Search results for: Network Time Protocol
20379 Exploring De-Fi through 3 Case Studies: Transparency, Social Impact, and Regulation
Authors: Dhaksha Vivekanandan
Abstract:
DeFi is a network that avoids reliance on financial intermediaries through its peer-to-peer financial network. DeFi operates outside of government control; hence it is important for us to understand its impacts. This study employs a literature review to understand DeFi and its emergence, as well as its implications on transparency, social impact, and regulation. Further, 3 case studies are analysed within the context of these categories. DeFi’s provision of increased transparency poses environmental and storage costs and can lead to user privacy being endangered. DeFi allows for the provision of entrepreneurial incentives and protection against monetary censorship and capital control. Despite DeFi's transparency issues and volatility costs, it has huge potential to reduce poverty; however, regulation surrounding DeFi still requires further tightening by governments.Keywords: DeFi, transparency, regulation, social impact
Procedia PDF Downloads 9120378 Automation of Student Attendance Management System Using BPM
Authors: Kh. Alaa, Sh. Sarah, J. Khowlah, S. Liyakathunsia
Abstract:
Education has become very important nowadays and with the rapidly increasing number of student, taking the attendance manually is getting very difficult and time wasting. In order to solve this problem, an automated solution is required. An effective automated system can be implemented to manage student attendance in different ways. This research will discuss a unique class attendance system which integrates both Face Recognition and RFID technique. This system focuses on reducing the time spent on submitting of the lecture and the wastage of time on submitting and getting approval for the absence excuse and sick leaves. As a result, the suggested solution will enhance not only the time, also it will also be helpful in eliminating fake attendance.Keywords: attendance system, face recognition, RFID, process model, cost, time
Procedia PDF Downloads 38120377 Investigation of the Trunk Inclination Positioning Angle on Swallowing and Respiratory Function
Authors: Hsin-Yi Kathy Cheng, Yan-Ying JU, Wann-Yun Shieh, Chin-Man Wang
Abstract:
Although the coordination of swallowing and respiration has been discussed widely, the influence of the positioning angle on swallowing and respiration during feeding has rarely been investigated. This study aimed to investigate the timing and coordination of swallowing and respiration in different seat inclination angles, with liquid and bolus, to provide suggestions and guidelines for the design and develop a feedback-controlled seat angle adjustment device for the back-adjustable wheelchair. Twenty-six participants aged between 15-30 years old without any signs of swallowing difficulty were included. The combination of seat inclinations and food types was randomly assigned, with three repetitions in each combination. The trunk inclination angle was adjusted by a commercialized positioning wheelchair. A total of 36 swallows were done, with at least 30 seconds of rest between each swallow. We used a self-developed wearable device to measure the submandibular muscle surface EMG, the movement of the thyroid cartilage, and the respiratory status of the nasal cavity. Our program auto-analyzed the onset and offset of duration, and the excursion and strength of thyroid cartilage when it was moving, coordination between breathing and swallowing were also included. Variables measured include the EMG duration (DsEMG), swallowing apnea duration (SAD), total excursion time (TET), duration of 2nd deflection, FSR amplitude, Onset latency, DsEMG onset, DsEMG offset, FSR onset, and FSR offset. These measurements were done in four-seat inclination angles (5。, 15。, 30。, 45。) and three food contents (1ml water, 10ml water, and 5ml pudding bolus) for each subject. The data collected between different contents were compared. Descriptive statistics were used to describe the basic features of the data. Repeated measure ANOVAs were used to analyze the differences for the dependent variables in different seat inclination and food content combinations. The results indicated significant differences in seat inclination, mostly between 5。 and 45。, in all variables except FSR amplitude. It also indicated significant differences in food contents almost among all variables. Significant interactions between seat inclination and food contents were only found in FSR offsets. The same protocol will be applied to participants with disabilities. The results of this study would serve as clinical guidance for proper feeding positions with different food contents. The ergonomic data would also provide references for assistive technology professionals and practitioners in device design and development. In summary, the current results indicated that it is easier for a subject to lean backward during swallowing than when sitting upright and swallowing water is easier than swallowing pudding. The results of this study would serve as the clinical guidance for proper feeding position (such as wheelchair back angle adjustment) with different food contents. The same protocol can be applied to elderly participants or participants with physical disabilities. The ergonomic data would also provide references for assistive technology professionals and practitioners in device design and development.Keywords: swallowing, positioning, assistive device, disability
Procedia PDF Downloads 7620376 Artificial Intelligence Based Meme Generation Technology for Engaging Audience in Social Media
Authors: Andrew Kurochkin, Kostiantyn Bokhan
Abstract:
In this study, a new meme dataset of ~650K meme instances was created, a technology of meme generation based on the state of the art deep learning technique - GPT-2 model was researched, a comparative analysis of machine-generated memes and human-created was conducted. We justified that Amazon Mechanical Turk workers can be used for the approximate estimating of users' behavior in a social network, more precisely to measure engagement. It was shown that generated memes cause the same engagement as human memes that produced low engagement in the social network (historically). Thus, generated memes are less engaging than random memes created by humans.Keywords: content generation, computational social science, memes generation, Reddit, social networks, social media interaction
Procedia PDF Downloads 14420375 Efficient Video Compression Technique Using Convolutional Neural Networks and Generative Adversarial Network
Authors: P. Karthick, K. Mahesh
Abstract:
Video has become an increasingly significant component of our digital everyday contact. With the advancement of greater contents and shows of the resolution, its significant volume poses serious obstacles to the objective of receiving, distributing, compressing, and revealing video content of high quality. In this paper, we propose the primary beginning to complete a deep video compression model that jointly upgrades all video compression components. The video compression method involves splitting the video into frames, comparing the images using convolutional neural networks (CNN) to remove duplicates, repeating the single image instead of the duplicate images by recognizing and detecting minute changes using generative adversarial network (GAN) and recorded with long short-term memory (LSTM). Instead of the complete image, the small changes generated using GAN are substituted, which helps in frame level compression. Pixel wise comparison is performed using K-nearest neighbours (KNN) over the frame, clustered with K-means, and singular value decomposition (SVD) is applied for each and every frame in the video for all three color channels [Red, Green, Blue] to decrease the dimension of the utility matrix [R, G, B] by extracting its latent factors. Video frames are packed with parameters with the aid of a codec and converted to video format, and the results are compared with the original video. Repeated experiments on several videos with different sizes, duration, frames per second (FPS), and quality results demonstrate a significant resampling rate. On average, the result produced had approximately a 10% deviation in quality and more than 50% in size when compared with the original video.Keywords: video compression, K-means clustering, convolutional neural network, generative adversarial network, singular value decomposition, pixel visualization, stochastic gradient descent, frame per second extraction, RGB channel extraction, self-detection and deciding system
Procedia PDF Downloads 19120374 High Resolution Image Generation Algorithm for Archaeology Drawings
Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu
Abstract:
Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.Keywords: archaeology drawings, digital heritage, image generation, deep learning
Procedia PDF Downloads 6420373 Method Comprising One to One Web Based Real Time Communications
Authors: Lata Kiran Dey, Rajendra Kumar, Biren Karmakar
Abstract:
Web Real Time Communications is a collection of standards, protocols, which provides real-time communications capabilities between web browsers and devices. This paper outlines the design and further implementation of web real-time communications on secure web applications having audio and video call capabilities. This proposed application may put up a system that will be able to work over both desktops as well as the mobile browser. Though, WebRTC also gives a set of JavaScript standard RTC APIs, which primarily works over the real-time communication framework. This helps to build a suitable communication application, which enables the audio, video, and message transfer in between the today’s modern browsers having WebRTC support.Keywords: WebRTC, SIP, RTC, JavaScript, SRTP, secure web sockets, browser
Procedia PDF Downloads 15420372 A Study of the Relationship between Time Management Behaviour and Job Satisfaction of Higher Education Institutes in India
Authors: Sania K. Rao, Feza T. Azmi
Abstract:
The purpose of the present study is to explore the relationship between time management behaviour and job satisfaction of academicians of higher education institutes in India. The analyses of this study were carried out with AMOS (version 20.0); and Confirmatory Factor Analysis (CFA) and Structural Equation Modelling (SEM) were conducted. The factor analysis and findings show that perceived control of time serves as the partial mediating factor to have a significant and positive influence on job satisfaction. Further, at the end, a number of suggestions to improve one’s time management behaviour were provided.Keywords: time management behaviour, job satisfaction, higher education, India, mediation analysis
Procedia PDF Downloads 39520371 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics
Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin
Abstract:
Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.Keywords: convolutional neural networks, deep learning, shallow correctors, sign language
Procedia PDF Downloads 10320370 Decomposition of Third-Order Discrete-Time Linear Time-Varying Systems into Its Second- and First-Order Pairs
Authors: Mohamed Hassan Abdullahi
Abstract:
Decomposition is used as a synthesis tool in several physical systems. It can also be used for tearing and restructuring, which is large-scale system analysis. On the other hand, the commutativity of series-connected systems has fascinated the interest of researchers, and its advantages have been emphasized in the literature. The presentation looks into the necessary conditions for decomposing any third-order discrete-time linear time-varying system into a commutative pair of first- and second-order systems. Additional requirements are derived in the case of nonzero initial conditions. MATLAB simulations are used to verify the findings. The work is unique and is being published for the first time. It is critical from the standpoints of synthesis and/or design. Because many design techniques in engineering systems rely on tearing and reconstruction, this is the process of putting together simple components to create a finished product. Furthermore, it is demonstrated that regarding sensitivity to initial conditions, some combinations may be better than others. The results of this work can be extended for the decomposition of fourth-order discrete-time linear time-varying systems into lower-order commutative pairs, as two second-order commutative subsystems or one first-order and one third-order commutative subsystems.Keywords: commutativity, decomposition, discrete time-varying systems, systems
Procedia PDF Downloads 11320369 Optimal Location of the I/O Point in the Parking System
Authors: Jing Zhang, Jie Chen
Abstract:
In this paper, we deal with the optimal I/O point location in an automated parking system. In this system, the S/R machine (storage and retrieve machine) travels independently in vertical and horizontal directions. Based on the characteristics of the parking system and the basic principle of AS/RS system (Automated Storage and Retrieval System), we obtain the continuous model in units of time. For the single command cycle using the randomized storage policy, we calculate the probability density function for the system travel time and thus we develop the travel time model. And we confirm that the travel time model shows a good performance by comparing with discrete case. Finally in this part, we establish the optimal model by minimizing the expected travel time model and it is shown that the optimal location of the I/O point is located at the middle of the left-hand above corner.Keywords: parking system, optimal location, response time, S/R machine
Procedia PDF Downloads 41220368 Hybrid Bee Ant Colony Algorithm for Effective Load Balancing and Job Scheduling in Cloud Computing
Authors: Thomas Yeboah
Abstract:
Cloud Computing is newly paradigm in computing that promises a delivery of computing as a service rather than a product, whereby shared resources, software, and information are provided to computers and other devices as a utility (like the electricity grid) over a network (typically the Internet). As Cloud Computing is a newly style of computing on the internet. It has many merits along with some crucial issues that need to be resolved in order to improve reliability of cloud environment. These issues are related with the load balancing, fault tolerance and different security issues in cloud environment.In this paper the main concern is to develop an effective load balancing algorithm that gives satisfactory performance to both, cloud users and providers. This proposed algorithm (hybrid Bee Ant Colony algorithm) is a combination of two dynamic algorithms: Ant Colony Optimization and Bees Life algorithm. Ant Colony algorithm is used in this hybrid Bee Ant Colony algorithm to solve load balancing issues whiles the Bees Life algorithm is used for optimization of job scheduling in cloud environment. The results of the proposed algorithm shows that the hybrid Bee Ant Colony algorithm outperforms the performances of both Ant Colony algorithm and Bees Life algorithm when evaluated the proposed algorithm performances in terms of Waiting time and Response time on a simulator called CloudSim.Keywords: ant colony optimization algorithm, bees life algorithm, scheduling algorithm, performance, cloud computing, load balancing
Procedia PDF Downloads 63420367 Rheolaser: Light Scattering Characterization of Viscoelastic Properties of Hair Cosmetics That Are Related to Performance and Stability of the Respective Colloidal Soft Materials
Authors: Heitor Oliveira, Gabriele De-Waal, Juergen Schmenger, Lynsey Godfrey, Tibor Kovacs
Abstract:
Rheolaser MASTER™ makes use of multiple scattering of light, caused by scattering objects in a continuous medium (such as droplets and particles in colloids), to characterize the viscoelasticity of soft materials. It offers an alternative to conventional rheometers to characterize viscoelasticity of products such as hair cosmetics. Up to six simultaneous measurements at controlled temperature can be carried out simultaneously (10-15 min), and the method requires only minor sample preparation work. Conversely to conventional rheometer based methods, no mechanical stress is applied to the material during the measurements. Therefore, the properties of the exact same sample can be monitored over time, like in aging and stability studies. We determined the elastic index (EI) of water/emulsion mixtures (1 ≤ fat alcohols (FA) ≤ 5 wt%) and emulsion/gel-network mixtures (8 ≤ FA ≤ 17 wt%) and compared with the elastic/sorage mudulus (G’) for the respective samples using a TA conventional rheometer with flat plates geometry. As expected, it was found that log(EI) vs log(G’) presents a linear behavior. Moreover, log(EI) increased in a linear fashion with solids level in the entire range of compositions (1 ≤ FA ≤ 17 wt%), while rheometer measurements were limited to samples down to 4 wt% solids level. Alternatively, a concentric cilinder geometry would be required for more diluted samples (FA > 4 wt%) and rheometer results from different sample holder geometries are not comparable. The plot of the rheolaser output parameters solid-liquid balance (SLB) vs EI were suitable to monitor product aging processes. These data could quantitatively describe some observations such as formation of lumps over aging time. Moreover, this method allowed to identify that the different specifications of a key raw material (RM < 0.4 wt%) in the respective gel-network (GN) product has minor impact on product viscoelastic properties and it is not consumer perceivable after a short aging time. Broadening of a RM spec range typically has a positive impact on cost savings. Last but not least, the photon path length (λ*)—proportional to droplet size and inversely proportional to volume fraction of scattering objects, accordingly to the Mie theory—and the EI were suitable to characterize product destabilization processes (e.g., coalescence and creaming) and to predict product stability about eight times faster than our standard methods. Using these parameters we could successfully identify formulation and process parameters that resulted in unstable products. In conclusion, Rheolaser allows quick and reliable characterization of viscoelastic properties of hair cosmetics that are related to their performance and stability. It operates in a broad range of product compositions and has applications spanning from the formulation of our hair cosmetics to fast release criteria in our production sites. Last but not least, this powerful tool has positive impact on R&D development time—faster delivery of new products to the market—and consequently on cost savings.Keywords: colloids, hair cosmetics, light scattering, performance and stability, soft materials, viscoelastic properties
Procedia PDF Downloads 17620366 Practical Techniques of Improving State Estimator Solution
Authors: Kiamran Radjabli
Abstract:
State Estimator became an intrinsic part of Energy Management Systems (EMS). The SCADA measurements received from the field are processed by the State Estimator in order to accurately determine the actual operating state of the power systems and provide that information to other real-time network applications. All EMS vendors offer a State Estimator functionality in their baseline products. However, setting up and ensuring that State Estimator consistently produces a reliable solution often consumes a substantial engineering effort. This paper provides generic recommendations and describes a simple practical approach to efficient tuning of State Estimator, based on the working experience with major EMS software platforms and consulting projects in many electrical utilities of the USA.Keywords: convergence, monitoring, state estimator, performance, troubleshooting, tuning, power systems
Procedia PDF Downloads 16020365 Time to CT in Major Trauma in Coffs Harbour Health Campus - The Australian Rural Centre Experience
Authors: Thampi Rawther, Jack Cecire, Andrew Sutherland
Abstract:
Introduction: CT facilitates the diagnosis of potentially life-threatening injuries and facilitates early management. There is evidence that reduced CT acquisition time reduces mortality and length of hospital stay. Currently, there are variable recommendations for ideal timing. Indeed, the NHS standard contract for a major trauma service and STAG both recommend immediate access to CT within a maximum time of 60min and appropriate reporting within 60min of the scan. At Coffs Harbour Health Campus (CHHC), a CT radiographer is on site between 8am-11pm. Aim: To investigate the average time to CT at CHHC and assess for any significant relationship between time to CT and injury severity score (ISS) or time of triage. Method: All major trauma calls between Jan 2021-Oct 2021 were audited (N=87). Patients were excluded if they went from ED to the theatre. Time to CT is defined as the time between triage to the timestamp on the first CT image. Median and interquartile range was used as a measure of central tendency as the data was not normally distributed, and Chi-square test was used to determine association. Results: The median time to CT is 51.5min (IQR 40-74). We found no relationship between time to CT and ISS (P=0.18) and time of triage to time to CT (P=0.35). We compared this to other centres such as John Hunter Hospital and Gold Coast Hospital. We found that the median CT acquisition times were 76min (IQR 52-115) and 43min, respectively. Conclusion: This shows an avenue for improvement given 35% of CT’s were >30min. Furthermore, being proactive and aware of time to CT as an important factor to trauma management can be another avenue for improvement. Based on this, we will re-audit in 12-24months to assess if any improvement has been made.Keywords: imaging, rural surgery, trauma surgery, improvement
Procedia PDF Downloads 10520364 Heuristic to Generate Random X-Monotone Polygons
Authors: Kamaljit Pati, Manas Kumar Mohanty, Sanjib Sadhu
Abstract:
A heuristic has been designed to generate a random simple monotone polygon from a given set of ‘n’ points lying on a 2-Dimensional plane. Our heuristic generates a random monotone polygon in O(n) time after O(nℓogn) preprocessing time which is improved over the previous work where a random monotone polygon is produced in the same O(n) time but the preprocessing time is O(k) for n < k < n2. However, our heuristic does not generate all possible random polygons with uniform probability. The space complexity of our proposed heuristic is O(n).Keywords: sorting, monotone polygon, visibility, chain
Procedia PDF Downloads 43120363 Using Data from Foursquare Web Service to Represent the Commercial Activity of a City
Authors: Taras Agryzkov, Almudena Nolasco-Cirugeda, Jose L. Oliver, Leticia Serrano-Estrada, Leandro Tortosa, Jose F. Vicent
Abstract:
This paper aims to represent the commercial activity of a city taking as source data the social network Foursquare. The city of Murcia is selected as case study, and the location-based social network Foursquare is the main source of information. After carrying out a reorganisation of the user-generated data extracted from Foursquare, it is possible to graphically display on a map the various city spaces and venues –especially those related to commercial, food and entertainment sector businesses. The obtained visualisation provides information about activity patterns in the city of Murcia according to the people`s interests and preferences and, moreover, interesting facts about certain characteristics of the town itself.Keywords: social networks, spatial analysis, data visualization, geocomputation, Foursquare
Procedia PDF Downloads 43120362 Modification of Fick’s First Law by Introducing the Time Delay
Authors: H. Namazi, H. T. N. Kuan
Abstract:
Fick's first law relates the diffusive flux to the concentration field, by postulating that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative). It is clear that the diffusion of flux cannot be instantaneous and should be some time delay in this propagation. But Fick’s first law doesn’t consider this delay which results in some errors especially when there is a considerable time delay in the process. In this paper, we introduce a time delay to Fick’s first law. By this modification, we consider that the diffusion of flux cannot be instantaneous. In order to verify this claim an application sample in fluid diffusion is discussed and the results of modified Fick’s first law, Fick’s first law and the experimental results are compared. The results of this comparison stand for the accuracy of the modified model. The modified model can be used in any application where the time delay has considerable value and neglecting its effect reflects in undesirable results.Keywords: Fick's first law, flux, diffusion, time delay, modified Fick’s first law
Procedia PDF Downloads 41120361 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets
Authors: Hui Zhang, Sherif Beskhyroun
Abstract:
Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames
Procedia PDF Downloads 10620360 Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach
Authors: Surajit Chakrabarty, Piyush Chauhan, Subhasis Panda, Sujoy Bhattacharya
Abstract:
A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed.Keywords: deep learning, hidden Markov model, pothole, speed breaker
Procedia PDF Downloads 15220359 Authentic Connection between the Deity and the Individual Human Being Is Vital for Psychological, Biological, and Social Health
Authors: Sukran Karatas
Abstract:
Authentic energy network interrelations between the Creator and the creations as well as from creations to creations are the most important points for the worlds of physics and metaphysic to unite together and work in harmony, both within human beings, on the other hand, have the ability to choose their own life style voluntarily. However, it includes the automated involuntary spirit, soul and body working systems together with the voluntary actions, which involve personal, cultural and universal, rational or irrational variable values. Therefore, it is necessary for human beings to know the methods of existing authentic energy network connections to be able to communicate correlate and accommodate the physical and metaphysical entities as a proper functioning unity; this is essential for complete human psychological, biological and social well-being. Authentic knowledge is necessary for human beings to verify the position of self within self and with others to regulate conscious and voluntary actions accordingly in order to prevent oppressions and frictions within self and between self and others. Unfortunately, the absence of genuine individual and universal basic knowledge about how to establish an authentic energy network connection within self, with the deity and the environment is the most problematic issue even in the twenty-first century. The second most problematic issue is how to maintain freedom, equality and justice among human beings during these strictly interwoven network connections, which naturally involve physical, metaphysical and behavioral actions of the self and the others. The third and probably the most complicated problem is the scientific identification and the authentication of the deity. This not only provides the whole power and control over the choosers to set their life orders but also to establish perfect physical and metaphysical links as fully coordinated functional energy network. This thus indicates that choosing an authentic deity is the key-point that influences automated, emotional, and behavioral actions altogether, which shapes human perception, personal actions, and life orders. Therefore, we will be considering the existing ‘four types of energy wave end boundary behaviors’, comprising, free end, fixed end boundary behaviors, as well as boundary behaviors from denser medium to less dense medium and from less dense medium to denser medium. Consequently, this article aims to demonstrate that the authentication and the choice of deity has an important effect on individual psychological, biological and social health. It is hoped that it will encourage new researches in the field of authentic energy network connections to establish the best position and the most correct interrelation connections with self and others without violating the authorized orders and the borders of one another to live happier and healthier lives together. In addition, the book ‘Deity and Freedom, Equality, Justice in History, Philosophy, Science’ has more detailed information for those interested in this subject.Keywords: deity, energy network, power, freedom, equality, justice, happiness, sadness, hope, fear, psychology, biology, sociology
Procedia PDF Downloads 34920358 Financial Intermediation: A Transaction Two-Sided Market Model Approach
Authors: Carlo Gozzelino
Abstract:
Since the early 2000s, the phenomenon of the two-sided markets has been of growing interest in academic literature as such kind of markets differs by having cross-side network effects and same-side network effects characterizing the transactions, which make the analysis different when compared to traditional seller-buyer concept. Due to such externalities, pricing strategies can be based on subsidizing the participation of one side (i.e. considered key for the platform to attract the other side) while recovering the loss on the other side. In recent years, several players of the Italian financial intermediation industry moved from an integrated landscape (i.e. selling their own products) to an open one (i.e. intermediating third party products). According to academic literature such behavior can be interpreted as a merchant move towards a platform, operating in a two-sided market environment. While several application of two-sided market framework are available in academic literature, purpose of this paper is to use a two-sided market concept to suggest a new framework applied to financial intermediation. To this extent, a model is developed to show how competitors behave when vertically integrated and how the peculiarities of a two-sided market act as an incentive to disintegrate. Additionally, we show that when all players act as a platform, the dynamics of a two-sided markets can allow at least a Nash equilibrium to exist, in which platform of different sizes enjoy positive profit. Finally, empirical evidences from Italian market are given to sustain – and to challenge – this interpretation.Keywords: financial intermediation, network externalities, two-sided markets, vertical differentiation
Procedia PDF Downloads 16220357 Consumption and Diffusion Based Model of Tissue Organoid Development
Authors: Elena Petersen, Inna Kornienko, Svetlana Guryeva, Sergey Simakov
Abstract:
In vitro organoid cultivation requires the simultaneous provision of necessary vascularization and nutrients perfusion of cells during organoid development. However, many aspects of this problem are still unsolved. The functionality of vascular network intergrowth is limited during early stages of organoid development since a function of the vascular network initiated on final stages of in vitro organoid cultivation. Therefore, a microchannel network should be created in early stages of organoid cultivation in hydrogel matrix aimed to conduct and maintain minimally required the level of nutrients perfusion for all cells in the expanding organoid. The network configuration should be designed properly in order to exclude hypoxic and necrotic zones in expanding organoid at all stages of its cultivation. In vitro vascularization is currently the main issue within the field of tissue engineering. As perfusion and oxygen transport have direct effects on cell viability and differentiation, researchers are currently limited only to tissues of few millimeters in thickness. These limitations are imposed by mass transfer and are defined by the balance between the metabolic demand of the cellular components in the system and the size of the scaffold. Current approaches include growth factor delivery, channeled scaffolds, perfusion bioreactors, microfluidics, cell co-cultures, cell functionalization, modular assembly, and in vivo systems. These approaches may improve cell viability or generate capillary-like structures within a tissue construct. Thus, there is a fundamental disconnect between defining the metabolic needs of tissue through quantitative measurements of oxygen and nutrient diffusion and the potential ease of integration into host vasculature for future in vivo implantation. A model is proposed for growth prognosis of the organoid perfusion based on joint simulations of general nutrient diffusion, nutrient diffusion to the hydrogel matrix through the contact surfaces and microchannels walls, nutrient consumption by the cells of expanding organoid, including biomatrix contraction during tissue development, which is associated with changed consumption rate of growing organoid cells. The model allows computing effective microchannel network design giving minimally required the level of nutrients concentration in all parts of growing organoid. It can be used for preliminary planning of microchannel network design and simulations of nutrients supply rate depending on the stage of organoid development.Keywords: 3D model, consumption model, diffusion, spheroid, tissue organoid
Procedia PDF Downloads 31020356 The Morphogenesis of an Informal Settlement: An Examination of Street Networks through the Informal Development Stages Framework
Authors: Judith Margaret Tymon
Abstract:
As cities struggle to incorporate informal settlements into the fabric of urban areas, the focus has often been on the provision of housing. This study explores the underlying structure of street networks, with the goal of understanding the morphogenesis of informal settlements through the lens of the access network. As the stages of development progress from infill to consolidation and eventually, to a planned in-situ settlement, the access networks retain the form of the core segments; however, a majority of street patterns are adapted to a grid design to support infrastructure in the final upgraded phase. A case study is presented to examine the street network in the informal settlement of Gobabis Namibia as it progresses from its initial stages to a planned, in-situ, and permanently upgraded development. The Informal Development Stages framework of foundation, infill, and consolidation, as developed by Dr. Jota Samper, is utilized to examine the evolution of street networks. Data is gathered from historical Google Earth satellite images for the time period between 2003 and 2022. The results demonstrate that during the foundation through infill stages, incremental changes follow similar patterns, with pathways extended, lengthened, and densified as housing is created and the settlement grows. In the final stage of consolidation, the resulting street layout is transformed to support the installation of infrastructure; however, some elements of the original street patterns remain. The core pathways remain intact to accommodate the installation of infrastructure and the creation of housing plots, defining the shape of the settlement and providing the basis of the urban form. The adaptations, growth, and consolidation of the street network are critical to the eventual formation of the spatial layout of the settlement. This study will include a comparative analysis of findings with those of recent research performed by Kamalipour, Dovey, and others regarding incremental urbanism within informal settlements. Further comparisons will also include studies of street networks of well-established urban centers that have shown links between the morphogenesis of access networks and the eventual spatial layout of the city. The findings of the study can be used to guide and inform strategies for in-situ upgrading and can contribute to the sustainable development of informal settlements.Keywords: Gobabis Namibia, incremental urbanism, informal development stages, informal settlements, street networks
Procedia PDF Downloads 6820355 An Enhanced Hybrid Backoff Technique for Minimizing the Occurrence of Collision in Mobile Ad Hoc Networks
Authors: N. Sabiyath Fatima, R. K. Shanmugasundaram
Abstract:
In Mobile Ad-hoc Networks (MANETS), every node performs both as transmitter and receiver. The existing backoff models do not exactly forecast the performance of the wireless network. Also, the existing models experience elevated packet collisions. Every time a collision happens, the station’s contention window (CW) is doubled till it arrives at the utmost value. The main objective of this paper is to diminish collision by means of contention window Multiplicative Increase Decrease Backoff (CWMIDB) scheme. The intention of rising CW is to shrink the collision possibility by distributing the traffic into an outsized point in time. Within wireless Ad hoc networks, the CWMIDB algorithm dynamically controls the contention window of the nodes experiencing collisions. During packet communication, the backoff counter is evenly selected from the given choice of [0, CW-1]. At this point, CW is recognized as contention window and its significance lies on the amount of unsuccessful transmission that had happened for the packet. On the initial transmission endeavour, CW is put to least amount value (C min), if transmission effort fails, subsequently the value gets doubled, and once more the value is set to least amount on victorious broadcast. CWMIDB is simulated inside NS2 environment and its performance is compared with Binary Exponential Backoff Algorithm. The simulation results show improvement in transmission probability compared to that of the existing backoff algorithm.Keywords: backoff, contention window, CWMIDB, MANET
Procedia PDF Downloads 28220354 Achieving Product Robustness through Variation Simulation: An Industrial Case Study
Authors: Narendra Akhadkar, Philippe Delcambre
Abstract:
In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication.Keywords: geometrical variation, product robustness, tolerance analysis, variation simulation
Procedia PDF Downloads 17020353 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 13720352 Game of Funds: Efficiency and Policy Implications of the United Kingdom Research Excellence Framework
Authors: Boon Lee
Abstract:
Research publication is an essential output of universities because it not only promotes university recognition, it also receives government funding. The history of university research culture has been one of ‘publish or perish’ and universities have consistently encouraged their academics and researchers to produce research articles in reputable journals in order to maintain a level of competitiveness. In turn, the United Kingdom (UK) government funding is determined by the number and quality of research publications. This paper aims to investigate on whether more government funding leads to more quality papers. To that end, the paper employs a Network DEA model to evaluate the UK higher education performance over a period. Sources of efficiency are also determined via second stage regression analysis.Keywords: efficiency, higher education, network data envelopment analysis, universities
Procedia PDF Downloads 11920351 Analysis and Identification of Different Factors Affecting Students’ Performance Using a Correlation-Based Network Approach
Authors: Jeff Chak-Fu Wong, Tony Chun Yin Yip
Abstract:
The transition from secondary school to university seems exciting for many first-year students but can be more challenging than expected. Enabling instructors to know students’ learning habits and styles enhances their understanding of the students’ learning backgrounds, allows teachers to provide better support for their students, and has therefore high potential to improve teaching quality and learning, especially in any mathematics-related courses. The aim of this research is to collect students’ data using online surveys, to analyze students’ factors using learning analytics and educational data mining and to discover the characteristics of the students at risk of falling behind in their studies based on students’ previous academic backgrounds and collected data. In this paper, we use correlation-based distance methods and mutual information for measuring student factor relationships. We then develop a factor network using the Minimum Spanning Tree method and consider further study for analyzing the topological properties of these networks using social network analysis tools. Under the framework of mutual information, two graph-based feature filtering methods, i.e., unsupervised and supervised infinite feature selection algorithms, are used to analyze the results for students’ data to rank and select the appropriate subsets of features and yield effective results in identifying the factors affecting students at risk of failing. This discovered knowledge may help students as well as instructors enhance educational quality by finding out possible under-performers at the beginning of the first semester and applying more special attention to them in order to help in their learning process and improve their learning outcomes.Keywords: students' academic performance, correlation-based distance method, social network analysis, feature selection, graph-based feature filtering method
Procedia PDF Downloads 13620350 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models
Authors: Keyi Wang
Abstract:
Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.Keywords: deep learning, hand gesture recognition, computer vision, image processing
Procedia PDF Downloads 146