Search results for: mobile-assisted language learning
7724 Use Cloud-Based Watson Deep Learning Platform to Train Models Faster and More Accurate
Authors: Susan Diamond
Abstract:
Machine Learning workloads have traditionally been run in high-performance computing (HPC) environments, where users log in to dedicated machines and utilize the attached GPUs to run training jobs on huge datasets. Training of large neural network models is very resource intensive, and even after exploiting parallelism and accelerators such as GPUs, a single training job can still take days. Consequently, the cost of hardware is a barrier to entry. Even when upfront cost is not a concern, the lead time to set up such an HPC environment takes months from acquiring hardware to set up the hardware with the right set of firmware, software installed and configured. Furthermore, scalability is hard to achieve in a rigid traditional lab environment. Therefore, it is slow to react to the dynamic change in the artificial intelligent industry. Watson Deep Learning as a service, a cloud-based deep learning platform that mitigates the long lead time and high upfront investment in hardware. It enables robust and scalable sharing of resources among the teams in an organization. It is designed for on-demand cloud environments. Providing a similar user experience in a multi-tenant cloud environment comes with its own unique challenges regarding fault tolerance, performance, and security. Watson Deep Learning as a service tackles these challenges and present a deep learning stack for the cloud environments in a secure, scalable and fault-tolerant manner. It supports a wide range of deep-learning frameworks such as Tensorflow, PyTorch, Caffe, Torch, Theano, and MXNet etc. These frameworks reduce the effort and skillset required to design, train, and use deep learning models. Deep Learning as a service is used at IBM by AI researchers in areas including machine translation, computer vision, and healthcare.Keywords: deep learning, machine learning, cognitive computing, model training
Procedia PDF Downloads 2147723 Leveraging Large Language Models to Build a Cutting-Edge French Word Sense Disambiguation Corpus
Authors: Mouheb Mehdoui, Amel Fraisse, Mounir Zrigui
Abstract:
With the increasing amount of data circulating over the Web, there is a growing need to develop and deploy tools aimed at unraveling semantic nuances within text or sentences. The challenges in extracting precise meanings arise from the complexity of natural language, while words usually have multiple interpretations depending on the context. The challenge of precisely interpreting words within a given context is what the task of Word Sense Disambiguation meets. It is a very old domain within the area of Natural Language Processing aimed at determining a word’s meaning that it is going to carry in a particular context, hence increasing the correctness of applications processing the language. Numerous linguistic resources are accessible online, including WordNet, thesauri, and dictionaries, enabling exploration of diverse contextual meanings. However, several limitations persist. These include the scarcity of resources for certain languages, a limited number of examples within corpora, and the challenge of accurately detecting the topic or context covered by text, which significantly impacts word sense disambiguation. This paper will discuss the different approaches to WSD and review corpora available for this task. We will contrast these approaches, highlighting the limitations, which will allow us to build a corpus in French, targeted for WSD.Keywords: semantic enrichment, disambiguation, context fusion, natural language processing, multilingual applications
Procedia PDF Downloads 227722 Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids
Authors: Xun Li, Haojie Wang
Abstract:
Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper.Keywords: federated learning, backdoor attack, PCA, k-medoids, backdoor defense
Procedia PDF Downloads 1177721 Classification of IoT Traffic Security Attacks Using Deep Learning
Authors: Anum Ali, Kashaf ad Dooja, Asif Saleem
Abstract:
The future smart cities trend will be towards Internet of Things (IoT); IoT creates dynamic connections in a ubiquitous manner. Smart cities offer ease and flexibility for daily life matters. By using small devices that are connected to cloud servers based on IoT, network traffic between these devices is growing exponentially, whose security is a concerned issue, since ratio of cyber attack may make the network traffic vulnerable. This paper discusses the latest machine learning approaches in related work further to tackle the increasing rate of cyber attacks, machine learning algorithm is applied to IoT-based network traffic data. The proposed algorithm train itself on data and identify different sections of devices interaction by using supervised learning which is considered as a classifier related to a specific IoT device class. The simulation results clearly identify the attacks and produce fewer false detections.Keywords: IoT, traffic security, deep learning, classification
Procedia PDF Downloads 1577720 Reasons to Redesign: Teacher Education for a Brighter Tomorrow
Authors: Deborah L. Smith
Abstract:
To review our program and determine the best redesign options, department members gathered feedback and input through focus groups, analysis of data, and a review of the current research to ensure that the changes proposed were not based solely on the state’s new professional standards. In designing course assignments and assessments, we listened to a variety of constituents, including students, other institutions of higher learning, MDE webinars, host teachers, literacy clinic personnel, and other disciplinary experts. As a result, we are designing a program that is more inclusive of a variety of field experiences for growth. We have determined ways to improve our program by connecting academic disciplinary knowledge, educational psychology, and community building both inside and outside the classroom for professional learning communities. The state’s release of new professional standards led my department members to question what is working and what needs improvement in our program. One aspect of our program that continues to be supported by research and data analysis is the function of supervised field experiences with meaningful feedback. We seek to expand in this area. Other data indicate that we have strengths in modeling a variety of approaches such as cooperative learning, discussions, literacy strategies, and workshops. In the new program, field assignments will be connected to multiple courses, and efforts to scaffold student learning to guide them toward best evidence-based practices will be continuous. Despite running a program that meets multiple sets of standards, there are areas of need that we directly address in our redesign proposal. Technology is ever-changing, so it’s inevitable that improving digital skills is a focus. In addition, scaffolding procedures for English Language Learners (ELL) or other students who struggle is imperative. Diversity, equity, and inclusion (DEI) has been an integral part of our curriculum, but the research indicates that more self-reflection and a deeper understanding of culturally relevant practices would help the program improve. Connections with professional learning communities will be expanded, as will leadership components, so that teacher candidates understand their role in changing the face of education. A pilot program will run in academic year 22/23, and additional data will be collected each semester through evaluations and continued program review.Keywords: DEI, field experiences, program redesign, teacher preparation
Procedia PDF Downloads 1767719 Neologisms and Word-Formation Processes in Board Game Rulebook Corpus: Preliminary Results
Authors: Athanasios Karasimos, Vasiliki Makri
Abstract:
This research focuses on the design and development of the first text Corpus based on Board Game Rulebooks (BGRC) with direct application on the morphological analysis of neologisms and tendencies in word-formation processes. Corpus linguistics is a dynamic field that examines language through the lens of vast collections of texts. These corpora consist of diverse written and spoken materials, ranging from literature and newspapers to transcripts of everyday conversations. By morphologically analyzing these extensive datasets, morphologists can gain valuable insights into how language functions and evolves, as these extensive datasets can reflect the byproducts of inflection, derivation, blending, clipping, compounding, and neology. This entails scrutinizing how words are created, modified, and combined to convey meaning in a corpus of challenging, creative, and straightforward texts that include rules, examples, tutorials, and tips. Board games teach players how to strategize, consider alternatives, and think flexibly, which are critical elements in language learning. Their rulebooks reflect not only their weight (complexity) but also the language properties of each genre and subgenre of these games. Board games are a captivating realm where strategy, competition, and creativity converge. Beyond the excitement of gameplay, board games also spark the art of word creation. Word games, like Scrabble, Codenames, Bananagrams, Wordcraft, Alice in the Wordland, Once uUpona Time, challenge players to construct words from a pool of letters, thus encouraging linguistic ingenuity and vocabulary expansion. These games foster a love for language, motivating players to unearth obscure words and devise clever combinations. On the other hand, the designers and creators produce rulebooks, where they include their joy of discovering the hidden potential of language, igniting the imagination, and playing with the beauty of words, making these games a delightful fusion of linguistic exploration and leisurely amusement. In this research, more than 150 rulebooks in English from all types of modern board games, either language-independent or language-dependent, are used to create the BGRC. A representative sample of each genre (family, party, worker placement, deckbuilding, dice, and chance games, strategy, eurogames, thematic, role-playing, among others) was selected based on the score from BoardGameGeek, the size of the texts and the level of complexity (weight) of the game. A morphological model with morphological networks, multi-word expressions, and word-creation mechanics based on the complexity of the textual structure, difficulty, and board game category will be presented. In enabling the identification of patterns, trends, and variations in word formation and other morphological processes, this research aspires to make avail of this creative yet strict text genre so as to (a) give invaluable insight into morphological creativity and innovation that (re)shape the lexicon of the English language and (b) test morphological theories. Overall, it is shown that corpus linguistics empowers us to explore the intricate tapestry of language, and morphology in particular, revealing its richness, flexibility, and adaptability in the ever-evolving landscape of human expression.Keywords: board game rulebooks, corpus design, morphological innovations, neologisms, word-formation processes
Procedia PDF Downloads 1087718 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network
Authors: Marcio Leal, Marta Villamil
Abstract:
Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.Keywords: artificial neural network, computer vision, dynamic time warping, infrared, sign language recognition
Procedia PDF Downloads 2197717 Learning Physics Concepts through Language Syntagmatic Paradigmatic Relations
Authors: C. E. Laburu, M. A. Barros, A. F. Zompero, O. H. M. Silva
Abstract:
The work presents a teaching strategy that employs syntagmatic and paradigmatic linguistic relations in order to monitor the understanding of physics students’ concepts. Syntagmatic and paradigmatic relations are theoretical elements of semiotics studies and our research circumstances and justified them within the research program of multi-modal representations. Among the multi-modal representations to learning scientific knowledge, the scope of action of syntagmatic and paradigmatic relations belongs to the discursive writing form. The use of such relations has the purpose to seek innovate didactic work with discourse representation in the write form before translate to another different representational form. The research was conducted with a sample of first year high school students. The students were asked to produce syntagmatic and paradigmatic of Newton’ first law statement. This statement was delivered in paper for each student that should individually write the relations. The student’s records were collected for analysis. It was possible observed in one student used here as example that their monemes replaced and rearrangements produced by, respectively, syntagmatic and paradigmatic relations, kept the original meaning of the law. In paradigmatic production he specified relevant significant units of the linguistic signs, the monemas, which constitute the first articulation and each word substituted kept equivalence to the original meaning of original monema. Also, it was noted a number of diverse and many monemas were chosen, with balanced combination of grammatical (grammatical monema is what changes the meaning of a word, in certain positions of the syntagma, along with a relatively small number of other monemes. It is the smallest linguistic unit that has grammatical meaning) and lexical (lexical monema is what belongs to unlimited inventories; is the monema endowed with lexical meaning) monemas. In syntagmatic production, monemas ordinations were syntactically coherent, being linked with semantic conservation and preserved number. In general, the results showed that the written representation mode based on linguistic relations paradigmatic and syntagmatic qualifies itself to be used in the classroom as a potential identifier and accompanist of meanings acquired from students in the process of scientific inquiry.Keywords: semiotics, language, high school, physics teaching
Procedia PDF Downloads 1367716 Complex Learning Tasks and Their Impact on Cognitive Engagement for Undergraduate Engineering Students
Authors: Anastassis Kozanitis, Diane Leduc, Alain Stockless
Abstract:
This paper presents preliminary results from a two-year funded research program looking to analyze and understand the relationship between high cognitive engagement, higher order cognitive processes employed in situations of complex learning tasks, and the use of active learning pedagogies in engineering undergraduate programs. A mixed method approach was used to gauge student engagement and their cognitive processes when accomplishing complex tasks. Quantitative data collected from the self-report cognitive engagement scale shows that deep learning approach is positively correlated with high levels of complex learning tasks and the level of student engagement, in the context of classroom active learning pedagogies. Qualitative analyses of in depth face-to-face interviews reveal insights into the mechanisms influencing students’ cognitive processes when confronted with open-ended problem resolution. Findings also support evidence that students will adjust their level of cognitive engagement according to the specific didactic environment.Keywords: cognitive engagement, deep and shallow strategies, engineering programs, higher order cognitive processes
Procedia PDF Downloads 3287715 Closing the Assessment Loop: Case Study in Improving Outcomes for Online College Students during Pandemic
Authors: Arlene Caney, Linda Fellag
Abstract:
To counter the adverse effect of Covid-19 on college student success, two faculty members at a US community college have used web-based assessment data to improve curricula and, thus, student outcomes. This case study exemplifies how “closing the loop” by analyzing outcome assessments in real time can improve student learning for academically underprepared students struggling during the pandemic. The purpose of the study was to develop ways to mitigate the negative impact of Covid-19 on student success of underprepared college students. Using the Assessment, Evaluation, Feedback and Intervention System (AEFIS) and other assessment tools provided by the college’s Office of Institutional Research, an English professor and a Music professor collected data in skill areas related to their curricula over four semesters, gaining insight into specific course sections and learners’ performance across different Covid-driven course formats—face-to-face, hybrid, synchronous, and asynchronous. Real-time data collection allowed faculty to shorten and close the assessment loop, and prompted faculty to enhance their curricula with engaging material, student-centered activities, and a variety of tech tools. Frequent communication, individualized study, constructive criticism, and encouragement were among other measures taken to enhance teaching and learning. As a result, even while student success rates were declining college-wide, student outcomes in these faculty members’ asynchronous and synchronous online classes improved or remained comparable to student outcomes in hybrid and face-to-face sections. These practices have demonstrated that even high-risk students who enter college with remedial level language and mathematics skills, interrupted education, work and family responsibilities, and language and cultural diversity can maintain positive outcomes in college across semesters, even during the pandemic.Keywords: AEFIS, assessment, distance education, institutional research center
Procedia PDF Downloads 907714 Collaboration and Automatic Tutoring as a Learning Strategy: A Case Study in Programming Courses
Authors: Luis H. Gonzalez-Guerra, Armandina J. Leal-Flores
Abstract:
Students attending classrooms nowadays are habituated to use digital devices all the time and for multiple things. They have been familiar with digital technology throughout their lives so they have developed skills that should be naturally adopted as part of their study strategies. New learning styles require taking in consideration the use of models that support and promote student motivation for learning and development of their creative thinking skills. To achieve student learning in programming courses, different strategies are used. One of them is a collaboration between students, which is a tool which faculty can take advantage of when teaching these kinds of courses. Moreover, cooperation is an essential skill that society should reinforce in order to promote a healthy social environment and cohabitation. Nevertheless, students will still require support and advice to get a complete and correct programming solution to successfully address and solve the problems given throughout the course. This paper present a model where collaboration between students is associated with an automatic tutoring platform providing an excellent approach for the individual learning in collaborative activities in programming courses, and also motivates students to increase their knowledge regarding the topics covered in the classroom.Keywords: automatic tutoring, collaboration learning, creative thinking, motivation
Procedia PDF Downloads 2757713 Advantages and Disadvantages of Distance Learning in Comparison with Full-time Teaching from the Perspective of Chinese University Students
Authors: Daniel Ecler
Abstract:
The aim of this paper was to find out how Chinese university students perceive distance learning compared to full-time teaching, to reveal its advantages and disadvantages, and to try to find what elements could be implemented in regular full-time teaching in order to make it more effective. Recent events have shown that online teaching has a significant role to play in the field of education and needs to be given increased attention and scrutiny. For this purpose, a research survey was conducted using semi-structured questionnaires, which aimed to determine the attitudes of Chinese university students to the phenomenon of distance learning. The results of this survey revealed that most students prefer distance learning to full-time teaching, mainly because it gives them more freedom to participate in teaching, regardless of the environment in which they are currently located. In conclusion, it is necessary to mention that the possibility to participate virtually in teaching from anywhere is a huge advantage that could become part of regular teaching in the future. However, further research into this issue will be necessary.Keywords: distance learning, full-time teaching, Chinese college students, cultural background
Procedia PDF Downloads 1797712 A Qualitative Study About a Former Professional Baseball Player with Dyslexia
Authors: Matthias Grunke
Abstract:
In this qualitative study, we interviewed a young man with learning disabilities who played professional baseball for two years. Individuals with severe academic challenges constitute one of the most vulnerable groups of our society. Science has to find ways on how to arm them against life’s challenges and help them to cope with the many risk factors that they are usually confronted with. Team sports like baseball seem to be a suitable means for that purpose. In the interview, our participant talked about his life as a student with severe learning difficulties and related how his career in baseball made his academic challenges appear much less significant. He gave some meaningful insights into what helped him to build a happy and fulfilling life for himself, not only in spite of his challenges but also because of what he's learning disabilities taught him. Support from significant others, a sense of purpose, his fighting spirit ignited by sports, and the success that he experienced on the baseball field were among the most relevant factors. Overall, this study highlights the importance of finding an outlet for young people with learning disabilities where their academic difficulties retreat into the background and their talents are validated.Keywords: baseball, inclusion, learning disabilities, resilience
Procedia PDF Downloads 1007711 Learning on the Go: Practicing Vocabulary with Mobile Apps
Authors: Shoba Bandi-Rao
Abstract:
The lack of college readiness is one of the major contributors to low graduation rates at community colleges, especially among educationally and financially disadvantaged students. About 45% of underprepared high school graduates are required to complete ‘remedial’ reading/writing courses before they can begin taking college-level courses. Mobile apps present ‘bite-size’ learning materials that can be useful for practicing certain literacy skills, such as vocabulary learning. The convenience of mobile phones is ideal for a majority of students at community colleges who hold full or part-time jobs. Mobile apps allow students to learn during small ‘chunks’ of time available to them outside of the class—during subway commute, between classes, etc. Learning with mobile apps is a relatively new area in research, and their effectiveness for learning new words has been inconclusive. Using Mishra & Koehler’s TPCK theoretical framework, this study explored the effectiveness of the mobile app (Quizlet) for learning one hundred common college-level words in ‘remedial’ writing class over one semester. Each week, before coming to class, students studied a list of 10-15 words presented in context within sentences. Students came across these words in the article they read in class making their learning more meaningful. A pre and post-test measured the number of words students knew, learned and remembered. Statistical analysis shows that students performed better by 41% on the post-test indicating that the mobile app was helpful for learning words. Students also completed a short survey each week that sought to determine the amount of time students spent on the vocabulary app. A positive correlation was found between the amount of time spent on the mobile app and the number of words learned. The goal of this research is to capitalize on the convenience of smartphones to (1) better prepare them for college-level course work, and (2) contribute to current literature on mobile learning.Keywords: mobile learning, vocabulary learning, literacy skills, Quizlet
Procedia PDF Downloads 2247710 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification
Authors: Samiah Alammari, Nassim Ammour
Abstract:
When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method.Keywords: continual learning, data reconstruction, remote sensing, hyperspectral image segmentation
Procedia PDF Downloads 2727709 Assessment of the Readiness of Institutions and Undergraduates’ Attitude to Online Learning Mode in Nigerian Universities
Authors: Adedolapo Taiwo Adeyemi, Success Ayodeji Fasanmi
Abstract:
The emergence of the coronavirus pandemic and the rate of the spread affected a lot of activities across the world. This led to the introduction of online learning modes in several countries after institutions were shut down. Unfortunately, most public universities in Nigeria could not switch to the online mode because they were not prepared for it, as they do not have the technological capacity to support a full online learning mode. This study examines the readiness of university and the attitude of undergraduates towards online learning mode in Obafemi Awolowo University (OAU), Ile Ife. It investigated the skills and competencies of students for online learning as well as the university’s readiness towards online learning mode; the effort was made to identify challenges of online teaching and learning in the study area, and suggested solutions were advanced. OAU was selected because it is adjudged to be the leading Information and Communication Technology (ICT) driven institution in Nigeria. The descriptive survey research design was used for the study. A total of 256 academic staff and 1503 undergraduates were selected across six faculties out of the thirteen faculties in the University. Two set of questionnaires were used to get responses from the selected respondents. The result showed that students have the skills and competence to operate e-learning facilities but are faced with challenges such as high data cost, erratic power supply, and lack of gadgets, among others. The study found out that the university was not prepared for online learning mode as it lacks basic technological facilities to support it. The study equally showed that while lecturers possess certain skills in using some e-learning applications, they were limited by the unavailability of online support gadgets, poor internet connectivity, and unstable power supply. Furthermore, the assessment of student attitude towards online learning mode shows that the students found the online learning mode very challenging as they had to bear the huge cost of data. Lecturers also faced the same challenge as they had to pay a lot to buy data, and the networks were sometimes unstable. The study recommended that adequate funding needs to be provided to public universities by the government while the management of institutions must build technological capacities to support online learning mode in the hybrid form and on a full basis in case of future emergencies.Keywords: universities, online learning, undergraduates, attitude
Procedia PDF Downloads 1017708 Facilitated Massive Open Online Course (MOOC) Based Teacher Professional Development in Kazakhstan: Connectivism-Oriented Practices
Authors: A. Kalizhanova, T. Shelestova
Abstract:
Teacher professional development (TPD) in Kazakhstan has followed a fairly standard format for centuries, with teachers learning new information from a lecturer and being tested using multiple-choice questions. In the online world, self-access courses have become increasingly popular. Due to their extensive multimedia content, peer-reviewed assignments, adaptable class times, and instruction from top university faculty from across the world, massive open online courses (MOOCs) have found a home in Kazakhstan's system for lifelong learning. Recent studies indicate the limited use of connectivism-based tools such as discussion forums by Kazakhstani pre-service and in-service English teachers, whose professional interests are limited to obtaining certificates rather than enhancing their teaching abilities and exchanging knowledge with colleagues. This paper highlights the significance of connectivism-based tools and instruments, such as MOOCs, for the continuous professional development of pre- and in-service English teachers, facilitators' roles, and their strategies for enhancing trainees' conceptual knowledge within the MOOCs' curriculum and online learning skills. Reviewing the most pertinent papers on Connectivism Theory, facilitators' function in TPD, and connectivism-based tools, such as MOOCs, a code extraction method was utilized. Three experts, former active participants in a series of projects initiated across Kazakhstan to improve the efficacy of MOOCs, evaluated the excerpts and selected the most appropriate ones to propose the matrix of teacher professional competencies that can be acquired through MOOCs. In this paper, we'll look at some of the strategies employed by course instructors to boost their students' English skills and knowledge of course material, both inside and outside of the MOOC platform. Participants' interactive learning contributed to their language and subject conceptual knowledge and prepared them for peer-reviewed assignments in the MOOCs, and this approach of small group interaction was given to highlight the outcomes of participants' interactive learning. Both formal and informal continuing education institutions can use the findings of this study to support teachers in gaining experience with MOOCs and creating their own online courses.Keywords: connectivism-based tools, teacher professional development, massive open online courses, facilitators, Kazakhstani context
Procedia PDF Downloads 867707 The Sapir-Whorf Hypothesis and Multicultural Effects on Translators: A Case Study from Chinese Ethnic Minority Literature
Authors: Yuqiao Zhou
Abstract:
The Sapir-Whorf hypothesis (SWH) emphasizes the effect produced by language on people’s minds. According to linguistic relativity, language has evolved over the course of human life on earth, and, in turn, the acquisition of language shapes learners’ thoughts. Despite much attention drawn by SWH, few scholars have attempted to analyse people’s thoughts via their literary works. And yet, the linguistic choices that create a narrative can enable us to examine its writer’s thoughts. Still, less work has been done on the impact of language on the minds of bilingual people. Internationalization has resulted in an increasing number of bilingual and multilingual individuals. In China, where more than one hundred languages are used for communication, most people are bilingual in Mandarin Chinese (the official language of China) and their own dialect. Taking as its corpus the ethnic minority myth of Ge Sa-er Wang by Alai and its English translation by Goldblatt and Lin, this paper aims to analyse the effects of culture on bilingual people’s minds. It will first analyse Alai’s thoughts on using the original version of Ge Sa-er Wang; next, it will examine the thoughts of the two translators by looking at translation choices made in the English version; finally, it will compare the cultural influences evident in the thoughts of Alai, and Goldblatt and Lin. Whereas Alai can speak two Sino-Tibetan languages – Mandarin Chinese and Tibetan – Goldblatt and Lin can speak two languages from different families – Mandarin Chinese (a Sino-Tibetan language) and English (an Indo-European language). The results reveal two systems of thought existing in the translators’ minds; Alai’s text, on the other hand, does not reveal a significant influence from North China, where Mandarin Chinese originated. The findings reveal the inconsistency of a second language’s influence on people’s minds. Notably, they suggest that the more different the two languages are, the greater the influence produced by the second language culture on people’s thoughts. It is hoped that this research will expand the scope of SWH as well as shed light on future translation studies on ethnic minority literature.Keywords: Sapir-Whorf hypothesis, cultural translation, cultural-specific items, Ge Sa-er Wang, ethnic minority literature, Tibet
Procedia PDF Downloads 1437706 Learning Mathematics Online: Characterizing the Contribution of Online Learning Environment’s Components to the Development of Mathematical Knowledge and Learning Skills
Authors: Atara Shriki, Ilana Lavy
Abstract:
Teaching for the first time an online course dealing with the history of mathematics, we were struggling with questions related to the design of a proper learning environment (LE). Thirteen high school mathematics teachers, M.Ed. students, attended the course. The teachers were engaged in independent reading of mathematical texts, a task that is recognized as complex due to the unique characteristics of such texts. In order to support the learning processes and develop skills that are essential for succeeding in learning online (e.g. self-regulated learning skills, meta-cognitive skills, reflective ability, and self-assessment skills), the LE comprised of three components aimed at “scaffolding” the learning: (1) An online "self-feedback" questionnaires that included drill-and-practice questions. Subsequent to responding the questions the online system provided a grade and the teachers were entitled to correct their answers; (2) Open-ended questions aimed at stimulating critical thinking about the mathematical contents; (3) Reflective questionnaires designed to assist the teachers in steering their learning. Using a mixed-method methodology, an inquiry study examined the learning processes, the learners' difficulties in reading the mathematical texts and on the unique contribution of each component of the LE to the ability of teachers to comprehend the mathematical contents, and support the development of their learning skills. The results indicate that the teachers found the online feedback as most helpful in developing self-regulated learning skills and ability to reflect on deficiencies in knowledge. Lacking previous experience in expressing opinion on mathematical ideas, the teachers had troubles in responding open-ended questions; however, they perceived this assignment as nurturing cognitive and meta-cognitive skills. The teachers also attested that the reflective questionnaires were useful for steering the learning. Although in general the teachers found the LE as supportive, most of them indicated the need to strengthen instructor-learners and learners-learners interactions. They suggested to generate an online forum to enable them receive direct feedback from the instructor, share ideas with other learners, and consult with them about solutions. Apparently, within online LE, supporting learning merely with respect to cognitive aspects is not sufficient. Leaners also need an emotional support and sense a social presence.Keywords: cognitive and meta-cognitive skills, independent reading of mathematical texts, online learning environment, self-regulated learning skills
Procedia PDF Downloads 6227705 The Asymmetric Proximal Support Vector Machine Based on Multitask Learning for Classification
Authors: Qing Wu, Fei-Yan Li, Heng-Chang Zhang
Abstract:
Multitask learning support vector machines (SVMs) have recently attracted increasing research attention. Given several related tasks, the single-task learning methods trains each task separately and ignore the inner cross-relationship among tasks. However, multitask learning can capture the correlation information among tasks and achieve better performance by training all tasks simultaneously. In addition, the asymmetric squared loss function can better improve the generalization ability of the models on the most asymmetric distributed data. In this paper, we first make two assumptions on the relatedness among tasks and propose two multitask learning proximal support vector machine algorithms, named MTL-a-PSVM and EMTL-a-PSVM, respectively. MTL-a-PSVM seeks a trade-off between the maximum expectile distance for each task model and the closeness of each task model to the general model. As an extension of the MTL-a-PSVM, EMTL-a-PSVM can select appropriate kernel functions for shared information and private information. Besides, two corresponding special cases named MTL-PSVM and EMTLPSVM are proposed by analyzing the asymmetric squared loss function, which can be easily implemented by solving linear systems. Experimental analysis of three classification datasets demonstrates the effectiveness and superiority of our proposed multitask learning algorithms.Keywords: multitask learning, asymmetric squared loss, EMTL-a-PSVM, classification
Procedia PDF Downloads 1437704 Lifelong Learning in Applied Fields (LLAF) Tempus Funded Project: A Case Study of Problem-Based Learning
Authors: Nirit Raichel, Dorit Alt
Abstract:
Although university teaching is claimed to have a special task to support students in adopting ways of thinking and producing new knowledge anchored in scientific inquiry practices, it is argued that students' habits of learning are still overwhelmingly skewed toward passive acquisition of knowledge from authority sources rather than from collaborative inquiry activities. In order to overcome this critical inadequacy between current educational goals and instructional methods, the LLAF consortium is aimed at developing updated instructional practices that put a premium on adaptability to the emerging requirements of present society. LLAF has created a practical guide for teachers containing updated pedagogical strategies based on the constructivist approach for learning, arranged along Delors’ four theoretical ‘pillars’ of education: Learning to know, learning to do, learning to live together, and learning to be. This presentation will be limited to problem-based learning (PBL), as a strategy introduced in the second pillar. PBL leads not only to the acquisition of technical skills, but also allows the development of skills like problem analysis and solving, critical thinking, cooperation and teamwork, decision- making and self-regulation that can be transferred to other contexts. This educational strategy will be exemplified by a case study conducted in the pre-piloting stage of the project. The case describes a three-fold process implemented in a postgraduate course for in-service teachers, including: (1) learning about PBL (2) implementing PBL in the participants' classes, and (3) qualitatively assessing the contributions of PBL to students' outcomes. An example will be given regarding the ways by which PBL was applied and assessed in civic education for high-school students. Two 9th-grade classes have participated the study; both included several students with learning disability. PBL was applied only in one class whereas traditional instruction was used in the other. Results showed a robust contribution of PBL to students' affective and cognitive outcomes as reflected in their motivation to engage in learning activities, and to further explore the subject. However, students with learning disability were less favorable with this "active" and "annoying" environment. Implications of these findings for the LLAF project will be discussed.Keywords: problem-based learning, higher education, pedagogical strategies
Procedia PDF Downloads 3357703 Effective Coaching for Teachers of English Language Learners: A Gap Analysis Framework
Authors: Armando T. Zúñiga
Abstract:
As the number of English Language Learners (ELLs) in public schools continues to grow, so does the achievement gap between ELLs and other student populations. In an effort to support classroom teachers with effective instructional strategies for this student population, many districts have created instructional coaching positions specifically to support classroom teachers of ELLs—ELL Teachers on Special Assignment (ELL TOSAs). This study employed a gap analysis framework to the ELL TOSA professional support program in one California school district to examine knowledge, motivation, and organizational influences (KMO) on the ELL TOSAs’ goal of supporting classroom teachers of ELLs. Three themes emerged as a result of data analysis. First, there was evidence to illustrate the interaction between knowledge and the organization. Data from ELL TOSAs indicated an understanding of the role that collaboration plays in coaching and how to operationalize it in their support of teachers. Further, all of the ELL TOSAs indicated they have received professional development on effective strategies for instructional coaching. Additionally, a large percentage of the ELL TOSAs indicated a knowledge of modeling as an effective coaching practice. Accordingly, all of the ELL TOSAs indicated that they had knowledge of feedback as an effective coaching strategy. However, there was not sufficient evidence to support that they learned the latter two strategies through professional development. A second theme surfaced as there was evidence to illustrate an interaction between motivation and the organization. Some ELL TOSAs indicated that their sense of self-efficacy was affected by conflicting roles and expectations for the job. Most of the ELL TOSAs indicated that their sense of self-efficacy was affected by an increased workload brought about by fiscal decision making. Finally, there was evidence illustrating the interaction between the organization and motivation. The majority of the of ELL TOSAs indicated that there is confusion about how their roles are perceived, leaving the ELL TOSAs to feel that their actions did not contribute to instructional change. In conclusion, five research-based recommendations to support ELL TOSA goal attainment and considerations for future research on instructional coaches for classroom teachers of ELLs are provided.Keywords: English language development, English language acquisition, language and leadership, language coaching, English language learners, second language acquisition
Procedia PDF Downloads 1077702 Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language
Authors: Daleesha M. Viswanathan, Sumam Mary Idicula
Abstract:
Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively.Keywords: orientation features, discrete feature vector, HMM., Indian sign language
Procedia PDF Downloads 3767701 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning
Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody
Abstract:
The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification
Procedia PDF Downloads 1137700 A Methodological Concept towards a Framework Development for Social Software Adoption in Higher Education System
Authors: Kenneth N. Ohei, Roelien Brink
Abstract:
For decades, teaching and learning processes have centered on the traditional approach (Web 1.0) that promoted teacher-directed pedagogical practices. Currently, there is a realization that the traditional approach is not adequate to effectively address and improve all student-learning outcomes. The subsequent incorporation of social software, Information, and Communication Technology (ICT) tools in universities may serve as complementary to support educational goals, offering students the affordability and opportunity to educational choices and learning platforms. Consequently, educators’ inability to incorporate these instructional ICT tools in their teaching and learning practices remains a challenge. This will signify that educators still lack the ICT skills required to administer lectures and bridging learning gaps. This study probes a methodological concept with the aim of developing a framework towards the adoption of social software in HES to help facilitate business processes and can build social presence among students. A mixed method will be appropriate to develop a comprehensive framework needed in Higher Educational System (HES). After research have been conducted, the adoption of social software will be based on the developed comprehensive framework which is supposed to impact positively on education and approach of delivery, improves learning experience, engagement and finally, increases educational opportunities and easy access to educational contents.Keywords: blended and integrated learning, learning experience and engagement, higher educational system, HES, information and communication technology, ICT, social presence, Web 1.0, Web 2.0, Web 3.0
Procedia PDF Downloads 1617699 The Practice of Teaching Chemistry by the Application of Online Tests
Authors: Nikolina Ribarić
Abstract:
E-learning is most commonly defined as a set of applications and processes, such as Web-based learning, computer-based learning, virtual classrooms, and digital collaboration, that enable access to instructional content through a variety of electronic media. The main goal of an e-learning system is learning, and the way to evaluate the impact of an e-learning system is by examining whether students learn effectively with the help of that system. Testmoz is a program for online preparation of knowledge evaluation assignments. The program provides teachers with computer support during the design of assignments and evaluating them. Students can review and solve assignments and also check the correctness of their solutions. Research into the increase of motivation by the practice of providing teaching content by applying online tests prepared in the Testmoz program was carried out with students of the 8th grade of Ljubo Babić Primary School in Jastrebarsko. The students took the tests in their free time, from home, for an unlimited number of times. SPSS was used to process the data obtained by the research instruments. The results of the research showed that students preferred to practice teaching content and achieved better educational results in chemistry when they had access to online tests for repetition and practicing in relation to subject content which was checked after repetition and practicing in "the classical way" -i.e., solving assignments in a workbook or writing assignments in worksheets.Keywords: chemistry class, e-learning, motivation, Testmoz
Procedia PDF Downloads 1627698 The Holistic Nursing WebQuest: An Interactive Teaching/Learning Strategy
Authors: Laura M. Schwarz
Abstract:
WebQuests are an internet-based interactive teaching/learning tool and utilize a scaffolded methodology. WebQuests employ critical thinking, afford inquiry-based constructivist learning, and readily employ Bloom’s Taxonomy. WebQuests have generally been used as instructional technology tools in primary and secondary education and have more recently grown in popularity in higher education. The study of the efficacy of WebQuests as an instructional approach to learning, however, has been limited, particularly in the nursing education arena. The purpose of this mixed-methods study was to determine nursing students’ perceptions of the effectiveness of the Nursing WebQuest as a teaching/learning strategy for holistic nursing-related content. Quantitative findings (N=42) suggested that learners were active participants, used reflection, thought of new ideas, used analysis skills, discovered something new, and assessed the worth of something while taking part in the WebQuests. Qualitative findings indicated that participants found WebQuest positives as easy to understand and navigate; clear and organized; interactive; good alternative learning format, and used a variety of quality resources. Participants saw drawbacks as requiring additional time and work; and occasional failed link or link causing them to lose their location in the WebQuest. Recommendations include using larger sample size and more diverse populations from various programs and universities. In conclusion, WebQuests were found to be an effective teaching/learning tool as positively assessed by study participants.Keywords: holistic nursing, nursing education, teaching/learning strategy, WebQuests
Procedia PDF Downloads 1287697 The Effects of Incompetence in the Use of Mother Tongue on the Spoken English of Selected Primary School Pupils in Abeokuta South Local Government Ogun State, Nigeria
Authors: K. G. Adeosun, K. Osunaiye, E. C. Chinaguh, M. A. Aliyu, C. A. Onifade
Abstract:
This study examined the effects of incompetence in the use of the mother tongue on the spoken English of selected Primary School pupils in Abeokuta South Local Government, Ogun State, Nigeria. The study used a structured questionnaire and interview guide as data collection instruments. The target population was 110 respondents. The sample was obtained by the use of simple random and stratified sampling techniques. The study samples were pupils from Government Primary Schools in Abeokuta South Local Government. The result revealed that the majority of pupils exhibited mother tongue interference in their oral production stage and that the local indigenous languages interfered with the pronunciation of English words to a large extent such that they pronounced ‘people’ as ‘fitful.’ The findings also revealed that there is no significant difference between inadequate teaching materials, shortage of funds towards the promotion of the mother tongue (Yoruba) and spoken English of Primary school pupils in the study area. The study recommended, among other things, that government should provide the necessary support for schools in the areas of teaching and learning materials, funds and other related materials that can enhance the effective use of the mother tongue towards spoken English by Primary School pupils. Government should ensure that oral English is taught to the pupils and the examination at the end of Primary school education should be made compulsory for all pupils. More so, the Government should provide language laboratories and other equipment to facilitate good teaching and learning of oral English.Keywords: education, effective, government, learning, teaching
Procedia PDF Downloads 857696 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics
Authors: Fabio Fabris, Alex A. Freitas
Abstract:
Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.Keywords: algorithm recommendation, meta-learning, bioinformatics, hierarchical classification
Procedia PDF Downloads 3197695 Using Audio-Visual Aids and Computer-Assisted Language Instruction to Overcome Learning Difficulties of Reading in Students of Special Needs
Authors: Sadeq Al Yaari, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari
Abstract:
Background & aims: Reading is a receptive skill whose importance could involve abilities' variance from linguistic standard. Several evidences support the hypothesis stating that the more you read the better you write, with a different impact for speech language therapists (SLTs) who use audio-visual aids and computer-assisted language instruction (CALI) and those who do not. Methods: Here we made use of audio-visual aids and CALI for teaching reading skill to a group of 40 students of special needs of both sexes (range between 8 and 18 years old) at al-Malādh school for teaching students of special needs in Dhamar (Yemen) while another group of the same number is taught using ordinary teaching methods. Pre-and-posttests have been administered at the beginning and the end of the semester (Before and after teaching the reading course). The purpose was to understand the differences between the levels of the students of special needs to see to what extent audio-visual aids and CALI are useful for them. The two groups were taught by the same instructor under the same circumstances in the same school. Both quantitative and qualitative procedures were used to analyze the data. Results: The overall findings revealed that audio-visual aids and CALI are very useful for teaching reading to students of special needs and this can be seen in the scores of the treatment group’s subjects (7.0%, in post-test vs.2.5% in pre-test). In comparison to the scores of the second group’s subjects (where audio-visual aids and CALI were not used) (2.2% in both pre-and-posttests), the first group subjects have overcome reading tasks and this can be observed in their performance in the posttest. Compared with males, females’ performance was better (1466 scores (7.3%) vs. 1371 scores (6.8%). Qualitative and statistical analyses showed that such comprehension is absolutely due to the use of audio-visual aids and CALI and nothing else. These outcomes confirm the evidence of the significance of using audio-visual aids and CALI as effective means for teaching receptive skills in general and reading skill in particular.Keywords: reading, receptive skills, audio-visual aids, CALI, students, special needs, SLTs
Procedia PDF Downloads 55