Search results for: graphical user interference
1028 Solid Particles Transport and Deposition Prediction in a Turbulent Impinging Jet Using the Lattice Boltzmann Method and a Probabilistic Model on GPU
Authors: Ali Abdul Kadhim, Fue Lien
Abstract:
Solid particle distribution on an impingement surface has been simulated utilizing a graphical processing unit (GPU). In-house computational fluid dynamics (CFD) code has been developed to investigate a 3D turbulent impinging jet using the lattice Boltzmann method (LBM) in conjunction with large eddy simulation (LES) and the multiple relaxation time (MRT) models. This paper proposed an improvement in the LBM-cellular automata (LBM-CA) probabilistic method. In the current model, the fluid flow utilizes the D3Q19 lattice, while the particle model employs the D3Q27 lattice. The particle numbers are defined at the same regular LBM nodes, and transport of particles from one node to its neighboring nodes are determined in accordance with the particle bulk density and velocity by considering all the external forces. The previous models distribute particles at each time step without considering the local velocity and the number of particles at each node. The present model overcomes the deficiencies of the previous LBM-CA models and, therefore, can better capture the dynamic interaction between particles and the surrounding turbulent flow field. Despite the increasing popularity of LBM-MRT-CA model in simulating complex multiphase fluid flows, this approach is still expensive in term of memory size and computational time required to perform 3D simulations. To improve the throughput of each simulation, a single GeForce GTX TITAN X GPU is used in the present work. The CUDA parallel programming platform and the CuRAND library are utilized to form an efficient LBM-CA algorithm. The methodology was first validated against a benchmark test case involving particle deposition on a square cylinder confined in a duct. The flow was unsteady and laminar at Re=200 (Re is the Reynolds number), and simulations were conducted for different Stokes numbers. The present LBM solutions agree well with other results available in the open literature. The GPU code was then used to simulate the particle transport and deposition in a turbulent impinging jet at Re=10,000. The simulations were conducted for L/D=2,4 and 6, where L is the nozzle-to-surface distance and D is the jet diameter. The effect of changing the Stokes number on the particle deposition profile was studied at different L/D ratios. For comparative studies, another in-house serial CPU code was also developed, coupling LBM with the classical Lagrangian particle dispersion model. Agreement between results obtained with LBM-CA and LBM-Lagrangian models and the experimental data is generally good. The present GPU approach achieves a speedup ratio of about 350 against the serial code running on a single CPU.Keywords: CUDA, GPU parallel programming, LES, lattice Boltzmann method, MRT, multi-phase flow, probabilistic model
Procedia PDF Downloads 2071027 Intelligent Tooling Embedded Sensors for Monitoring the Wear of Cutting Tools in Turning Applications
Authors: Hatim Laalej, Jon Stammers
Abstract:
In machining, monitoring of tool wear is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Currently, the task of monitoring the wear on the cutting tool is carried out by the operator who performs manual inspections of the cutting tool, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from loss of productivity. The cutting tool consumable costs may also be higher than necessary when tools are changed before the end of their useful life. Furthermore, damage can be caused to the workpiece when tools are not changed soon enough leading to a significant increase in the costs of manufacturing. The present study is concerned with the development of break sensor printed on the flank surface of poly-crystalline diamond (PCD) cutting to perform on-line condition monitoring of the cutting tool used to machine Titanium Ti-6al-4v bar. The results clearly show that there is a strong correlation between the break sensor measurements and the amount of wear in the cutting tool. These findings are significant in that they help the user/operator of the machine tool to determine the condition of the cutting tool without the need of performing manual inspection, thereby reducing the manufacturing costs such as the machine down time.Keywords: machining, manufacturing, tool wear, signal processing
Procedia PDF Downloads 2451026 The Influence of Social Media on Gym Memberships in the UAE
Authors: Mohammad Obeidat
Abstract:
In recent years, social media has revolutionized the way businesses market their products and services. Platforms such as Instagram, Facebook, YouTube, and TikTok have become powerful tools for reaching large audiences and engaging with consumers in real-time. These platforms allow businesses to create visually appealing content, interact with customers, and leverage user-generated content to enhance brand visibility and credibility. Recent statistics indicate that businesses that actively participate in social media marketing see improvements in brand visibility, customer engagement, and revenue generation. For example, several studies reveal that 70% of business-to-consumer marketers have gained customers through Facebook. This study aims to contribute to the academic literature on social media marketing and consumer behavior, specifically within the context of the fitness industry in the UAE. The findings will provide valuable insights for gym and fitness center managers, marketers, and social media strategists looking to enhance their engagement with potential customers. By understanding the impact of social media on purchasing decisions, businesses can tailor their marketing efforts to meet consumer expectations better and drive membership growth.Keywords: social media, consumer behavior, digital native, influencer
Procedia PDF Downloads 471025 Efficacy of Knowledge Management Practices in Selected Public Libraries in the Province of Kwazulu-Natal, South Africa
Authors: Petros Dlamini, Bethiweli Malambo, Maggie Masenya
Abstract:
Knowledge management practices are very important in public libraries, especial in the era of the information society. The success of public libraries depends on the recognition and application of knowledge management practices. The study investigates the value and challenges of knowledge management practices in public libraries. Three research objectives informed the study: to identify knowledge management practices in public libraries, understand the value of knowledge management practices in public libraries, and determine the factors hampering knowledge management practices in public libraries. The study was informed by the interpretivism research paradigm, which is associated with qualitative studies. In that light, the study collected data from eight librarians and or library heads, who were purposively selected from public libraries. The study adopted a social anthropological approach, which thoroughly evaluated each participant's response. Data was collected from the respondents through telephonic semi-structured interviews and assessed accordingly. Furthermore, the study used the latest content concept for data interpretation. The chosen data analysis method allowed the study to achieve its main purpose with concrete and valid information. The study's findings showed that all six (100%) selected public libraries apply knowledge management practices. The findings of the study revealed that public libraries have knowledge sharing as the main knowledge management practice. It was noted that public libraries employ many practices, but each library employed its practices of choice depending on their knowledge management practices structure. The findings further showed that knowledge management practices in public libraries are employed through meetings, training, information sessions, and awareness, to mention a few. The findings revealed that knowledge management practices make the libraries usable. Furthermore, it has been asserted that knowledge management practices in public libraries meet users’ needs and expectations and equip them with skills. It was discovered that all participating public libraries from Umkhanyakude district municipality valued their knowledge management practices as the pillar and foundation of services. Noticeably, knowledge management practices improve users ‘standard of living and build an information society. The findings of the study showed that librarians should be responsible for the value of knowledge management practices as they are qualified personnel. The results also showed that 83.35% of public libraries had factors hampering knowledge management practices. The factors are not limited to shortage of funds, resources and space, and political interference. Several suggestions were made to improve knowledge management practices in public libraries. These suggestions include improving the library budget, increasing libraries’ building sizes, and conducting more staff training.Keywords: knowledge management, knowledge management practices, storage, dissemination
Procedia PDF Downloads 941024 Phytoremediation of Heavy Metals by the Perennial Tussock Chrysopogon Zizanioides Grown on Zn and Cd Contaminated Soil Amended with Biochar
Authors: Dhritilekha Deka, Deepak Patwa, Ravi K., Archana M. Nair
Abstract:
Bioaccumulation of heavy metal contaminants due to intense anthropogenic interference degrades the environment and ecosystem functions. Conventional physicochemical methods involve energy-intensive and costly methodologies. Phytoremediation, on the other hand, provides an efficient nature-based strategy for the reclamation of heavy metal-contaminated sites. However, the slow process and adaptation to high-concentration contaminant sequestration often limit the efficiency of the method. This necessitates natural amendments such as biochar to improve phytoextraction and stabilize the green cover. Biochar is a highly porous structure with high carbon sequestration potential and containing negatively charged functional groups that provide binding sites for the positively charged metals. This study aims to develop and determine the synergy between sugarcane bagasse biochar content and phytoremediation. A 60-day pot experiment using perennial tussock vetiver grass (Chrysopogon zizanioides) was conducted for different biochar contents of 1%, 2%, and 4% for the removal of cadmium and zinc. A concentration of 500 ppm is maintained for the amended and unamended control (CK) samples. The survival rates of the plants, biomass production, and leaf area index were measured for the plant growth characteristics. Results indicate a visible change in the plant growth and the heavy metal concentration with the biochar content. The bioconcentration factor (BCF) in the plant improved significantly for the 4% biochar content by 57% in comparison to the control CK treatment in Cd-treated soils. The Zn soils indicated the highest reduction in the metal concentration by 50% in the 2% amended samples and an increase in the BCF in all the amended samples. The translocation from the rhizosphere to the shoots was low but not dependent on the amendment content and varied for each contaminant type. The root-to-shoot ratio indicates higher values compared to the control samples. The enhanced tolerance capacities can be attributed to the nutrients released by the biochar in the soil. The study reveals the high potential of biochar as a phytoremediation amendment, but its effect is dependent on the soil and heavy metal and accumulator species.Keywords: phytoextraction, biochar, heavy metals, chrysopogon zizanioides, bioaccumulation factor
Procedia PDF Downloads 651023 The Implementation of the Multi-Agent Classification System (MACS) in Compliance with FIPA Specifications
Authors: Mohamed R. Mhereeg
Abstract:
The paper discusses the implementation of the MultiAgent classification System (MACS) and utilizing it to provide an automated and accurate classification of end users developing applications in the spreadsheet domain. However, different technologies have been brought together to build MACS. The strength of the system is the integration of the agent technology with the FIPA specifications together with other technologies, which are the .NET widows service based agents, the Windows Communication Foundation (WCF) services, the Service Oriented Architecture (SOA), and Oracle Data Mining (ODM). Microsoft's .NET windows service based agents were utilized to develop the monitoring agents of MACS, the .NET WCF services together with SOA approach allowed the distribution and communication between agents over the WWW. The Monitoring Agents (MAs) were configured to execute automatically to monitor excel spreadsheets development activities by content. Data gathered by the Monitoring Agents from various resources over a period of time was collected and filtered by a Database Updater Agent (DUA) residing in the .NET client application of the system. This agent then transfers and stores the data in Oracle server database via Oracle stored procedures for further processing that leads to the classification of the end user developers.Keywords: MACS, implementation, multi-agent, SOA, autonomous, WCF
Procedia PDF Downloads 2741022 Educational Leadership Preparation Program Review of Employer Satisfaction
Authors: Glenn Koonce
Abstract:
There is a need to address the improvement of university educational leadership preparation programs through the processes of accreditation and continuous improvement. The program faculty in a university in the eastern part of the United States has incorporated an employer satisfaction focus group to address their national accreditation standard so that employers are satisfied with completers' preparation for the position of principal or assistant principal. Using the Council for the Accreditation of Educator Preparation (CAEP) required proficiencies, the following research questions are investigated: 1) what proficiencies do completers perform the strongest? 2) what proficiencies need to be strengthened? 3) what other strengths beyond the required proficiencies do completers demonstrate? 4) what other areas of responsibility beyond the required proficiencies do completers demonstrate? and 5) how can the program improve in preparing candidates for their positions? This study focuses on employers of one public school district that has a large number of educational leadership completers employed as principals and assistant principals. Central office directors who evaluate principals and principals who evaluate assistant principals are focus group participants. Construction of the focus group questions is a result of recommendations from an accreditation regulatory specialist, reviewed by an expert panel, and piloted by an experienced focus group leader. The focus group session was audio recorded, transcribed, and analyzed using the NVivo Version 14 software. After constructing folders in NVivo, the focus group transcript was loaded and skimmed by diagnosing significant statements and assessing core ideas for developing primary themes. These themes were aligned to address the research questions. From the transcript, codes were assigned to the themes and NVivo provided a coding hierarchy chart or graphical illustration for framing the coding. A final report of the coding process was designed using the primary themes and pertinent codes that were supported in excerpts from the transcript. The outcome of this study is to identify themes that can provide evidence that the educational leadership program is meeting its mission to improve PreK-12 student achievement through well-prepared completers who have achieved the position of principal or assistant principal. The considerations will be used to derive a composite profile of employers' satisfaction with program completers with the capacity to serve, influence, and thrive as educational leaders. Analysis of the idealized themes will result in identifying issues that may challenge university educational leadership programs to improve. Results, conclusions, and recommendations are used for continuous improvement, which is another national accreditation standard required for the program.Keywords: educational leadership preparation, CAEP accreditation, principal & assistant principal evaluations, continuous improvement
Procedia PDF Downloads 281021 Emotion Oriented Students' Opinioned Topic Detection for Course Reviews in Massive Open Online Course
Authors: Zhi Liu, Xian Peng, Monika Domanska, Lingyun Kang, Sannyuya Liu
Abstract:
Massive Open education has become increasingly popular among worldwide learners. An increasing number of course reviews are being generated in Massive Open Online Course (MOOC) platform, which offers an interactive feedback channel for learners to express opinions and feelings in learning. These reviews typically contain subjective emotion and topic information towards the courses. However, it is time-consuming to artificially detect these opinions. In this paper, we propose an emotion-oriented topic detection model to automatically detect the students’ opinioned aspects in course reviews. The known overall emotion orientation and emotional words in each review are used to guide the joint probabilistic modeling of emotion and aspects in reviews. Through the experiment on real-life review data, it is verified that the distribution of course-emotion-aspect can be calculated to capture the most significant opinioned topics in each course unit. This proposed technique helps in conducting intelligent learning analytics for teachers to improve pedagogies and for developers to promote user experiences.Keywords: Massive Open Online Course (MOOC), course reviews, topic model, emotion recognition, topical aspects
Procedia PDF Downloads 2621020 Engagement Analysis Using DAiSEE Dataset
Authors: Naman Solanki, Souraj Mondal
Abstract:
With the world moving towards online communication, the video datastore has exploded in the past few years. Consequently, it has become crucial to analyse participant’s engagement levels in online communication videos. Engagement prediction of people in videos can be useful in many domains, like education, client meetings, dating, etc. Video-level or frame-level prediction of engagement for a user involves the development of robust models that can capture facial micro-emotions efficiently. For the development of an engagement prediction model, it is necessary to have a widely-accepted standard dataset for engagement analysis. DAiSEE is one of the datasets which consist of in-the-wild data and has a gold standard annotation for engagement prediction. Earlier research done using the DAiSEE dataset involved training and testing standard models like CNN-based models, but the results were not satisfactory according to industry standards. In this paper, a multi-level classification approach has been introduced to create a more robust model for engagement analysis using the DAiSEE dataset. This approach has recorded testing accuracies of 0.638, 0.7728, 0.8195, and 0.866 for predicting boredom level, engagement level, confusion level, and frustration level, respectively.Keywords: computer vision, engagement prediction, deep learning, multi-level classification
Procedia PDF Downloads 1141019 Proposed Solutions Based on Affective Computing
Authors: Diego Adrian Cardenas Jorge, Gerardo Mirando Guisado, Alfredo Barrientos Padilla
Abstract:
A system based on Affective Computing can detect and interpret human information like voice, facial expressions and body movement to detect emotions and execute a corresponding response. This data is important due to the fact that a person can communicate more effectively with emotions than can be possible with words. This information can be processed through technological components like Facial Recognition, Gait Recognition or Gesture Recognition. As of now, solutions proposed using this technology only consider one component at a given moment. This research investigation proposes two solutions based on Affective Computing taking into account more than one component for emotion detection. The proposals reflect the levels of dependency between hardware devices and software, as well as the interaction process between the system and the user which implies the development of scenarios where both proposals will be put to the test in a live environment. Both solutions are to be developed in code by software engineers to prove the feasibility. To validate the impact on society and business interest, interviews with stakeholders are conducted with an investment mind set where each solution is labeled on a scale of 1 through 5, being one a minimum possible investment and 5 the maximum.Keywords: affective computing, emotions, emotion detection, face recognition, gait recognition
Procedia PDF Downloads 3691018 ChatGPT 4.0 Demonstrates Strong Performance in Standardised Medical Licensing Examinations: Insights and Implications for Medical Educators
Authors: K. O'Malley
Abstract:
Background: The emergence and rapid evolution of large language models (LLMs) (i.e., models of generative artificial intelligence, or AI) has been unprecedented. ChatGPT is one of the most widely used LLM platforms. Using natural language processing technology, it generates customized responses to user prompts, enabling it to mimic human conversation. Responses are generated using predictive modeling of vast internet text and data swathes and are further refined and reinforced through user feedback. The popularity of LLMs is increasing, with a growing number of students utilizing these platforms for study and revision purposes. Notwithstanding its many novel applications, LLM technology is inherently susceptible to bias and error. This poses a significant challenge in the educational setting, where academic integrity may be undermined. This study aims to evaluate the performance of the latest iteration of ChatGPT (ChatGPT4.0) in standardized state medical licensing examinations. Methods: A considered search strategy was used to interrogate the PubMed electronic database. The keywords ‘ChatGPT’ AND ‘medical education’ OR ‘medical school’ OR ‘medical licensing exam’ were used to identify relevant literature. The search included all peer-reviewed literature published in the past five years. The search was limited to publications in the English language only. Eligibility was ascertained based on the study title and abstract and confirmed by consulting the full-text document. Data was extracted into a Microsoft Excel document for analysis. Results: The search yielded 345 publications that were screened. 225 original articles were identified, of which 11 met the pre-determined criteria for inclusion in a narrative synthesis. These studies included performance assessments in national medical licensing examinations from the United States, United Kingdom, Saudi Arabia, Poland, Taiwan, Japan and Germany. ChatGPT 4.0 achieved scores ranging from 67.1 to 88.6 percent. The mean score across all studies was 82.49 percent (SD= 5.95). In all studies, ChatGPT exceeded the threshold for a passing grade in the corresponding exam. Conclusion: The capabilities of ChatGPT in standardized academic assessment in medicine are robust. While this technology can potentially revolutionize higher education, it also presents several challenges with which educators have not had to contend before. The overall strong performance of ChatGPT, as outlined above, may lend itself to unfair use (such as the plagiarism of deliverable coursework) and pose unforeseen ethical challenges (arising from algorithmic bias). Conversely, it highlights potential pitfalls if users assume LLM-generated content to be entirely accurate. In the aforementioned studies, ChatGPT exhibits a margin of error between 11.4 and 32.9 percent, which resonates strongly with concerns regarding the quality and veracity of LLM-generated content. It is imperative to highlight these limitations, particularly to students in the early stages of their education who are less likely to possess the requisite insight or knowledge to recognize errors, inaccuracies or false information. Educators must inform themselves of these emerging challenges to effectively address them and mitigate potential disruption in academic fora.Keywords: artificial intelligence, ChatGPT, generative ai, large language models, licensing exam, medical education, medicine, university
Procedia PDF Downloads 321017 Mountain Photo Sphere: An Android Application of Mountain Hiking Street View
Authors: Yanto Budisusanto, Aulia Rachmawati
Abstract:
Land navigation technology that is being developed is Google Street View to provide 360° street views, enabling the user to know the road conditions physically with the photo display. For climbers, especially beginners, detail information of climbing terrain is needed so climbers can prepare supplies and strategies before climbing. Therefore, we built a mountaineer guide application named Mountain Photo Sphere. This application displays a 360̊ panoramic view of mountain hiking trail and important points along the hiking path and its surrounding conditions. By combining panoramic photos 360̊ and tracking paths from coordinate data, a virtual tour will be formed. It is built using Java language and Android Studio. The hiking trail map composed by Google Maps API (Gaining access to google maps), Google GEO API (Gaining access to google maps), and OpenStreetMap API (Getting map files to be accessed offline on the Application). This application can be accessed offline so that climbers can use the application during climbing activities.Keywords: google street view, panoramic photo 360°, mountain hiking, mountain photo sphere
Procedia PDF Downloads 1661016 Architecture for Multi-Unmanned Aerial Vehicles Based Autonomous Precision Agriculture Systems
Authors: Ebasa Girma, Nathnael Minyelshowa, Lebsework Negash
Abstract:
The use of unmanned aerial vehicles (UAVs) in precision agriculture has seen a huge increase recently. As such, systems that aim to apply various algorithms on the field need a structured framework of abstractions. This paper defines the various tasks of the UAVs in precision agriculture and models them into an architectural framework. The presented architecture is built on the context that there will be minimal physical intervention to do the tasks defined with multiple coordinated and cooperative UAVs. Various tasks such as image processing, path planning, communication, data acquisition, and field mapping are employed in the architecture to provide an efficient system. Besides, different limitation for applying Multi-UAVs in precision agriculture has been considered in designing the architecture. The architecture provides an autonomous end-to-end solution, starting from mission planning, data acquisition, and image processing framework that is highly efficient and can enable farmers to comprehensively deploy UAVs onto their lands. Simulation and field tests show that the architecture offers a number of advantages that include fault-tolerance, robustness, developer, and user-friendliness.Keywords: deep learning, multi-UAVs, precision agriculture, UAVs architecture
Procedia PDF Downloads 1141015 Myers-Briggs Type Index Personality Type Classification Based on an Individual’s Spotify Playlists
Authors: Sefik Can Karakaya, Ibrahim Demir
Abstract:
In this study, the relationship between musical preferences and personality traits has been investigated in terms of Spotify audio analysis features. The aim of this paper is to build such a classifier capable of segmenting people into their Myers-Briggs Type Index (MBTI) personality type based on their Spotify playlists. Music takes an important place in the lives of people all over the world and online music streaming platforms make it easier to reach musical contents. In this context, the motivation to build such a classifier is allowing people to gain access to their MBTI personality type and perhaps for more reliably and more quickly. For this purpose, logistic regression and deep neural networks have been selected for classifier and their performances are compared. In conclusion, it has been found that musical preferences differ statistically between personality traits, and evaluated models are able to distinguish personality types based on given musical data structure with over %60 accuracy rate.Keywords: myers-briggs type indicator, music psychology, Spotify, behavioural user profiling, deep neural networks, logistic regression
Procedia PDF Downloads 1441014 Role of Community Forestry to Address Climate Change in Nepal
Authors: Laxmi Prasad Bhattarai
Abstract:
Climate change is regarded as one of the most fundamental threats to sustainable livelihood and global development. There is a growing global concern in linking community-managed forests as potential climate change mitigation projects. This study was conducted to explore local people’s perception on climate change and the role of community forestry (CF) to combat climate change impacts. Two active community forest user groups (CFUGs) from Kaski and Syangja Districts in Nepal were selected as study sites, and various participatory tools were applied to collect primary data. Although most of the respondents were unaware about the words “Climate Change” in study sites, they were quite familiar with the irregularities in rainfall season and other weather extremities. 60% of the respondents had the idea that, due to increase in precipitation, there is a frequent occurrence of erosion, floods, and landslide. Around 85% of the people agreed that community forests help in stabilizing soil, reducing the natural hazards like erosion, landslide. Biogas as an alternative source of cooking energy, and changes in crops and their varieties are the common adaptation measures that local people start practicing in both CFUGs in Nepal.Keywords: community forestry, climate change, global warming, adaptation, Nepal
Procedia PDF Downloads 3051013 Development of Basic Patternmaking Using Parametric Modelling and AutoLISP
Authors: Haziyah Hussin, Syazwan Abdul Samad, Rosnani Jusoh
Abstract:
This study is aimed towards the automisation of basic patternmaking for traditional clothes for the purpose of mass production using AutoCAD to apply AutoLISP feature under software Hazi Attire. A standard dress form (industrial form) with the size of small (S), medium (M) and large (L) size is measured using full body scanning machine. Later, the pattern for the clothes is designed parametrically based on the measured dress form. Hazi Attire program is used within the framework of AutoCAD to generate the basic pattern of front bodice, back bodice, front skirt, back skirt and sleeve block (sloper). The generation of pattern is based on the parameters inputted by user, whereby in this study, the parameters were determined based on the measured size of dress form. The finalized pattern parameter shows that the pattern fit perfectly on the dress form. Since the pattern is generated almost instantly, these proved that using the AutoLISP programming, the manufacturing lead time for the mass production of the traditional clothes can be decreased.Keywords: apparel, AutoLISP, Malay traditional clothes, pattern ganeration
Procedia PDF Downloads 2561012 Analyzing Social and Political Constraints in Development Aid Projects in Post Conflict Region of SWAT, Pakistan
Authors: Faizan Sultan
Abstract:
Non-government organizations (NGOs) in Pakistan have the potential to deliver services such as health, education, and rural development through targeting the most vulnerable communities of society. Having this significant importance, NGOs are facing numerous challenges in service delivery. So, there is a need to identify the challenges NGOs face in community development, particularly post-conflict development. The current study has analyzed the social and political constraints in development projects in the post-conflict region of the Swat district of Khyber Pakhtunkhwa. The objectives of this study are “What are the social and political constraints faced by the nongovernmental organizations in the implementation of development aid Projects in post-conflict development of Swat and to examine the challenges in coordination mechanism between government departments, NGOs, and community in reconstruction activities”. This research is based upon both the quantitative and qualitative data that is being gathered from the NGO representatives, government officials, and community members who were involved in post-conflict development interventions in the Swat region. A purposive sampling technique was used to select respondents from the community members/activists (25 in number) and government and NGO officials (10 in number). Based on analysis against our objectives, NGOs have faced numerous constraints such as Insecurity, Negative Perceptions about NGOs, restrictions on women's mobility, government policies and regulations, lack of coordination and networking, trust deficit, and political interference while implementing their project interventions. These findings concluded that constraints have affected project implementation to a greater extent, including women's participation, involvement of marginalized populations, and equal distribution of resources. In the Swat region, NGOs cannot openly discuss sensitive projects such as human rights, gender-based projects, or women empowerment as these issues are very sensitive to the local community due to their cultural values. The community may not allow their females to go outside their homes as this region is a male-dominated society. Similarly, lack of communication and poor networking for the arrangements of the project meetings were also the major constraints.Keywords: national disaster management authority, millennium development goals, provincial disaster management authority, provincial reconstruction, rehabilitation and settlement authority
Procedia PDF Downloads 591011 Automatic Teller Machine System Security by Using Mobile SMS Code
Authors: Husnain Mushtaq, Mary Anjum, Muhammad Aleem
Abstract:
The main objective of this paper is used to develop a high security in Automatic Teller Machine (ATM). In these system bankers will collect the mobile numbers from the customers and then provide a code on their mobile number. In most country existing ATM machine use the magnetic card reader. The customer is identifying by inserting an ATM card with magnetic card that hold unique information such as card number and some security limitations. By entering a personal identification number, first the customer is authenticated then will access bank account in order to make cash withdraw or other services provided by the bank. Cases of card fraud are another problem once the user’s bank card is missing and the password is stolen, or simply steal a customer’s card & PIN the criminal will draw all cash in very short time, which will being great financial losses in customer, this type of fraud has increase worldwide. So to resolve this problem we are going to provide the solution using “Mobile SMS code” and ATM “PIN code” in order to improve the verify the security of customers using ATM system and confidence in the banking area.Keywords: PIN, inquiry, biometric, magnetic strip, iris recognition, face recognition
Procedia PDF Downloads 3651010 Towards an Adversary-Aware ML-Based Detector of Spam on Twitter Hashtags
Authors: Niddal Imam, Vassilios G. Vassilakis
Abstract:
After analysing messages posted by health-related spam campaigns in Twitter Arabic hashtags, we found that these campaigns use unique hijacked accounts (we call them adversarial hijacked accounts) as adversarial examples to fool deployed ML-based spam detectors. Existing ML-based models build a behaviour profile for each user to detect hijacked accounts. This approach is not applicable for detecting spam in Twitter hashtags since they are computationally expensive. Hence, we propose an adversary-aware ML-based detector, which includes a newly designed feature (avg posts) to improve the detection of spam tweets posted by the adversarial hijacked accounts at a tweet-level in trending hashtags. The proposed detector was designed considering three key points: robustness, adaptability, and interpretability. The new feature leverages the account’s temporal patterns (i.e., account age and number of posts). It is faster to compute compared to features discussed in the literature and improves the accuracy of detecting the identified hijacked accounts by 73%.Keywords: Twitter spam detection, adversarial examples, evasion attack, adversarial concept drift, account hijacking, trending hashtag
Procedia PDF Downloads 781009 Information Seekers vs. Information Providers: New Vistas and New Challenges for the Libraries Today; A Case Study of the Panjab University Library, Chandigarh, India
Authors: Neeru Bhatia
Abstract:
This article presents the results of a case study designed to analyze and deduce Information seekers and the Information Providers in today’s context, wherein we come across a sea of change in the provision of Information services due to the changing electronic environment. The Panjab University Library is one of the biggest libraries of India and was inaugurated in 1963 by Pt. Jawaharlal Nehru, the then Prime Minister of India. The library always thrives to assimilate new technology for the provision of Information services. As we know that the Information seekers today are a whole lot different, they are tech savvy, like to be on their electronic gadgets most of the time, and their Information seeking patterns are also different, the challenge that lies before the libraries is to be always ready for these day to day challenges. The study explores the current status of the Information Services being provided by the Panjab University Library (the Information Providers) vs. the evaluation of these Information services by the users of Library (the Information Seekers). The present study aimed at finding out whether Panjab University Library is able to achieve its mission to be an innovative and user-oriented library by exploring all the new vistas and reach up to the expectations of the information seekers by taking up all the challenges being posed by the ever changing technological scenario.Keywords: electronic environment, information seekers, information providers, new technology
Procedia PDF Downloads 2621008 Implementing a Neural Network on a Low-Power and Mobile Cluster to Aide Drivers with Predictive AI for Traffic Behavior
Authors: Christopher Lama, Alix Rieser, Aleksandra Molchanova, Charles Thangaraj
Abstract:
New technologies like Tesla’s Dojo have made high-performance embedded computing more available. Although automobile computing has developed and benefited enormously from these more recent technologies, the costs are still high, prohibitively high in some cases for broader adaptation, particularly for the after-market and enthusiast markets. This project aims to implement a Raspberry Pi-based low-power (under one hundred Watts) highly mobile computing cluster for a neural network. The computing cluster built from off-the-shelf components is more affordable and, therefore, makes wider adoption possible. The paper describes the design of the neural network, Raspberry Pi-based cluster, and applications the cluster will run. The neural network will use input data from sensors and cameras to project a live view of the road state as the user drives. The neural network will be trained to predict traffic behavior and generate warnings when potentially dangerous situations are predicted. The significant outcomes of this study will be two folds, firstly, to implement and test the low-cost cluster, and secondly, to ascertain the effectiveness of the predictive AI implemented on the cluster.Keywords: CS pedagogy, student research, cluster computing, machine learning
Procedia PDF Downloads 1021007 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection
Authors: Ali Hamza
Abstract:
Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network
Procedia PDF Downloads 841006 User Perceptions Deviation from the Producers’ Intended Meaning of a Healthcare Innovation
Authors: Helle Nissen
Abstract:
Physical objects surrounding people in healthcare environments are carriers of institutional logics materialized into the objects by its producers. However, institutional logics research lacks to inform us how logics become materialized and are perceived by producers vs. users of an object. The study is based on a 3-year longitudinal case study of a Danish Public Private Innovation project aiming to co-create an innovative healthcare bed commercialized to public psychiatric hospitals. The producers are a private metal firm and industrial designers from two Danish regions. The findings demonstrate that the metal firm and designers, as producers, negotiate about materializing different logics into the bed throughout the innovation process. An aesthetic logic is prioritized most, and the producers encode it with the intention to develop a bed that looks homely and less hospital-like compared to previous and existing healthcare beds. After the bed is put into use, the aesthetic logic is decoded by the users. Their perception of it differs significantly from the producers’ intended meaning, as the healthcare bed is perceived as sterile. The study has theoretical implications: It demonstrates how logics become materialized ‘here and now’, and it reveals logics as less governed by stable and clear meanings but rather as subject to changeable perceptions.Keywords: co-creation, healthcare innovation, commercialization, institutional logics
Procedia PDF Downloads 861005 University Short Courses Web Application Using ASP.Net
Authors: Ahmed Hariri
Abstract:
E-Learning has become a necessity in the advanced education. It is easier for the student and teacher communication also it speed up the process with less time and less effort. With the progress and the enormous development of distance education must keep up with this age of making a website that allows students and teachers to take all the advantages of advanced education. In this regards, we developed University Short courses web application which is specially designed for Faculty of computing and information technology, Rabigh, Kingdom of Saudi Arabia. After an elaborate review of the current state-of-the-art methods of teaching and learning, we found that instructors deliver extra short courses and workshop to students to enhance the knowledge of students. Moreover, this process is completely manual. The prevailing methods of teaching and learning consume a lot of time; therefore in this context, University Short courses web application will help to make process easy and user friendly. The site allows for students can view and register short courses online conducted by instructor also they can see courses starting dates, finishing date and locations. It also allows the instructor to put things on his courses on the site and see the students enrolled in the study material. Finally, student can print the certificate after finished the course online. ASP.NET, SQLSERVER, JavaScript SQL SERVER Database will use to develop the University Short Courses web application.Keywords: e-learning, short courses, ASP.NET, SQL SERVER
Procedia PDF Downloads 1341004 Modeling User Departure Time Choice for Trips in Urban Streets
Authors: Saeed Sayyad Hagh Shomar
Abstract:
Modeling users’ decisions on departure time choice is the main motivation for this research. In particular, it examines the impact of social-demographic features, household, job characteristics and trip qualities on individuals’ departure time choice. Departure time alternatives are presented as adjacent discrete time periods. The choice between these alternatives is done using a discrete choice model. Since a great deal of early morning trips and traffic congestion at that time of the day comprise work trips, the focus of this study is on the work trip over the entire day. Therefore, this study by using questionnaire of stated preference models users’ departure time choice affected by congestion pricing plan in downtown Tehran. Experimental results demonstrate efficient social-demographic impact on work trips’ departure time. These findings have substantial outcomes for the analysis of transportation planning. Particularly, the analysis shows that ignoring the effects of these variables could result in erroneous information and consequently decisions in the field of transportation planning and air quality would fail and cause financial resources loss.Keywords: modeling, departure time, travel timing, time of the day, congestion pricing, transportation planning
Procedia PDF Downloads 4331003 Preserving Wetlands: Legal and Ecological Challenges in the Face of Degradation: The Case Study of Miankaleh, Iran
Authors: Setareh Orak
Abstract:
Wetlands are essential guardians of global ecosystems, yet they remain vulnerable to increasing human interference and environmental stress. The Miankaleh wetland in northern Iran, designated as a Ramsar Convention site, represents a critical habitat known for its rich biodiversity and essential ecological functions. Despite the existence of national and international environmental laws aimed at preserving such critical ecosystems, the regulatory frameworks in place often fall short in terms of enforcement, monitoring, and overall effectiveness. Unfortunately, this wetland is undergoing severe degradation due to overexploitation, industrial contamination, unsustainable tourism, and land-use alterations. This study aims to assess the strengths and limitations of these regulations and examine their practical impacts on Miankaleh’s ecological health. Adopting a multi-method research approach, this study relies on a combination of case study analysis, legal and literature reviews, environmental data examination, stakeholder interviews, and comparative assessments. Through these methodologies, we scrutinize current national policies, international conventions, and their enforcement mechanisms, revealing the primary areas where they fail to protect Miankaleh effectively. The analysis is supported by two satellite maps linked to our tables, offering detailed visual representations of changes in land use, vegetation, and pollution sources over recent years. By connecting these visual data with quantitative measures, the study provides a comprehensive perspective on how human activities and regulatory shortcomings are contributing to environmental degradation. In conclusion, this study’s insights into the limitations of current environmental legislation and its recommendations for enhancing both policy and public engagement underscore the urgent need for integrated, multi-level efforts in conserving the Miankaleh wetland. Through strengthened legal frameworks, better enforcement, increased public awareness, and international cooperation, the hope is to establish a model of conservation that not only preserves Miankaleh but also serves as a template for protecting similar ecologically sensitive areas worldwide.Keywords: wetlands, tourism, industrial pollution, land use changes, Ramsar convention
Procedia PDF Downloads 131002 Evaluating the Location of Effective Product Advertising on Facebook Ads
Authors: Aulia F. Hadining, Atya Nur Aisha, Dimas Kurninatoro Aji
Abstract:
Utilization of social media as a marketing tool is growing rapidly, including for SMEs. Social media allows the user to give product evaluation and recommendations to the public. In addition, the social media facilitate word-of-mouth marketing communication. One of the social media that can be used is Facebook, with Facebook Ads. This study aimed to evaluate the location of Facebook Ads, to obtain an appropriate advertising design. There are three alternatives location consist of desktop, right-hand column and mobile. The effectiveness and efficiency of advertising will be measured based on advertising metrics such as reach, click, Cost per Click (CUC) and Unique Click-Through-Rate (UCTR). Facebook's Ads Manager was used for seven days, targeted by age (18-24), location (Bandung), language (Indonesia) and keywords. The result was 13,999 total reach, as well as 342 clicks. Based on the results of comparison using ANOVA, there was a significant difference for each placement location based on advertising metrics. Mobile location was chosen to be successful ads, because it produces the lowest CUC, amounting to Rp 691,- per click and 14% UCTR. Results of this study showed Facebook Ads was useful and cost-effective media to promote the product of SME, because it could be view by many people in the same time.Keywords: marketing communication, social media, Facebook Ads, mobile location
Procedia PDF Downloads 3541001 System and Method for Providing Web-Based Remote Application Service
Authors: Shuen-Tai Wang, Yu-Ching Lin, Hsi-Ya Chang
Abstract:
With the development of virtualization technologies, a new type of service named cloud computing service is produced. Cloud users usually encounter the problem of how to use the virtualized platform easily over the web without requiring the plug-in or installation of special software. The object of this paper is to develop a system and a method enabling process interfacing within an automation scenario for accessing remote application by using the web browser. To meet this challenge, we have devised a web-based interface that system has allowed to shift the GUI application from the traditional local environment to the cloud platform, which is stored on the remote virtual machine. We designed the sketch of web interface following the cloud virtualization concept that sought to enable communication and collaboration among users. We describe the design requirements of remote application technology and present implementation details of the web application and its associated components. We conclude that this effort has the potential to provide an elastic and resilience environment for several application services. Users no longer have to burden the system maintenances and reduce the overall cost of software licenses and hardware. Moreover, this remote application service represents the next step to the mobile workplace, and it lets user to use the remote application virtually from anywhere.Keywords: virtualization technology, virtualized platform, web interface, remote application
Procedia PDF Downloads 2891000 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics
Authors: Fabio Fabris, Alex A. Freitas
Abstract:
Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.Keywords: algorithm recommendation, meta-learning, bioinformatics, hierarchical classification
Procedia PDF Downloads 314999 Assessing the Current State of Wheelchair Accessibility in Shopping Centers and Stores in Saudi Arabia
Authors: Majed M. Mustafa, Abdulrahman A. Altassan
Abstract:
In recent years, ensuring accessibility for all individuals, particularly those with mobility impairments, has gained significant attention in Saudi Arabia. This research aims to evaluate wheelchair accessibility in shopping centers, malls, and stores across the kingdom, highlighting its critical role in promoting inclusivity and equal access. The study will focus on the availability and quality of ramps, automatic doors, lifts, accessible restrooms, and overall ease of navigation for wheelchair users. Utilizing a mixed-methods approach, the research will employ site assessments, user surveys, and interviews with facility managers to gather comprehensive data. Preliminary findings indicate that while some facilities have made strides in accessibility, there are still numerous areas requiring improvement. The study will provide targeted recommendations to enhance accessibility, ensuring that all users can navigate shopping environments with ease and dignity. Conclusively, this research underscores the need for continuous efforts and policy enhancements to achieve universal design standards in public spaces within Saudi Arabia.Keywords: automatic doors, equal access, ramp quality, wheelchair accessibility
Procedia PDF Downloads 36