Search results for: practical approach to reducing insecurity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18995

Search results for: practical approach to reducing insecurity

16985 Intelligent Swarm-Finding in Formation Control of Multi-Robots to Track a Moving Target

Authors: Anh Duc Dang, Joachim Horn

Abstract:

This paper presents a new approach to control robots, which can quickly find their swarm while tracking a moving target through the obstacles of the environment. In this approach, an artificial potential field is generated between each free-robot and the virtual attractive point of the swarm. This artificial potential field will lead free-robots to their swarm. The swarm-finding of these free-robots dose not influence the general motion of their swarm and nor other robots. When one singular robot approaches the swarm then its swarm-search will finish, and it will further participate with its swarm to reach the position of the target. The connections between member-robots with their neighbours are controlled by the artificial attractive/repulsive force field between them to avoid collisions and keep the constant distances between them in ordered formation. The effectiveness of the proposed approach has been verified in simulations.

Keywords: formation control, potential field method, obstacle avoidance, swarm intelligence, multi-agent systems

Procedia PDF Downloads 440
16984 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions

Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins

Abstract:

The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.

Keywords: dimensional affect prediction, output-associative RVM, multivariate regression, fast testing

Procedia PDF Downloads 286
16983 A Case Study on the Field Surveys and Repair of a Marine Approach-Bridge

Authors: S. H. Park, D. W. You

Abstract:

This study is about to the field survey and repair works in a marine approach-bride. In order to evaluate the stability of the ground and the structure, field surveys such as exterior inspection, non-destructive inspection, measurement, and geophysical exploration are carried out. Numerical analysis is conducted to investigate the cause of the abutment displacement at the same time. In addition, repair works are practiced to the region damaged with intent to sustain long-term safety.

Keywords: field survey, expansion joint, repair, maintenance

Procedia PDF Downloads 291
16982 Lyapunov-Based Tracking Control for Nonholonomic Wheeled Mobile Robot

Authors: Raouf Fareh, Maarouf Saad, Sofiane Khadraoui, Tamer Rabie

Abstract:

This paper presents a tracking control strategy based on Lyapunov approach for nonholonomic wheeled mobile robot. This control strategy consists of two levels. First, a kinematic controller is developed to adjust the right and left wheel velocities. Using this velocity control law, the stability of the tracking error is guaranteed using Lyapunov approach. This kinematic controller cannot be generated directly by the motors. To overcome this problem, the second level of the controllers, dynamic control, is designed. This dynamic control law is developed based on Lyapunov theory in order to track the desired trajectories of the mobile robot. The stability of the tracking error is proved using Lupunov and Barbalat approaches. Simulation results on a nonholonomic wheeled mobile robot are given to demonstrate the feasibility and effectiveness of the presented approach.

Keywords: mobile robot, trajectory tracking, Lyapunov, stability

Procedia PDF Downloads 373
16981 Predicting Shot Making in Basketball Learnt Fromadversarial Multiagent Trajectories

Authors: Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, Diego Klabjan

Abstract:

In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. Previous approaches to similar problems center on hand-crafting features to capture domain-specific knowledge. Although intuitive, recent work in deep learning has shown, this approach is prone to missing important predictive features. To circumvent this issue, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multichannel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories, we use “fading.” We find that this approach is superior to a traditional FFN model. By using gradient ascent, we were able to discover what the CNN filters look for during training. Last, we find that a combined FFN+CNN is the best performing network with an error rate of 39%.

Keywords: basketball, computer vision, image processing, convolutional neural network

Procedia PDF Downloads 153
16980 Meeting the Pedophile: Attitudes toward Pedophilia among Psychology Students

Authors: Rebecca Heron, Julie Karsten, Lena Schweikert

Abstract:

Adverse consequences of stigma towards pedophilia can, among other things, increase dynamic risk factors for sexual offending. Decreasing stigma, therefore, is a plausible approach in the attempt to prevent child sexual abuse. Stigma research suggests that providing direct contact to a stigmatized individual is the most efficient way of reducing stigma. The present study involved an educational intervention, followed by direct contact to a pedophile, to maximize effectiveness. It aimed at finding out whether a dichotomous anti-stigma intervention can change psychology students' attitudes towards pedophiles regarding perceived dangerousness, intentionality, deviance, and punitive attitudes. In a one sample pre-post design, 162 students of the University of Groningen attended a lecture about pedophilia, which was held by a psychology master’s student. Participants learned about child sex offending and pedophilia in addition to the importance of distinguishing between pedophiles and child sex offenders (CSOs). The guest lecturer Gabriel, shared his experiences about growing up, coping, and living with pedophilia. Results of the Wilcoxon signed-rank test revealed significantly diminished negative attitudes towards pedophiles after the intervention. Students perceived pedophiles as less dangerous, having less intent, and being less psychologically deviant. Additionally, students' punitive attitudes towards pedophiles diminished significantly. Also, a thematic analysis revealed that students were highly interested in the topic of pedophilia and greatly appreciative of Gabriel sharing his story. This study was the first to provide direct contact with a pedophile within an anti-stigma intervention.

Keywords: pedophilia, anti-stigma intervention, punitive attitudes, attitude change

Procedia PDF Downloads 182
16979 From Being to Becoming: Emancipation and Empowerment in the African Diaspora

Authors: R. Vidhya

Abstract:

Diasporic writings present a comprehensive view of social, cultural and psychological dualities of immigrants. Isolation and the strong feelings of insecurity and inferiority due to constant marginalization coupled with a nostalgia for their motherland, its customs, culture, language, food and people which keep haunting the minds of immigrants are the major themes that are handled by diasporic writers. In the African diaspora, more than the men, it is the women who face the brunt and burden of the triple jeopardy – the racial, class and gender discrimination. Women writers from Africa have successfully sketched the plight of African women in the diaspora. Buchi Emecheta, a Nigerian woman writer deftly portrays the African Diaspora in her novels. She skillfully weaves her stories with her own experiences as an immigrant in the United Kingdom. She portrays the immigrant life and psychology through numerous themes like exile, geographical shift of locations, transactions of culture, political instability and the dilemma of moral and religious ideologies in her diasporic novels Second-class Citizen, Gwendolyn and Kehinde. The contemporary Nigerian woman writer Chimamanda Ngozi Adichie has also dexterously depicted the diasporic dilemma of her protagonist Ifemelu in Americannah, who initially has the experience of a despondent and a downcast in the United States of America. This paper aims to analyse the diasporic sentiments and sensibilities of the Nigerian Igbo women writers Buchi Emecheta and Chimamanda Ngozi Adichie whose women characters finally find emancipation and empowerment in the African Diaspora. This study is based on the Africana Womanist Literary theory propounded by Clenora Hudson-Weems.

Keywords: African Diaspora, Nigerian women writers, Buchi Emecheta, Chimamanda Ngozi Adichie, emancipation, empowerment

Procedia PDF Downloads 287
16978 Effectiveness of Computer Video Games on the Levels of Anxiety of Children Scheduled for Tooth Extraction

Authors: Marji Umil, Miane Karyle Urolaza, Ian Winston Dale Uy, John Charle Magne Valdez, Karen Elizabeth Valdez, Ervin Charles Valencia, Cheryleen Tan-Chua

Abstract:

Objective: Distraction techniques can be successful in reducing the anxiety of children during medical procedures. Dental procedures, in particular, are associated with dental anxiety which has been identified as a significant and common problem in children, however, only limited studies were conducted to address such problem. Thus, this study determined the effectiveness of computer video games on the levels of anxiety of children between 5-12 years old scheduled for tooth extraction. Methods: A pre-test post-test quasi-experimental study was conducted involving 30 randomly-assigned subjects, 15 in the experimental and 15 in the control. Subjects in the experimental group played computer video games for a maximum of 15 minutes, however, no intervention was done on the control. The modified Yale Pre-operative Anxiety Scale (m-YPAS) with a Cronbach’s alpha of 0.9 was used to assess anxiety at two different points: upon arrival in the clinic (pre-test anxiety) and 15 minutes after the first measurement (post-test anxiety). Paired t-test and ANCOVA were used to analyze the gathered data. Results: Results showed that there is a significant difference between the pre-test and post-test anxiety scores of the control group (p=0.0002) which indicates an increased anxiety. A significant difference was also noted between the pre-test and post-test anxiety scores of the experimental group (p=0.0002) which indicates decreased anxiety. Comparatively, the experimental group showed lower anxiety score (p=<0.0001) than the control. Conclusion: The use of computer video games is effective in reducing the pre-operative anxiety among children and can be an alternative non-pharmacological management in giving pre-operative care.

Keywords: play therapy, preoperative anxiety, tooth extraction, video games

Procedia PDF Downloads 452
16977 Applications of Evolutionary Optimization Methods in Reinforcement Learning

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The paradigm of Reinforcement Learning (RL) has become prominent in training intelligent agents to make decisions in environments that are both dynamic and uncertain. The primary objective of RL is to optimize the policy of an agent in order to maximize the cumulative reward it receives throughout a given period. Nevertheless, the process of optimization presents notable difficulties as a result of the inherent trade-off between exploration and exploitation, the presence of extensive state-action spaces, and the intricate nature of the dynamics involved. Evolutionary Optimization Methods (EOMs) have garnered considerable attention as a supplementary approach to tackle these challenges, providing distinct capabilities for optimizing RL policies and value functions. The ongoing advancement of research in both RL and EOMs presents an opportunity for significant advancements in autonomous decision-making systems. The convergence of these two fields has the potential to have a transformative impact on various domains of artificial intelligence (AI) applications. This article highlights the considerable influence of EOMs in enhancing the capabilities of RL. Taking advantage of evolutionary principles enables RL algorithms to effectively traverse extensive action spaces and discover optimal solutions within intricate environments. Moreover, this paper emphasizes the practical implementations of EOMs in the field of RL, specifically in areas such as robotic control, autonomous systems, inventory problems, and multi-agent scenarios. The article highlights the utilization of EOMs in facilitating RL agents to effectively adapt, evolve, and uncover proficient strategies for complex tasks that may pose challenges for conventional RL approaches.

Keywords: machine learning, reinforcement learning, loss function, optimization techniques, evolutionary optimization methods

Procedia PDF Downloads 80
16976 The Association between Food Security Status and Depression in Two Iranian Ethnic Groups Living in Northwest of Iran

Authors: A. Rezazadeh, N. Omidvar, H. Eini-Zinab

Abstract:

Food insecurity (FI) influences may result in poor physical and mental health outcomes. Minor ethnic group may experience higher level of FI, and this situation may be related with higher depression prevalence. The aim of this study was to determine the association of depression with food security status in major (Azeri) and minor (Kurdish) ethnicity living in Urmia, West Azerbaijan, north of Iran. In this cross-sectional study, 723 participants (427 women and 296 men) aged 20–64 years old, from two ethnic groups (445 Azeri and 278 Kurdish), were selected through a multi stage cluster systematic sampling. Depression rate was assessed by “Beck” short form questionnaire (validated in Iranians) through interviews. Household FI status (HFIS) was measured using adapted HFI access scale through face-to-face interviews at homes. Multinomial logistic regression was used to estimate odds ratios (OR) of depression across HFIS. Higher percent of Kurds had moderate and severe depression in comparison with Azeri group (73 [17.3%] vs. 86 [27.9%]). There were not any significant differences between the two ethnicities in mild depression. Also, of all the subjects, moderate-to-sever FI was more prevalent in Kurds (28.5%), compared to Azeri group (17.3%) [P < 0.01]. Kurdish ethnic group living in food security or mild FI households had lower chance to have symptom of severe depression in comparison to those with sever FI (OR=0.097; 95% CI: 0.02-0.47). However, there was no significant association between depression and HFI in Azeri group. Findings revealed that the severity of HFI was related with severity depression in minor studied ethnic groups. However, in Azeri ethnicity as a major group, other confounders may have influence on the relation with depression and FI, that were not studied in the present study.

Keywords: depression, ethnicity, food security status, Iran

Procedia PDF Downloads 210
16975 On the Mathematical Modelling of Aggregative Stability of Disperse Systems

Authors: Arnold M. Brener, Lesbek Tashimov, Ablakim S. Muratov

Abstract:

The paper deals with the special model for coagulation kernels which represents new control parameters in the Smoluchowski equation for binary aggregation. On the base of the model the new approach to evaluating aggregative stability of disperse systems has been submitted. With the help of this approach the simple estimates for aggregative stability of various types of hydrophilic nano-suspensions have been obtained.

Keywords: aggregative stability, coagulation kernels, disperse systems, mathematical model

Procedia PDF Downloads 309
16974 Reducing Waiting Time in Outpatient Services: Six Sigma and Technological Approach

Authors: Omkar More, Isha Saini, Gracy Mathai

Abstract:

To study whether there is any clinical correlation between pterygium and dry eye and to evaluate the status of the tear film in patients with pterygium. Methods: 100 eyes with pterygium were compared with 100 control eyes without pterygium. Patients between 20 – 70 years were included in the study. A detailed history was taken and Schirmer’s test and TBUT were performed on all to evaluate the status of dry eye. Schirmer’s test ˂ 10 mm and TBUT ˂10 seconds was considered abnormal. Results: Maximum number (52) of patients affected by dry eye in both the groups were in the age group 31-40 years which statistically showed age as a significant factor of association for both pterygium and dry eye (P < 0.01).Schirmer’s test was slightly reduced in patients with pterygium(18.73±5.69 mm). TBUT was significantly reduced in the case group (12.26±2.24sec).TBUT decreased maximally in 51-60 yrs age group (13.00±2.77sec) with pterygium showing a tear film instability. On comparison of pterygia and controls with normal and abnormal tear film, Odd’s Ratio was 1.14 showing a risk of dry eye in pterygia patients to be 1.14 times higher than controls. Conclusion: Whether tear dysfunction is a precursor to pterygium growth or pterygium causes tear dysfunction is still not clear. Research and clinical evidence, however, suggest that there is a relationship between the two. This study is, therefore, undertaken to investigate the correlation between pterygium and dry eye. The patients with pterygia were compared with normals to evaluate their status regarding dryness. A close relationship exists between ocular irritation symptoms and functional evidence of tear instability. Schirmer’s test and TBUT should routinely be used in the outpatient department to diagnose dry eye in patients with pterygium and these patients should be promptly treated to prevent any sight-threatening complications.

Keywords: footfall, nursing assessment, quality improvement, six sigma

Procedia PDF Downloads 357
16973 The Design and Implementation of an Enhanced 2D Mesh Switch

Authors: Manel Langar, Riad Bourguiba, Jaouhar Mouine

Abstract:

In this paper, we propose the design and implementation of an enhanced wormhole virtual channel on chip router. It is a heart of a mesh NoC using the XY deterministic routing algorithm. It is characterized by its simple virtual channel allocation strategy which allows reducing area and complexity of connections without affecting the performance. We implemented our router on a Tezzaron process to validate its performances. This router is a basic element that will be used later to design a 3D mesh NoC.

Keywords: NoC, mesh, router, 3D NoC

Procedia PDF Downloads 568
16972 Surface-Enhanced Raman Spectroscopy-Based Detection of SARS-CoV-2 Through In Situ One-pot Electrochemical Synthesis of 3D Au-Lysate Nanocomposite Structures on Plasmonic Au Electrodes

Authors: Ansah Iris Baffour, Dong-Ho Kim, Sung-Gyu Park

Abstract:

The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus and is gradually shifting to an endemic phase which implies the outbreak is far from over and will be difficult to eradicate. Global cooperation has led to unified precautions that aim to suppress epidemiological spread (e.g., through travel restrictions) and reach herd immunity (through vaccinations); however, the primary strategy to restrain the spread of the virus in mass populations relies on screening protocols that enable rapid on-site diagnosis of infections. Herein, we employed surface enhanced Raman spectroscopy (SERS) for the rapid detection of SARS-CoV-2 lysate on an Au-modified Au nanodimple(AuND)electrode. Through in situone-pot Au electrodeposition on the AuND electrode, Au-lysate nanocomposites were synthesized, generating3D internal hotspots for large SERS signal enhancements within 30 s of the deposition. The capture of lysate into newly generated plasmonic nanogaps within the nanocomposite structures enhanced metal-spike protein contact in 3D spaces and served as hotspots for sensitive detection. The limit of detection of SARS-CoV-2 lysate was 5 x 10-2 PFU/mL. Interestingly, ultrasensitive detection of the lysates of influenza A/H1N1 and respiratory syncytial virus (RSV) was possible, but the method showed ultimate selectivity for SARS-CoV-2 in lysate solution mixtures. We investigated the practical application of the approach for rapid on-site diagnosis by detecting SARS-CoV-2 lysate spiked in normal human saliva at ultralow concentrations. The results presented demonstrate the reliability and sensitivity of the assay for rapid diagnosis of COVID-19.

Keywords: label-free detection, nanocomposites, SARS-CoV-2, surface-enhanced raman spectroscopy

Procedia PDF Downloads 123
16971 Performance Evaluation of an Ontology-Based Arabic Sentiment Analysis

Authors: Salima Behdenna, Fatiha Barigou, Ghalem Belalem

Abstract:

Due to the quick increase in the volume of Arabic opinions posted on various social media, Arabic sentiment analysis has become one of the most important areas of research. Compared to English, there is very little works on Arabic sentiment analysis, in particular aspect-based sentiment analysis (ABSA). In ABSA, aspect extraction is the most important task. In this paper, we propose a semantic aspect-based sentiment analysis approach for standard Arabic reviews to extract explicit aspect terms and identify the polarity of the extracted aspects. The proposed approach was evaluated using HAAD datasets. Experiments showed that the proposed approach achieved a good level of performance compared with baseline results. The F-measure was improved by 19% for the aspect term extraction tasks and 55% aspect term polarity task.

Keywords: sentiment analysis, opinion mining, Arabic, aspect level, opinion, polarity

Procedia PDF Downloads 163
16970 Self-Organizing Maps for Credit Card Fraud Detection and Visualization

Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 59
16969 Revisionism in Literature: Deconstructing Patriarchal Ideals in Margaret Atwood's The Penelopiad

Authors: Essam Abdelhamid Hegazy

Abstract:

This paper aims to read Margaret Atwood's The Penelopiad (2005) via a revisionist and deconstructive approach. This novel is a postmodernist exploration of the grand-narrative myth The Odyssey (800 BC) by Homer, who portrayed the heroic warrior and the faithful wife as the epitome of perfect male and female models _examples whom all must follow and mimic. In Atwood's narrative, the same two hero models are the two great tricksters who are willing to perform any sort of obnoxious act for achieving their goals. This research tries to examine how Atwood tried to synthesize the change in character’s narratives leading to the humanization of the perfect hero and the ideal wife. The researcher has used a multidisciplinary approach where the feminist, revisionist and deconstructive theories were implemented to identify and find out the new interpretations of the myths that center the experiences and perspectives of women. Research findings are that revisionist approach was applied through giving an opportunity to the victimized and the voiceless to speak out and retaliate against their prosecutions.

Keywords: margret atwood, patriarchal, penelopiad, revisionism

Procedia PDF Downloads 82
16968 The Cultural Adaptation of a Social and Emotional Learning Program for an Intervention in Saudi Arabia’s Preschools

Authors: Malak Alqaydhi

Abstract:

A problem in the Saudi Arabia education system is that there is a lack of curriculum- based Social, emotional learning (SEL) teaching practices with the pedagogical concept of SEL yet to be practiced in the Kingdom of Saudi Arabia (KSA). Furthermore, voices of teachers and parents have not been captured regarding the use of SEL, particularly in preschools. The importance of this research is to help determine, with the input of teachers and mothers of preschoolers, the efficacy of a culturally adapted SEL program. The purpose of this research is to determine the most appropriate SEL intervention method to appropriately apply in the cultural context of the Saudi preschool classroom setting. The study will use a mixed method exploratory sequential research design, applying qualitative and quantitative approaches including semi-structured interviews with teachers and parents of preschoolers and an experimental research approach. The research will proceed in four phases beginning with a series of interviews with Saudi preschool teachers and mothers, whose voices and perceptions will help guide the second phase of selection and adaptation of a suitable SEL preschool program. The third phase will be the implementation of the intervention by the researcher in the preschool classroom environment, which will be facilitated by the researcher’s cultural proficiency and practical experience in Saudi Arabia. The fourth and final phase will be an evaluation to assess the effectiveness of the trialled SEL among the preschool student participants. The significance of this research stems from its contribution to knowledge about SEL in culturally appropriate Saudi preschools and the opportunity to support initiatives for Saudi early childhood educators to consider implementing SEL programs. The findings from the study may be useful to inform the Saudi Ministry of Education and its curriculum designers about SEL programs, which could be beneficial to trial more widely in the Saudi preschool curriculum.

Keywords: social emotional learning, preschool children, saudi Arabia, child behavior

Procedia PDF Downloads 157
16967 Disaster Management Supported by Unmanned Aerial Systems

Authors: Agoston Restas

Abstract:

Introduction: This paper describes many initiatives and shows also practical examples which happened recently using Unmanned Aerial Systems (UAS) to support disaster management. Since the operation of manned aircraft at disasters is usually not only expensive but often impossible to use as well, in many cases managers fail to use the aerial activity. UAS can be an alternative moreover cost-effective solution for supporting disaster management. Methods: This article uses thematic division of UAS applications; it is based on two key elements, one of them is the time flow of managing disasters, other is its tactical requirements. Logically UAS can be used like pre-disaster activity, activity immediately after the occurrence of a disaster and the activity after the primary disaster elimination. Paper faces different disasters, like dangerous material releases, floods, earthquakes, forest fires and human-induced disasters. Research used function analysis, practical experiments, mathematical formulas, economic analysis and also expert estimation. Author gathered international examples and used own experiences in this field as well. Results and discussion: An earthquake is a rapid escalating disaster, where, many times, there is no other way for a rapid damage assessment than aerial reconnaissance. For special rescue teams, the UAS application can help much in a rapid location selection, where enough place remained to survive for victims. Floods are typical for a slow onset disaster. In contrast, managing floods is a very complex and difficult task. It requires continuous monitoring of dykes, flooded and threatened areas. UAS can help managers largely keeping an area under observation. Forest fires are disasters, where the tactical application of UAS is already well developed. It can be used for fire detection, intervention monitoring and also for post-fire monitoring. In case of nuclear accident or hazardous material leakage, UAS is also a very effective or can be the only one tool for supporting disaster management. Paper shows some efforts using UAS to avoid human-induced disasters in low-income countries as part of health cooperation.

Keywords: disaster management, floods, forest fires, Unmanned Aerial Systems

Procedia PDF Downloads 237
16966 Cardiokey: A Binary and Multi-Class Machine Learning Approach to Identify Individuals Using Electrocardiographic Signals on Wearable Devices

Authors: S. Chami, J. Chauvin, T. Demarest, Stan Ng, M. Straus, W. Jahner

Abstract:

Biometrics tools such as fingerprint and iris are widely used in industry to protect critical assets. However, their vulnerability and lack of robustness raise several worries about the protection of highly critical assets. Biometrics based on Electrocardiographic (ECG) signals is a robust identification tool. However, most of the state-of-the-art techniques have worked on clinical signals, which are of high quality and less noisy, extracted from wearable devices like a smartwatch. In this paper, we are presenting a complete machine learning pipeline that identifies people using ECG extracted from an off-person device. An off-person device is a wearable device that is not used in a medical context such as a smartwatch. In addition, one of the main challenges of ECG biometrics is the variability of the ECG of different persons and different situations. To solve this issue, we proposed two different approaches: per person classifier, and one-for-all classifier. The first approach suggests making binary classifier to distinguish one person from others. The second approach suggests a multi-classifier that distinguishes the selected set of individuals from non-selected individuals (others). The preliminary results, the binary classifier obtained a performance 90% in terms of accuracy within a balanced data. The second approach has reported a log loss of 0.05 as a multi-class score.

Keywords: biometrics, electrocardiographic, machine learning, signals processing

Procedia PDF Downloads 142
16965 Geographic and Territorial Knowledge as Epistemic Contexts for Intercultural Curriculum Development

Authors: Verónica Muñoz-Rivero

Abstract:

The historically marginalized indigenous communities in the Atacama Desert continue to experience and struggle curricular hegemony in a prevalent monocultural educational context that denies heritage, culture and epistemologies in a documented attempted knowledge negation by the educational policies, the national curriculum and educational culture. The ancestral indigenous community of Toconce demands a territorial-based intercultural education and a school in their ancestral land to prevent the progressive cultural loss as they reclaim their memory and identity negated. This case study makes use of the intercultural theoretical framework and open qualitative methodology to analyze local socio-educational reality integrating aspects related to the educational experience, education demands for future generations and importance given to formal education. The interlocutors: elders, parents, caretakers and former teachers raised the educational experience for the indigenous childhood as an intergenerational voice that experienced discrimination, exclusion and racism on their K-12 trajectories. By center, the indigenous epistemologies, geography and memory, this research proposes a project-based learning approach anchored to the Limpia de Canales ceremony to develop a situated territorial intercultural curriculum unpacking from the local epistemology and structure thinking. The work on terraces gives students the opportunity to co-create a real-life application with practical purpose and present the importance of reinforcing notions related to the relevance of a situated intercultural curriculum for social justice in the formative development of prospective teachers.

Keywords: cultural studies, decolonial education, epistemic symmetry, intercultural curriculum, multidimensional curriculum

Procedia PDF Downloads 193
16964 Women in Urban Agriculture: Institutional Challenges, COVID-19 and the War in Bahir Dar, Ethiopia

Authors: Meseret Gebeyehu Yehuala

Abstract:

Women represent the majority of urban farmers engaged in vegetable and fruit production in Bahir Dar, Ethiopia. We examine urban agriculture in Bahir Dar city in the context of disruptions caused by the civil war and COVID-19. The Sustainable Livelihoods Framework serves as a conceptual frame to explore the vulnerability context, the structural and institutional challenges faced by women, and how this impacts their livelihoods. A total of 25 urban women farmers and 6 key informants were involved in the study through explorative and structured interviews conducted in 2021. Observations and informal conversations during repeated visits provided deeper insights. In addition, key informants employed in civil service institutions and experts were interviewed. Data were analysed by applying qualitative content analysis by using Atlas tia software. Women report that they experience a lack of access to land, insecurity of tenure, irregular technical support and input provision by agricultural extension services, and lack of access to credit and formal marketplaces. The COVID-19 pandemic restrictions aggravated this situation by delaying agricultural extension offices’ provision of necessary inputs and disrupting food handling and storage leading to the loss of perishable products. Bombing in relation to the civil war has destroyed harvests and left women in fear of returning to their fields. Women stated that vegetable and fruit production could contribute to their incomes, household food supplies, and more diversified diets. However, the city municipal office has, so far, not committed to supporting urban agriculture as a livelihood strategy.

Keywords: urban agriculture, institutional challenges, Bahir Dar, sustainable livelihood framework

Procedia PDF Downloads 99
16963 Safety Validation of Black-Box Autonomous Systems: A Multi-Fidelity Reinforcement Learning Approach

Authors: Jared Beard, Ali Baheri

Abstract:

As autonomous systems become more prominent in society, ensuring their safe application becomes increasingly important. This is clearly demonstrated with autonomous cars traveling through a crowded city or robots traversing a warehouse with heavy equipment. Human environments can be complex, having high dimensional state and action spaces. This gives rise to two problems. One being that analytic solutions may not be possible. The other is that in simulation based approaches, searching the entirety of the problem space could be computationally intractable, ruling out formal methods. To overcome this, approximate solutions may seek to find failures or estimate their likelihood of occurrence. One such approach is adaptive stress testing (AST) which uses reinforcement learning to induce failures in the system. The premise of which is that a learned model can be used to help find new failure scenarios, making better use of simulations. In spite of these failures AST fails to find particularly sparse failures and can be inclined to find similar solutions to those found previously. To help overcome this, multi-fidelity learning can be used to alleviate this overuse of information. That is, information in lower fidelity can simulations can be used to build up samples less expensively, and more effectively cover the solution space to find a broader set of failures. Recent work in multi-fidelity learning has passed information bidirectionally using “knows what it knows” (KWIK) reinforcement learners to minimize the number of samples in high fidelity simulators (thereby reducing computation time and load). The contribution of this work, then, is development of the bidirectional multi-fidelity AST framework. Such an algorithm, uses multi-fidelity KWIK learners in an adversarial context to find failure modes. Thus far, a KWIK learner has been used to train an adversary in a grid world to prevent an agent from reaching its goal; thus demonstrating the utility of KWIK learners in an AST framework. The next step is implementation of the bidirectional multi-fidelity AST framework described. Testing will be conducted in a grid world containing an agent attempting to reach a goal position and adversary tasked with intercepting the agent as demonstrated previously. Fidelities will be modified by adjusting the size of a time-step, with higher-fidelity effectively allowing for more responsive closed loop feedback. Results will compare the single KWIK AST learner with the multi-fidelity algorithm with respect to number of samples, distinct failure modes found, and relative effect of learning after a number of trials.

Keywords: multi-fidelity reinforcement learning, multi-fidelity simulation, safety validation, falsification

Procedia PDF Downloads 157
16962 Third Party Logistics (3PL) Selection Criteria for an Indian Heavy Industry Using SEM

Authors: Nadama Kumar, P. Parthiban, T. Niranjan

Abstract:

In the present paper, we propose an incorporated approach for 3PL supplier choice that suits the distinctive strategic needs of the outsourcing organization in southern part of India. Four fundamental criteria have been used in particular Performance, IT, Service and Intangible. These are additionally subdivided into fifteen sub-criteria. The proposed strategy coordinates Structural Equation Modeling (SEM) and Non-additive Fuzzy Integral strategies. The presentation of fluffiness manages the unclearness of human judgments. The SEM approach has been used to approve the determination criteria for the proposed show though the Non-additive Fuzzy Integral approach uses the SEM display contribution to assess a supplier choice score. The case organization has a exclusive vertically integrated assembly that comprises of several companies focusing on a slight array of the value chain. To confirm manufacturing and logistics proficiency, it significantly relies on 3PL suppliers to attain supply chain superiority. However, 3PL supplier selection is an intricate decision-making procedure relating multiple selection criteria. The goal of this work is to recognize the crucial 3PL selection criteria by using the non-additive fuzzy integral approach. Unlike the outmoded multi criterion decision-making (MCDM) methods which frequently undertake independence among criteria and additive importance weights, the nonadditive fuzzy integral is an effective method to resolve the dependency among criteria, vague information, and vital fuzziness of human judgment. In this work, we validate an empirical case that engages the nonadditive fuzzy integral to assess the importance weight of selection criteria and indicate the most suitable 3PL supplier.

Keywords: 3PL, non-additive fuzzy integral approach, SEM, fuzzy

Procedia PDF Downloads 280
16961 Dynamic Analysis of Turbine Foundation

Authors: Mogens Saberi

Abstract:

This paper presents different design approaches for the design of turbine foundations. In the design process, several unknown factors must be considered such as the soil stiffness at the site. The main static and dynamic loads are presented and the results of a dynamic simulation are presented for a turbine foundation that is currently being built. A turbine foundation is an important part of a power plant since a non-optimal behavior of the foundation can damage the turbine itself and thereby stop the power production with large consequences.

Keywords: dynamic turbine design, harmonic response analysis, practical turbine design experience, concrete foundation

Procedia PDF Downloads 316
16960 A Rapid Assessment of the Impacts of COVID-19 on Overseas Labor Migration: Findings from Bangladesh

Authors: Vaiddehi Bansal, Ridhi Sahai, Kareem Kysia

Abstract:

Overseas labor migration is currently one of the most important contributors to the economy of Bangladesh and is a highly profitable form of labor for Gulf Cooperative Council (GCC) countries. In 2019, 700,159 migrant workers from Bangladeshtraveled abroad for employment. GCC countries are a major destination for Bangladeshi migrant workers, with Saudi Arabia being the most common destination for Bangladeshi migrant workers since 2016. Despite the high rate of migration between these countries every year, the OLR industry remains complex and often leaves migrants susceptible to human trafficking, forced labor, and modern slavery. While the prevalence of forced labor among Bangladeshi migrants in GCC countries is still unknown, the IOM estimates international migrant workers comprise one fourth of the victims of forced labor. Moreover, the onset of the global COVID-19 pandemic has exposed migrant workers to additional adverse situations, making them even more vulnerable to forced labor and health risks. This paper presents findings from a rapid assessment of the impacts of COVID-19 on OLR in Bangladesh, with an emphasis on the increased risk of forced labor among vulnerable migrant worker populations, particularly women.Rapid reviews are a useful approach to swiftly provide actionable evidence for informed decision-making during emergencies, such as the COVID-19 pandemic. The research team conducted semi-structured key information interviews (KIIs) with a range of stakeholders, including government officials, local NGOs, international organizations, migration researchers, and formal and informal recruiting agencies, to obtain insights on the multi-facted impacts of COVID-19 on the OLR sector. The research team also conducted a comprehensive review of available resources, including media articles, blogs, policy briefs, reports, white papers, and other online content, to triangulate findings from the KIIs. After screening for inclusion criteria, a total of 110 grey literature documents were included in the review. A total of 31 KIIs were conducted, data from which was transcribed and translated from Bangla to English, andanalyzed using a detailed codebook. Findings indicate that there was limited reintegration support for returnee migrants. Facing increasing amounts of debt, financial insecurity, and social discrimination, returnee migrants, were extremely vulnerable to forced labor and exploitation. Growing financial debt and limited job opportunities in their home country will likely push migrants to resort to unsafe migration channels. Evidence suggests that women, who are primarily domestic works in GCC countries, were exposed to increased risk of forced labor and workplace violence. Due to stay-at-home measures, women migrant workers were tasked with additional housekeeping working and subjected to longer work hours, wage withholding, and physical abuse. In Bangladesh, returnee women migrant workers also faced an increased risk of domestic violence.

Keywords: forced labor, migration, gender, human trafficking

Procedia PDF Downloads 115
16959 Artificial Intelligence Techniques for Enhancing Supply Chain Resilience: A Systematic Literature Review, Holistic Framework, and Future Research

Authors: Adane Kassa Shikur

Abstract:

Today’s supply chains (SC) have become vulnerable to unexpected and ever-intensifying disruptions from myriad sources. Consequently, the concept of supply chain resilience (SCRes) has become crucial to complement the conventional risk management paradigm, which has failed to cope with unexpected SC disruptions, resulting in severe consequences affecting SC performances and making business continuity questionable. Advancements in cutting-edge technologies like artificial intelligence (AI) and their potential to enhance SCRes by improving critical antecedents in the different phases have attracted the attention of scholars and practitioners. The research from academia and the practical interest of the industry have yielded significant publications at the nexus of AI and SCRes during the last two decades. However, the applications and examinations have been primarily conducted independently, and the extant literature is dispersed into research streams despite the complex nature of SCRes. To close this research gap, this study conducts a systematic literature review of 106 peer-reviewed articles by curating, synthesizing, and consolidating up-to-date literature and presents the state-of-the-art development from 2010 to 2022. Bayesian networks are the most topical ones among the 13 AI techniques evaluated. Concerning the critical antecedents, visibility is the first ranking to be realized by the techniques. The study revealed that AI techniques support only the first 3 phases of SCRes (readiness, response, and recovery), and readiness is the most popular one, while no evidence has been found for the growth phase. The study proposed an AI-SCRes framework to inform research and practice to approach SCRes holistically. It also provided implications for practice, policy, and theory as well as gaps for impactful future research.

Keywords: ANNs, risk, Bauesian networks, vulnerability, resilience

Procedia PDF Downloads 95
16958 Conjunctive Management of Surface and Groundwater Resources under Uncertainty: A Retrospective Optimization Approach

Authors: Julius M. Ndambuki, Gislar E. Kifanyi, Samuel N. Odai, Charles Gyamfi

Abstract:

Conjunctive management of surface and groundwater resources is a challenging task due to the spatial and temporal variability nature of hydrology as well as hydrogeology of the water storage systems. Surface water-groundwater hydrogeology is highly uncertain; thus it is imperative that this uncertainty is explicitly accounted for, when managing water resources. Various methodologies have been developed and applied by researchers in an attempt to account for the uncertainty. For example, simulation-optimization models are often used for conjunctive water resources management. However, direct application of such an approach in which all realizations are considered at each iteration of the optimization process leads to a very expensive optimization in terms of computational time, particularly when the number of realizations is large. The aim of this paper, therefore, is to introduce and apply an efficient approach referred to as Retrospective Optimization Approximation (ROA) that can be used for optimizing conjunctive use of surface water and groundwater over a multiple hydrogeological model simulations. This work is based on stochastic simulation-optimization framework using a recently emerged technique of sample average approximation (SAA) which is a sampling based method implemented within the Retrospective Optimization Approximation (ROA) approach. The ROA approach solves and evaluates a sequence of generated optimization sub-problems in an increasing number of realizations (sample size). Response matrix technique was used for linking simulation model with optimization procedure. The k-means clustering sampling technique was used to map the realizations. The methodology is demonstrated through the application to a hypothetical example. In the example, the optimization sub-problems generated were solved and analysed using “Active-Set” core optimizer implemented under MATLAB 2014a environment. Through k-means clustering sampling technique, the ROA – Active Set procedure was able to arrive at a (nearly) converged maximum expected total optimal conjunctive water use withdrawal rate within a relatively few number of iterations (6 to 7 iterations). Results indicate that the ROA approach is a promising technique for optimizing conjunctive water use of surface water and groundwater withdrawal rates under hydrogeological uncertainty.

Keywords: conjunctive water management, retrospective optimization approximation approach, sample average approximation, uncertainty

Procedia PDF Downloads 231
16957 Sexual and Reproductive Health for Women in Africa: Adopting a Human Rights Based Approach to Overcome Cultural Barriers

Authors: Seraphina Bakta

Abstract:

In many societies in Africa, it is a taboo to speak, let alone to practice or in any way to engage in matters relating to sexual and reproductive health. For instance, girls using contraceptives may be labeled prostitutes, and married women using family planning methods may be divorced on account that they are disobedient to their husbands as they do not want to bear children. As such, sexual and reproductive health as a right is still very far from reality to many men and women. To a large extent, the objections are mainly backed up in culture, which is deeply rooted in many African traditions. While such culture have both the good and bad side, the African Charter on Human and Peoples Rights has identified the bad ones as’ harmful cultural practices. This paper argues that, while cultural norms may hinder the realization of human rights, adopting a human rights based approach to address harmful cultural practices is likely, the best approach to realizing women’s rights to sexual and reproductive health rights in Africa.

Keywords: rights, culture, health, women

Procedia PDF Downloads 126
16956 Survivability of Maneuvering Aircraft against Air to Air Infrared Missile

Authors: Ji-Yeul Bae, Hyung Mo Bae, Jihyuk Kim, Hyung Hee Cho

Abstract:

An air to air infrared missile poses a significant threat to the survivability of an aircraft due to an advanced sensitivity of sensor and maneuverability of the missile. Therefore, recent military aircraft is equipped with MAW (Missile Approach Warning) to take an evasive maneuver and to deploy countermeasures like chaff and flare. In this research, an effect of MAW sensitivity and resulting evasive maneuver on the survivability of the fighter aircraft is studied. A single engine fighter jet with Mach 0.9 flying at an altitude of 5 km is modeled in the research and infrared signature of the aircraft is calculated by numerical simulation. The survivability is assessed in terms of lethal range. The MAW sensitivity and maneuverability of an aircraft is used as variables. The result showed that improvement in survivability mainly achieved when the missile approach from the side of the aircraft. And maximum 30% increase in survivability of the aircraft is achieved when existence of the missile is noticed at 7 km distance. As a conclusion, sensitivity of the MAW seems to be more important factor than the maneuverability of the aircraft in terms of the survivability.

Keywords: air to air missile, missile approach warning, lethal range, survivability

Procedia PDF Downloads 567