TYLCV infection shown in this work can be extrapolated to other begomovirus infections, and the methods reported here can be used for design of antiviral agrochemicals for other plant virus infections.

Keywords: agrochemical screening, antiviral, begomovirus, geminivirus, peptides, plasmon, TYLCV

Procedia PDF Downloads 279
58 Evaluating Viability of Using South African Forestry Process Biomass Waste Mixtures as an Alternative Pyrolysis Feedstock in the Production of Bio Oil

Authors: Thembelihle Portia Lubisi, Malusi Ntandoyenkosi Mkhize, Jonas Kalebe Johakimu

Abstract:

Fertilizers play an important role in maintaining the productivity and quality of plants. Inorganic fertilizers (containing nitrogen, phosphorus, and potassium) are largely used in South Africa as they are considered inexpensive and highly productive. When applied, a portion of the excess fertilizer will be retained in the soil, a portion enters water streams due to surface runoff or the irrigation system adopted. Excess nutrient from the fertilizers entering the water stream eventually results harmful algal blooms (HABs) in freshwater systems, which not only disrupt wildlife but can also produce toxins harmful to humans. Use of agro-chemicals such as pesticides and herbicides has been associated with increased antimicrobial resistance (AMR) in humans as the plants are consumed by humans. This resistance of bacterial poses a threat as it prevents the Health sector from being able to treat infectious disease. Archaeological studies have found that pyrolysis liquids were already used in the time of the Neanderthal as a biocide and plant protection product. Pyrolysis is thermal degradation process of plant biomass or organic material under anaerobic conditions leading to production of char, bio-oils and syn gases. Bio-oil constituents can be categorized as water soluble (wood vinegar) and water insoluble fractions (tar and light oils). Wood vinegar (pyro-ligneous acid) is said to contain contains highly oxygenated compounds including acids, alcohols, aldehydes, ketones, phenols, esters, furans, and other multifunctional compounds with various molecular weights and compositions depending on the biomass material derived from and pyrolysis operating conditions. Various researchers have found the wood vinegar to be efficient in the eradication of termites, effective in plant protection and plant growth, has antibacterial characteristics and was found effective in inhibiting the micro-organisms such as candida yeast, E-coli, etc. This study investigated characterisation of South African forestry product processing waste with intention of evaluating the potential of using the respective biomass waste as feedstock for boil oil production via pyrolysis process. Ability to use biomass waste materials in production of wood-vinegar has advantages that it does not only allows for reduction of environmental pollution and landfill requirement, but it also does not negatively affect food security. The biomass wastes investigated were from the popular tree types in KZN, which are, pine saw dust (PSD), pine bark (PB), eucalyptus saw dust (ESD) and eucalyptus bark (EB). Furthermore, the research investigates the possibility of mixing the different wastes with an aim to lessen the cost of raw material separation prior to feeding into pyrolysis process and mixing also increases the amount of biomass material available for beneficiation. A 50/50 mixture of PSD and ESD (EPSD) and mixture containing pine saw dust; eucalyptus saw dust, pine bark and eucalyptus bark (EPSDB). Characterisation of the biomass waste will look at analysis such as proximate (volatiles, ash, fixed carbon), ultimate (carbon, hydrogen, nitrogen, oxygen, sulphur), high heating value, structural (cellulose, hemicellulose and lignin) and thermogravimetric analysis.

Keywords: characterisation, biomass waste, saw dust, wood waste

Procedia PDF Downloads 76