Search results for: periphery stakeholder network
3218 Detection of Safety Goggles on Humans in Industrial Environment Using Faster-Region Based on Convolutional Neural Network with Rotated Bounding Box
Authors: Ankit Kamboj, Shikha Talwar, Nilesh Powar
Abstract:
To successfully deliver our products in the market, the employees need to be in a safe environment, especially in an industrial and manufacturing environment. The consequences of delinquency in wearing safety glasses while working in industrial plants could be high risk to employees, hence the need to develop a real-time automatic detection system which detects the persons (violators) not wearing safety glasses. In this study a convolutional neural network (CNN) algorithm called faster region based CNN (Faster RCNN) with rotated bounding box has been used for detecting safety glasses on persons; the algorithm has an advantage of detecting safety glasses with different orientation angles on the persons. The proposed method of rotational bounding boxes with a convolutional neural network first detects a person from the images, and then the method detects whether the person is wearing safety glasses or not. The video data is captured at the entrance of restricted zones of the industrial environment (manufacturing plant), which is further converted into images at 2 frames per second. In the first step, the CNN with pre-trained weights on COCO dataset is used for person detection where the detections are cropped as images. Then the safety goggles are labelled on the cropped images using the image labelling tool called roLabelImg, which is used to annotate the ground truth values of rotated objects more accurately, and the annotations obtained are further modified to depict four coordinates of the rectangular bounding box. Next, the faster RCNN with rotated bounding box is used to detect safety goggles, which is then compared with traditional bounding box faster RCNN in terms of detection accuracy (average precision), which shows the effectiveness of the proposed method for detection of rotatory objects. The deep learning benchmarking is done on a Dell workstation with a 16GB Nvidia GPU.Keywords: CNN, deep learning, faster RCNN, roLabelImg rotated bounding box, safety goggle detection
Procedia PDF Downloads 1303217 Early Detection of Breast Cancer in Digital Mammograms Based on Image Processing and Artificial Intelligence
Authors: Sehreen Moorat, Mussarat Lakho
Abstract:
A method of artificial intelligence using digital mammograms data has been proposed in this paper for detection of breast cancer. Many researchers have developed techniques for the early detection of breast cancer; the early diagnosis helps to save many lives. The detection of breast cancer through mammography is effective method which detects the cancer before it is felt and increases the survival rate. In this paper, we have purposed image processing technique for enhancing the image to detect the graphical table data and markings. Texture features based on Gray-Level Co-Occurrence Matrix and intensity based features are extracted from the selected region. For classification purpose, neural network based supervised classifier system has been used which can discriminate between benign and malignant. Hence, 68 digital mammograms have been used to train the classifier. The obtained result proved that automated detection of breast cancer is beneficial for early diagnosis and increases the survival rates of breast cancer patients. The proposed system will help radiologist in the better interpretation of breast cancer.Keywords: medical imaging, cancer, processing, neural network
Procedia PDF Downloads 2593216 Participation in the Decision Making and Job Satisfaction in Greek Fish Farms
Authors: S. Anastasiou, C. Nathanailides
Abstract:
There is considerable evidence to suggest that employees participation in the decision-making process of an organisation, has a positive effect on job satisfaction and work performance of the employees. The purpose of the present work was to examine the HRM practices, demographics and the level of job satisfaction of employees in Greek Aquaculture fish farms. A survey of employees (n=86) in 6 Greek Aquaculture Firms was carried out. The results indicate that HRM practices such as recruitment of the personnel and communication between the departments did not vary between different firms. The most frequent method of recruitment was through the professional network or the personal network of the managers. The preferred method of HRM communication was through the line managers and through group meeting. The level of job satisfaction increased with work experience participation and participation in the decision making process. A high percentage of the employees (81,3%±8.39) felt that they frequently participated in the decision making process. The Aquaculture employees exhibited high level of job satisfaction (88,1±6.95). The level of job satisfaction was related with participation in the decision making process (-0.633, P<0.05) but was not related with as age or gender. In terms of the working conditions, employees were mostly satisfied with their work itself, their colleagues and mostly dissatisfied with working hours, salary issues and low prospects of pay rises.Keywords: aquaculture, human resources, job satisfaction
Procedia PDF Downloads 4683215 Cerebrovascular Modeling: A Vessel Network Approach for Fluid Distribution
Authors: Karla E. Sanchez-Cazares, Kim H. Parker, Jennifer H. Tweedy
Abstract:
The purpose of this work is to develop a simple compartmental model of cerebral fluid balance including blood and cerebrospinal-fluid (CSF). At the first level the cerebral arteries and veins are modelled as bifurcating trees with constant scaling factors between generations which are connected through a homogeneous microcirculation. The arteries and veins are assumed to be non-rigid and the cross-sectional area, resistance and mean pressure in each generation are determined as a function of blood volume flow rate. From the mean pressure and further assumptions about the variation of wall permeability, the transmural fluid flux can be calculated. The results suggest the next level of modelling where the cerebral vasculature is divided into three compartments; the large arteries, the small arteries, the capillaries and the veins with effective compliances and permeabilities derived from the detailed vascular model. These vascular compartments are then linked to other compartments describing the different CSF spaces, the cerebral ventricles and the subarachnoid space. This compartmental model is used to calculate the distribution of fluid in the cranium. Known volumes and flows for normal conditions are used to determine reasonable parameters for the model, which can then be used to help understand pathological behaviour and suggest clinical interventions.Keywords: cerebrovascular, compartmental model, CSF model, vascular network
Procedia PDF Downloads 2753214 Modeling of Power Network by ATP-Draw for Lightning Stroke Studies
Authors: John Morales, Armando Guzman
Abstract:
Protection relay algorithms play a crucial role in Electric Power System stability, where, it is clear that lightning strokes produce the mayor percentage of faults and outages of Transmission Lines (TLs) and Distribution Feeders (DFs). In this context, it is imperative to develop novel protection relay algorithms. However, in order to get this aim, Electric Power Systems (EPS) network have to be simulated as real as possible, especially the lightning phenomena, and EPS elements that affect their behavior like direct and indirect lightning, insulator string, overhead line, soil ionization and other. However, researchers have proposed new protection relay algorithms considering common faults, which are not produced by lightning strokes, omitting these imperative phenomena for the transmission line protection relays behavior. Based on the above said, this paper presents the possibilities of using the Alternative Transient Program ATP-Draw for the modeling and simulation of some models to make lightning stroke studies, especially for protection relays, which are developed through Transient Analysis of Control Systems (TACS) and MODELS language corresponding to the ATP-Draw.Keywords: back-flashover, faults, flashover, lightning stroke, modeling of lightning, outages, protection relays
Procedia PDF Downloads 3163213 From Reform to Revolt: Bashar al-Assad and the Arab Tribes in Syria
Authors: Haian Dukhan
Abstract:
The death of Hafez al-Assad and the ascension of his son, Bashar, to rule brought an end to the state-society dynamics that his father worked on for decades. Hafez al-Assad built an authoritarian state that rests on patronage networks that connected his regime to the society. During Bashar’s reign, these patronage relationships have been affected by the policies of privatization and liberalization. Privatization and liberalisation of the economy have created new economic and social players that transformed the populist nature of the authoritarian regime into a regime that is connected mainly with bourgeoisie and the upper class neglecting the rural tribal constituency that was a vital part of Hafez al-Assad’s authoritarian state. Drawing on different data gathered through interviews as well as written literature, this paper will explore the policies that Bashar al-Assad carried out towards the Arab tribes in the period extended from 2000 until 2010. The paper starts by outlining how Bashar al-Assad narrowed the coalition of his rule to depend mainly on his family, the city merchants excluding the lower and middle strata in the periphery. It will then trace the disintegration of the social contract between the regime and the Arab tribe as a result of the latter’s failure to deliver adequate development services in their regions. Losing the support of the tribes undermined the stability of the regime resulting in different clashes between the tribes themselves, the tribes and the Kurds, the tribes and the druze (a sect of Islam situated in Southern Syria), which will be investigated in detail in this paper. In similar policies adopted by his father who used the tribes as leverage against the Islamists and the Kurds, Bashar al-Assad’s regime encouragement of Syrian tribal youth to join the Iraqi insurgency against the Americans will be explored in detail. The regime’s tolerance of Iran missionary activities in the tribal regions and its accommodation of Islamists group’s activities in those regions have erased the regime’s secular foundation. This paper will argue that Bashar al-Assad’s policies towards the Arab tribes have chipped away the regime’s ideological pillars and threatened the longer-term cohesion of its social base which paved the way for the uprising to start in the tribal regions.Keywords: Syria, tribes, uprising, regime
Procedia PDF Downloads 3773212 AS-Geo: Arbitrary-Sized Image Geolocalization with Learnable Geometric Enhancement Resizer
Authors: Huayuan Lu, Chunfang Yang, Ma Zhu, Baojun Qi, Yaqiong Qiao, Jiangqian Xu
Abstract:
Image geolocalization has great application prospects in fields such as autonomous driving and virtual/augmented reality. In practical application scenarios, the size of the image to be located is not fixed; it is impractical to train different networks for all possible sizes. When its size does not match the size of the input of the descriptor extraction model, existing image geolocalization methods usually directly scale or crop the image in some common ways. This will result in the loss of some information important to the geolocalization task, thus affecting the performance of the image geolocalization method. For example, excessive down-sampling can lead to blurred building contour, and inappropriate cropping can lead to the loss of key semantic elements, resulting in incorrect geolocation results. To address this problem, this paper designs a learnable image resizer and proposes an arbitrary-sized image geolocation method. (1) The designed learnable image resizer employs the self-attention mechanism to enhance the geometric features of the resized image. Firstly, it applies bilinear interpolation to the input image and its feature maps to obtain the initial resized image and the resized feature maps. Then, SKNet (selective kernel net) is used to approximate the best receptive field, thus keeping the geometric shapes as the original image. And SENet (squeeze and extraction net) is used to automatically select the feature maps with strong contour information, enhancing the geometric features. Finally, the enhanced geometric features are fused with the initial resized image, to obtain the final resized images. (2) The proposed image geolocalization method embeds the above image resizer as a fronting layer of the descriptor extraction network. It not only enables the network to be compatible with arbitrary-sized input images but also enhances the geometric features that are crucial to the image geolocalization task. Moreover, the triplet attention mechanism is added after the first convolutional layer of the backbone network to optimize the utilization of geometric elements extracted by the first convolutional layer. Finally, the local features extracted by the backbone network are aggregated to form image descriptors for image geolocalization. The proposed method was evaluated on several mainstream datasets, such as Pittsburgh30K, Tokyo24/7, and Places365. The results show that the proposed method has excellent size compatibility and compares favorably to recently mainstream geolocalization methods.Keywords: image geolocalization, self-attention mechanism, image resizer, geometric feature
Procedia PDF Downloads 2143211 Proposing an Algorithm to Cluster Ad Hoc Networks, Modulating Two Levels of Learning Automaton and Nodes Additive Weighting
Authors: Mohammad Rostami, Mohammad Reza Forghani, Elahe Neshat, Fatemeh Yaghoobi
Abstract:
An Ad Hoc network consists of wireless mobile equipment which connects to each other without any infrastructure, using connection equipment. The best way to form a hierarchical structure is clustering. Various methods of clustering can form more stable clusters according to nodes' mobility. In this research we propose an algorithm, which allocates some weight to nodes based on factors, i.e. link stability and power reduction rate. According to the allocated weight in the previous phase, the cellular learning automaton picks out in the second phase nodes which are candidates for being cluster head. In the third phase, learning automaton selects cluster head nodes, member nodes and forms the cluster. Thus, this automaton does the learning from the setting and can form optimized clusters in terms of power consumption and link stability. To simulate the proposed algorithm we have used omnet++4.2.2. Simulation results indicate that newly formed clusters have a longer lifetime than previous algorithms and decrease strongly network overload by reducing update rate.Keywords: mobile Ad Hoc networks, clustering, learning automaton, cellular automaton, battery power
Procedia PDF Downloads 4113210 Revisiting Corporate Social Responsibility in the Lens of Board Accountability
Authors: Jingchen Zhao
Abstract:
Corporate social responsibility (CSR), a major contemporary focus for companies, governments, NGOs and communities, is discussed from a multi-disciplinary perspective. The term is introduced and defined to achieve a combination of economic, social, environmental and philanthropic goals, and its adoption in company law legislations in a few jurisdictions is discussed. Despite its positive social and environmental impacts, the notion has been widely criticised for being ill-defined and fundamentally flawed in the domain of corporate law. The value and effectiveness of CSR have been interrogated for many reasons, always inter-related. This article aims to consider and address some of these problems and assess how CSR could be sharpened and made more effective through the lens of accountability, focussing on the rationale behind and the means of regulation of CSR. The article aims to achieve two interrelated goals. First, it examines the function of accountability in the arguments in favour of CSR by investigating the extent to which the notion of accountability could be used as a criterion for regulating CSR, so that companies may be held accountable for corporate decisions affecting their stakeholders. Second, this article will examine the scope and goals of CSR and board accountability, creating the possibility of a more comprehensive understanding of the two notions from an interactive perspective. In order to link CSR and accountability closely to generate a more appropriate definition of CSR that is could be more appropriately and effectively applied in corporate law, the concept of corporate social accountability (CSA) will be evaluated, with the aim of broadening its latitude beyond disclosure. This will involve a rigorous assessment of the process of fulfilling directors’ duties via questioning from stakeholder groups during meetings or committees, together with explanations and justifications from the board. This will be followed by discussions on enforcement measures in relation to the concept of CSA.Keywords: corporate governance, CSR, board accountability, corporate law
Procedia PDF Downloads 3083209 Strengthening Farmer-to-farmer Knowledge Sharing Network: A Pathway to Improved Extension Service Delivery
Authors: Farouk Shehu Abdulwahab
Abstract:
The concept of farmer-farmer knowledge sharing was introduced to bridge the extension worker-farmer ratio gap in developing countries. However, the idea was poorly accepted, especially in typical agrarian communities. Therefore, the study explores the concept of a farmer-to-farmer knowledge-sharing network to enhance extension service delivery. The study collected data from 80 farmers randomly selected through a series of multiple stages. The Data was analysed using a 5-point Likert scale and descriptive statistics. The Likert scale results revealed that 62.5% of the farmers are satisfied with farmer-to-farmer knowledge-sharing networks. Moreover, descriptive statistics show that lack of capacity building and low level of education are the most significant problems affecting farmer-farmer sharing networks. The major implication of these findings is that the concept of farmer-farmer knowledge-sharing networks can work better for farmers in developing countries as it was perceived by them as a reliable alternative for information sharing. Therefore, the study recommends introducing incentives into the concept of farmer-farmer knowledge-sharing networks and enhancing the capabilities of farmers who are opinion leaders in the farmer-farmer concept of knowledge-sharing to make it more sustainable.Keywords: agricultural productivity, extension, farmer-to-farmer, livelihood, technology transfer
Procedia PDF Downloads 653208 Intelligent Rainwater Reuse System for Irrigation
Authors: Maria M. S. Pires, Andre F. X. Gloria, Pedro J. A. Sebastiao
Abstract:
The technological advances in the area of Internet of Things have been creating more and more solutions in the area of agriculture. These solutions are quite important for life, as they lead to the saving of the most precious resource, water, being this need to save water a concern worldwide. The paper proposes the creation of an Internet of Things system based on a network of sensors and interconnected actuators that automatically monitors the quality of the rainwater that is stored inside a tank in order to be used for irrigation. The main objective is to promote sustainability by reusing rainwater for irrigation systems instead of water that is usually available for other functions, such as other productions or even domestic tasks. A mobile application was developed for Android so that the user can control and monitor his system in real time. In the application, it is possible to visualize the data that translate the quality of the water inserted in the tank, as well as perform some actions on the implemented actuators, such as start/stop the irrigation system and pour the water in case of poor water quality. The implemented system translates a simple solution with a high level of efficiency and tests and results obtained within the possible environment.Keywords: internet of things, irrigation system, wireless sensor and actuator network, ESP32, sustainability, water reuse, water efficiency
Procedia PDF Downloads 1493207 Resting-State Functional Connectivity Analysis Using an Independent Component Approach
Authors: Eric Jacob Bacon, Chaoyang Jin, Dianning He, Shuaishuai Hu, Lanbo Wang, Han Li, Shouliang Qi
Abstract:
Objective: Refractory epilepsy is a complicated type of epilepsy that can be difficult to diagnose. Recent technological advancements have made resting-state functional magnetic resonance (rsfMRI) a vital technique for studying brain activity. However, there is still much to learn about rsfMRI. Investigating rsfMRI connectivity may aid in the detection of abnormal activities. In this paper, we propose studying the functional connectivity of rsfMRI candidates to diagnose epilepsy. Methods: 45 rsfMRI candidates, comprising 26 with refractory epilepsy and 19 healthy controls, were enrolled in this study. A data-driven approach known as independent component analysis (ICA) was used to achieve our goal. First, rsfMRI data from both patients and healthy controls were analyzed using group ICA. The components that were obtained were then spatially sorted to find and select meaningful ones. A two-sample t-test was also used to identify abnormal networks in patients and healthy controls. Finally, based on the fractional amplitude of low-frequency fluctuations (fALFF), a chi-square statistic test was used to distinguish the network properties of the patient and healthy control groups. Results: The two-sample t-test analysis yielded abnormal in the default mode network, including the left superior temporal lobe and the left supramarginal. The right precuneus was found to be abnormal in the dorsal attention network. In addition, the frontal cortex showed an abnormal cluster in the medial temporal gyrus. In contrast, the temporal cortex showed an abnormal cluster in the right middle temporal gyrus and the right fronto-operculum gyrus. Finally, the chi-square statistic test was significant, producing a p-value of 0.001 for the analysis. Conclusion: This study offers evidence that investigating rsfMRI connectivity provides an excellent diagnosis option for refractory epilepsy.Keywords: ICA, RSN, refractory epilepsy, rsfMRI
Procedia PDF Downloads 763206 Advanced Simulation and Enhancement for Distributed and Energy Efficient Scheduling for IEEE802.11s Wireless Enhanced Distributed Channel Access Networks
Authors: Fisayo G. Ojo, Shamala K. Subramaniam, Zuriati Ahmad Zukarnain
Abstract:
As technology is advancing and wireless applications are becoming dependable sources, while the physical layer of the applications are been embedded into tiny layer, so the more the problem on energy efficiency and consumption. This paper reviews works done in recent years in wireless applications and distributed computing, we discovered that applications are becoming dependable, and resource allocation sharing with other applications in distributed computing. Applications embedded in distributed system are suffering from power stability and efficiency. In the reviews, we also prove that discrete event simulation has been left behind untouched and not been adapted into distributed system as a simulation technique in scheduling of each event that took place in the development of distributed computing applications. We shed more lights on some researcher proposed techniques and results in our reviews to prove the unsatisfactory results, and to show that more work still have to be done on issues of energy efficiency in wireless applications, and congestion in distributed computing.Keywords: discrete event simulation (DES), distributed computing, energy efficiency (EE), internet of things (IOT), quality of service (QOS), user equipment (UE), wireless mesh network (WMN), wireless sensor network (wsn), worldwide interoperability for microwave access x (WiMAX)
Procedia PDF Downloads 1923205 Multi-Objective Electric Vehicle Charge Coordination for Economic Network Management under Uncertainty
Authors: Ridoy Das, Myriam Neaimeh, Yue Wang, Ghanim Putrus
Abstract:
Electric vehicles are a popular transportation medium renowned for potential environmental benefits. However, large and uncontrolled charging volumes can impact distribution networks negatively. Smart charging is widely recognized as an efficient solution to achieve both improved renewable energy integration and grid relief. Nevertheless, different decision-makers may pursue diverse and conflicting objectives. In this context, this paper proposes a multi-objective optimization framework to control electric vehicle charging to achieve both energy cost reduction and peak shaving. A weighted-sum method is developed due to its intuitiveness and efficiency. Monte Carlo simulations are implemented to investigate the impact of uncertain electric vehicle driving patterns and provide decision-makers with a robust outcome in terms of prospective cost and network loading. The results demonstrate that there is a conflict between energy cost efficiency and peak shaving, with the decision-makers needing to make a collaborative decision.Keywords: electric vehicles, multi-objective optimization, uncertainty, mixed integer linear programming
Procedia PDF Downloads 1793204 Physical, Chemical and Environmental Properties of Natural and Construction/Demolition Recycled Aggregates
Authors: Débora C. Mendes, Matthias Eckert, Cláudia S. Moço, Hélio Martins, Jean-Pierre P. Gonçalves, Miguel Oliveira, José P. Da Silva
Abstract:
Uncontrolled disposal of construction and demolition waste (C & DW) in embankments in the periphery of cities causes both environmental and social problems, namely erosion, deforestation, water contamination and human conflicts. One of the milestones of EU Horizon 2020 Programme is the management of waste as a resource. To achieve this purpose for C & DW, a detailed analysis of the properties of these materials should be done. In this work we report the physical, chemical and environmental properties of C & DW aggregates from 25 different origins. The results are compared with those of common natural aggregates used in construction. Assays were performed according to European Standards. Additional analysis of heavy metals and organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were performed to evaluate their environmental impact. Finally, properties of concrete prepared with C & DW aggregates are also reported. Physical analyses of C & DW aggregates indicated lower quality properties than natural aggregates, particularly for concrete preparation and unbound layers of road pavements. Chemical properties showed that most samples (80%) meet the values required by European regulations for concrete and unbound layers of road pavements. Analyses of heavy metals Cd, Cr, Cu, Pb, Ni, Mo and Zn in the C&DW leachates showed levels below the limits established by the Council Decision of 19 December 2002. Identification and quantification of PCBs and PAHs indicated that few samples shows the presence of these compounds. The measured levels of PCBs and PAHs are also below the limits. Other compounds identified in the C&DW leachates include phthalates and diphenylmethanol. In conclusion, the characterized C&DW aggregates show lower quality properties than natural aggregates but most samples showed to be environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds should be made to trial safe C&DW aggregates. C&DW aggregates provide a good economic and environmental alternative to natural aggregates.Keywords: concrete preparation, construction and demolition waste, heavy metals, organic pollutants
Procedia PDF Downloads 3493203 Manufacturing Anomaly Detection Using a Combination of Gated Recurrent Unit Network and Random Forest Algorithm
Authors: Atinkut Atinafu Yilma, Eyob Messele Sefene
Abstract:
Anomaly detection is one of the essential mechanisms to control and reduce production loss, especially in today's smart manufacturing. Quick anomaly detection aids in reducing the cost of production by minimizing the possibility of producing defective products. However, developing an anomaly detection model that can rapidly detect a production change is challenging. This paper proposes Gated Recurrent Unit (GRU) combined with Random Forest (RF) to detect anomalies in the production process in real-time quickly. The GRU is used as a feature detector, and RF as a classifier using the input features from GRU. The model was tested using various synthesis and real-world datasets against benchmark methods. The results show that the proposed GRU-RF outperforms the benchmark methods with the shortest time taken to detect anomalies in the production process. Based on the investigation from the study, this proposed model can eliminate or reduce unnecessary production costs and bring a competitive advantage to manufacturing industries.Keywords: anomaly detection, multivariate time series data, smart manufacturing, gated recurrent unit network, random forest
Procedia PDF Downloads 1193202 Computational Model for Predicting Effective siRNA Sequences Using Whole Stacking Energy (ΔG) for Gene Silencing
Authors: Reena Murali, David Peter S.
Abstract:
The small interfering RNA (siRNA) alters the regulatory role of mRNA during gene expression by translational inhibition. Recent studies shows that up regulation of mRNA cause serious diseases like Cancer. So designing effective siRNA with good knockdown effects play an important role in gene silencing. Various siRNA design tools had been developed earlier. In this work, we are trying to analyze the existing good scoring second generation siRNA predicting tools and to optimize the efficiency of siRNA prediction by designing a computational model using Artificial Neural Network and whole stacking energy (ΔG), which may help in gene silencing and drug design in cancer therapy. Our model is trained and tested against a large data set of siRNA sequences. Validation of our results is done by finding correlation coefficient of experimental versus observed inhibition efficacy of siRNA. We achieved a correlation coefficient of 0.727 in our previous computational model and we could improve the correlation coefficient up to 0.753 when the threshold of whole tacking energy is greater than or equal to -32.5 kcal/mol.Keywords: artificial neural network, double stranded RNA, RNA interference, short interfering RNA
Procedia PDF Downloads 5263201 Other-Generated Disclosure: A Challenge to Privacy on Social Network Sites
Authors: Tharntip Tawnie Chutikulrungsee, Oliver Kisalay Burmeister, Maumita Bhattacharya, Dragana Calic
Abstract:
Sharing on social network sites (SNSs) has rapidly emerged as a new social norm and has become a global phenomenon. Billions of users reveal not only their own information (self disclosure) but also information about others (other-generated disclosure), resulting in a risk and a serious threat to either personal or informational privacy. Self-disclosure (SD) has been extensively researched in the literature, particularly regarding control of individual and existing privacy management. However, far too little attention has been paid to other-generated disclosure (OGD), especially by insiders. OGD has a strong influence on self-presentation, self-image, and electronic word of mouth (eWOM). Moreover, OGD is more credible and less likely manipulated than SD, but lacks privacy control and legal protection to some extent. This article examines OGD in depth, ranging from motivation to both online and offline impacts, based upon lived experiences from both ‘the disclosed’ and ‘the discloser’. Using purposive sampling, this phenomenological study involves an online survey and in-depth interviews. The findings report the influence of peer disclosure as well as users’ strategies to mitigate privacy issues. This article also calls attention to the challenge of OGD privacy and inadequacies in the law related to privacy protection in the digital domain.Keywords: facebook, online privacy, other-generated disclosure, social networks sites (SNSs)
Procedia PDF Downloads 2513200 Relay Node Placement for Connectivity Restoration in Wireless Sensor Networks Using Genetic Algorithms
Authors: Hanieh Tarbiat Khosrowshahi, Mojtaba Shakeri
Abstract:
Wireless Sensor Networks (WSNs) consist of a set of sensor nodes with limited capability. WSNs may suffer from multiple node failures when they are exposed to harsh environments such as military zones or disaster locations and lose connectivity by getting partitioned into disjoint segments. Relay nodes (RNs) are alternatively introduced to restore connectivity. They cost more than sensors as they benefit from mobility, more power and more transmission range, enforcing a minimum number of them to be used. This paper addresses the problem of RN placement in a multiple disjoint network by developing a genetic algorithm (GA). The problem is reintroduced as the Steiner tree problem (which is known to be an NP-hard problem) by the aim of finding the minimum number of Steiner points where RNs are to be placed for restoring connectivity. An upper bound to the number of RNs is first computed to set up the length of initial chromosomes. The GA algorithm then iteratively reduces the number of RNs and determines their location at the same time. Experimental results indicate that the proposed GA is capable of establishing network connectivity using a reasonable number of RNs compared to the best existing work.Keywords: connectivity restoration, genetic algorithms, multiple-node failure, relay nodes, wireless sensor networks
Procedia PDF Downloads 2413199 End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction
Authors: Omer Cahana, Ofer Levi, Maya Herman
Abstract:
Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.Keywords: magnetic resonance imaging, image reconstruction, pyramid network, deep learning
Procedia PDF Downloads 913198 Performance Based Road Asset Evaluation
Authors: Kidus Dawit Gedamu
Abstract:
Addis Ababa City Road Authority is responsible for managing and setting performance evaluation of the city’s road network using the International Roughness Index (IRI). This helps the authority to conduct pavement condition assessments of asphalt roads each year to determine the health status or Level of service (LOS) of the roadway network and plan program improvements such as maintenance, resurfacing and rehabilitation. For a lower IRI limit economical and acceptable maintenance strategy may be selected among a number of maintenance alternatives. The Highway Development and Management (HDM-4) tool can do such measures to help decide which option is the best by evaluating the economic and structural conditions. This paper specifically addresses flexible pavement, including two principal arterial streets under the administration of the Addis Ababa City Roads Authority. The roads include the road from Megenagna Interchange to Ayat Square and from Ayat Square to Tafo RA. First, it was assessed the procedures followed by the city's road authority to develop the appropriate road maintenance strategies. Questionnaire surveys and interviews are used to collect information from the city's road maintenance departments. Second, the project analysis was performed for functional and economic comparison of different maintenance alternatives using HDM-4.Keywords: appropriate maintenance strategy, cost stream, road deterioration, maintenance alternative
Procedia PDF Downloads 613197 Strengthening by Assessment: A Case Study of Rail Bridges
Authors: Evangelos G. Ilias, Panagiotis G. Ilias, Vasileios T. Popotas
Abstract:
The United Kingdom has one of the oldest railway networks in the world dating back to 1825 when the world’s first passenger railway was opened. The network has some 40,000 bridges of various construction types using a wide range of materials including masonry, steel, cast iron, wrought iron, concrete and timber. It is commonly accepted that the successful operation of the network is vital for the economy of the United Kingdom, consequently the cost effective maintenance of the existing infrastructure is a high priority to maintain the operability of the network, prevent deterioration and to extend the life of the assets. Every bridge on the railway network is required to be assessed every eighteen years and a structured approach to assessments is adopted with three main types of progressively more detailed assessments used. These assessment types include Level 0 (standardized spreadsheet assessment tools), Level 1 (analytical hand calculations) and Level 2 (generally finite element analyses). There is a degree of conservatism in the first two types of assessment dictated to some extent by the relevant standards which can lead to some structures not achieving the required load rating. In these situations, a Level 2 Assessment is often carried out using finite element analysis to uncover ‘latent strength’ and improve the load rating. If successful, the more sophisticated analysis can save on costly strengthening or replacement works and avoid disruption to the operational railway. This paper presents the ‘strengthening by assessment’ achieved by Level 2 analyses. The use of more accurate analysis assumptions and the implementation of non-linear modelling and functions (material, geometric and support) to better understand buckling modes and the structural behaviour of historic construction details that are not specifically covered by assessment codes are outlined. Metallic bridges which are susceptible to loss of section size through corrosion have largest scope for improvement by the Level 2 Assessment methodology. Three case studies are presented, demonstrating the effectiveness of the sophisticated Level 2 Assessment methodology using finite element analysis against the conservative approaches employed for Level 0 and Level 1 Assessments. One rail overbridge and two rail underbridges that did not achieve the required load rating by means of a Level 1 Assessment due to the inadequate restraint provided by U-Frame action are examined and the increase in assessed capacity given by the Level 2 Assessment is outlined.Keywords: assessment, bridges, buckling, finite element analysis, non-linear modelling, strengthening
Procedia PDF Downloads 3093196 Political Corruption and Workplace Misconduct
Authors: Masako Darrough, Mahmud Hossain, Santanu Mitra
Abstract:
The prevalent and increasing workplace misconduct in the United States presents a significant threat to social welfare. Despite efforts by enforcement agencies, U.S. workers remain vulnerable to employer exploitation, as evidenced by rising workplace injuries and discrimination lawsuits. While existing literature has identified several factors associated with unethical labor practices, the influence of political corruption remains largely unexplored. This paper aims to fill this gap by investigating the relationship between political corruption and workplace misconduct in the U.S. context. Using the data from the U.S. Bureau of Labor Statistics, the Equal Employment Opportunity Commission, and corruption convictions reported by the Department of Justice, we find a positive association between political corruption and workplace misconduct among U.S.-listed firms that are headquartered in different states from 2004 to 2022. Both unionization and stricter labor laws attenuate the positive association between corruption and unethical labor practices. Our analyses also address potential endogeneity concerns via difference-in-differences, instrumental variables, and propensity-score-matched analyses, reaffirming the robustness of our findings. This research contributes to the literature by shedding light on how corrupt political climates influence organizational operational behavior and unethical practices. It also underscores the importance of stakeholder trust and the role of regulatory frameworks and offers practical insights to policymakers by suggesting a judicious allocation of enforcement resources to more corrupt states.Keywords: workplace misconduct, political corruption, unionization, labor law strictness
Procedia PDF Downloads 233195 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: deep-learning, image classification, image identification, industrial engineering.
Procedia PDF Downloads 1613194 Reading and Writing Memories in Artificial and Human Reasoning
Authors: Ian O'Loughlin
Abstract:
Memory networks aim to integrate some of the recent successes in machine learning with a dynamic memory base that can be updated and deployed in artificial reasoning tasks. These models involve training networks to identify, update, and operate over stored elements in a large memory array in order, for example, to ably perform question and answer tasks parsing real-world and simulated discourses. This family of approaches still faces numerous challenges: the performance of these network models in simulated domains remains considerably better than in open, real-world domains, wide-context cues remain elusive in parsing words and sentences, and even moderately complex sentence structures remain problematic. This innovation, employing an array of stored and updatable ‘memory’ elements over which the system operates as it parses text input and develops responses to questions, is a compelling one for at least two reasons: first, it addresses one of the difficulties that standard machine learning techniques face, by providing a way to store a large bank of facts, offering a way forward for the kinds of long-term reasoning that, for example, recurrent neural networks trained on a corpus have difficulty performing. Second, the addition of a stored long-term memory component in artificial reasoning seems psychologically plausible; human reasoning appears replete with invocations of long-term memory, and the stored but dynamic elements in the arrays of memory networks are deeply reminiscent of the way that human memory is readily and often characterized. However, this apparent psychological plausibility is belied by a recent turn in the study of human memory in cognitive science. In recent years, the very notion that there is a stored element which enables remembering, however dynamic or reconstructive it may be, has come under deep suspicion. In the wake of constructive memory studies, amnesia and impairment studies, and studies of implicit memory—as well as following considerations from the cognitive neuroscience of memory and conceptual analyses from the philosophy of mind and cognitive science—researchers are now rejecting storage and retrieval, even in principle, and instead seeking and developing models of human memory wherein plasticity and dynamics are the rule rather than the exception. In these models, storage is entirely avoided by modeling memory using a recurrent neural network designed to fit a preconceived energy function that attains zero values only for desired memory patterns, so that these patterns are the sole stable equilibrium points in the attractor network. So although the array of long-term memory elements in memory networks seem psychologically appropriate for reasoning systems, they may actually be incurring difficulties that are theoretically analogous to those that older, storage-based models of human memory have demonstrated. The kind of emergent stability found in the attractor network models more closely fits our best understanding of human long-term memory than do the memory network arrays, despite appearances to the contrary.Keywords: artificial reasoning, human memory, machine learning, neural networks
Procedia PDF Downloads 2713193 Using Hidden Markov Chain for Improving the Dependability of Safety-Critical Wireless Sensor Networks
Authors: Issam Alnader, Aboubaker Lasebae, Rand Raheem
Abstract:
Wireless sensor networks (WSNs) are distributed network systems used in a wide range of applications, including safety-critical systems. The latter provide critical services, often concerned with human life or assets. Therefore, ensuring the dependability requirements of Safety critical systems is of paramount importance. The purpose of this paper is to utilize the Hidden Markov Model (HMM) to elongate the service availability of WSNs by increasing the time it takes a node to become obsolete via optimal load balancing. We propose an HMM algorithm that, given a WSN, analyses and predicts undesirable situations, notably, nodes dying unexpectedly or prematurely. We apply this technique to improve on C. Lius’ algorithm, a scheduling-based algorithm which has served to improve the lifetime of WSNs. Our experiments show that our HMM technique improves the lifetime of the network, achieved by detecting nodes that die early and rebalancing their load. Our technique can also be used for diagnosis and provide maintenance warnings to WSN system administrators. Finally, our technique can be used to improve algorithms other than C. Liu’s.Keywords: wireless sensor networks, IoT, dependability of safety WSNs, energy conservation, sleep awake schedule
Procedia PDF Downloads 1003192 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification
Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens
Abstract:
Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage
Procedia PDF Downloads 1893191 An Evaluation of Impact of Video Billboard on the Marketing of GSM Services in Lagos Metropolis
Authors: Shola Haruna Adeosun, F. Adebiyi Ajoke, Odedeji Adeoye
Abstract:
Video billboard advertising by networks and brand switching was conceived out of inquisition at the huge billboard advertising expenditures made by the three major GSM network operators in Nigeria. The study was anchored on Lagos State Metropolis with a current census population over 1,000,000. From this population, a purposive sample of 400 was adopted, and the questionnaire designed for the survey was carefully allocated to members of this ample in the five geographical zones of the city so that each rung of the society was well represented. The data obtained were analyzed using tables and simple percentages. The results obtained showed that subscribers of these networks were hardly influenced by the video billboard advertisements. They overwhelmingly showed that rather than the slogans of the GSM networks carried on the video billboards, it was the incentives to subscribers as well as the promotional strategies of these organizations that moved them to switch from one network to another. These switching lasted only as long as the incentives and promotions were in effect. The results of the study also seemed to rekindle the age-old debate on media effects, by the unyielding schools of the theory of ‘all-powerful media’, ‘the limited effects media’, ‘the controlled effects media’ and ‘the negotiated media influence’.Keywords: evaluation, impact, video billboard, marketing, services
Procedia PDF Downloads 2533190 Analyzing and Predicting the CL-20 Detonation Reaction Mechanism Based on Artificial Intelligence Algorithm
Authors: Kaining Zhang, Lang Chen, Danyang Liu, Jianying Lu, Kun Yang, Junying Wu
Abstract:
In order to solve the problem of a large amount of simulation and limited simulation scale in the first-principle molecular dynamics simulation of energetic material detonation reaction, we established an artificial intelligence model for analyzing and predicting the detonation reaction mechanism of CL-20 based on the first-principle molecular dynamics simulation of the multiscale shock technique (MSST). We employed principal component analysis to identify the dominant charge features governing molecular reactions. We adopted the K-means clustering algorithm to cluster the reaction paths and screen out the key reactions. We introduced the neural network algorithm to construct the mapping relationship between the charge characteristics of the molecular structure and the key reaction characteristics so as to establish a calculation method for predicting detonation reactions based on the charge characteristics of CL-20 and realize the rapid analysis of the reaction mechanism of energetic materials.Keywords: energetic material detonation reaction, first-principle molecular dynamics simulation of multiscale shock technique, neural network, CL-20
Procedia PDF Downloads 1133189 Investigation of Oscillation Mechanism of a Large-scale Solar Photovoltaic and Wind Hybrid Power Plant
Authors: Ting Kai Chia, Ruifeng Yan, Feifei Bai, Tapan Saha
Abstract:
This research presents a real-world power system oscillation incident in 2022 originated by a hybrid solar photovoltaic (PV) and wind renewable energy farm with a rated capacity of approximately 300MW in Australia. The voltage and reactive power outputs recorded at the point of common coupling (PCC) oscillated at a sub-synchronous frequency region, which sustained for approximately five hours in the network. The reactive power oscillation gradually increased over time and reached a recorded maximum of approximately 250MVar peak-to-peak (from inductive to capacitive). The network service provider was not able to quickly identify the location of the oscillation source because the issue was widespread across the network. After the incident, the original equipment manufacturer (OEM) concluded that the oscillation problem was caused by the incorrect setting recovery of the hybrid power plant controller (HPPC) in the voltage and reactive power control loop after a loss of communication event. The voltage controller normally outputs a reactive (Q) reference value to the Q controller which controls the Q dispatch setpoint of PV and wind plants in the hybrid farm. Meanwhile, a feed-forward (FF) configuration is used to bypass the Q controller in case there is a loss of communication. Further study found that the FF control mode was still engaged when communication was re-established, which ultimately resulted in the oscillation event. However, there was no detailed explanation of why the FF control mode can cause instability in the hybrid farm. Also, there was no duplication of the event in the simulation to analyze the root cause of the oscillation. Therefore, this research aims to model and replicate the oscillation event in a simulation environment and investigate the underlying behavior of the HPPC and the consequent oscillation mechanism during the incident. The outcome of this research will provide significant benefits to the safe operation of large-scale renewable energy generators and power networks.Keywords: PV, oscillation, modelling, wind
Procedia PDF Downloads 37