Search results for: radio signal service
3714 The Impact of Institutional and Organizational Change on Social Housing Organizations and Their Stakeholders
Authors: Farnoosh Faal
Abstract:
Institutional and organizational change in social housing organizations can have a significant impact on both the organizations themselves and their stakeholders. This paper provides an overview of the impact of institutional and organizational change on social housing organizations and their stakeholders, including tenants, employees, and other community members. The paper examines the different types of institutional and organizational change that can occur in social housing organizations, such as changes in management structure, funding models, and service delivery methods. It also explores the potential benefits and drawbacks of these changes, including changes in efficiency, service quality, and tenant satisfaction. The paper further discusses the impact of institutional and organizational change on social housing organization stakeholders, including the effects on employee morale, tenant engagement, and community relationships. The paper highlights the importance of effective stakeholder engagement and communication in ensuring a smooth transition to new organizational models and systems. Finally, the paper discusses the challenges and opportunities presented by institutional and organizational change in social housing organizations and provides recommendations for organizations looking to navigate these changes successfully. These recommendations include prioritizing stakeholder engagement, investing in staff training and development, and maintaining a focus on the needs and priorities of tenants and communities. Overall, this paper emphasizes the importance of considering the impact of institutional and organizational change on social housing organizations and their stakeholders and highlights strategies for managing these changes in a way that maximizes benefits and minimizes negative impacts.Keywords: social housing organizations, stakeholder engagement, institutional change, challenges, opportunities
Procedia PDF Downloads 863713 Of an 80 Gbps Passive Optical Network Using Time and Wavelength Division Multiplexing
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Faizan Khan, Xiaodong Yang
Abstract:
Internet Service Providers are driving endless demands for higher bandwidth and data throughput as new services and applications require higher bandwidth. Users want immediate and accurate data delivery. This article focuses on converting old conventional networks into passive optical networks based on time division and wavelength division multiplexing. The main focus of this research is to use a hybrid of time-division multiplexing and wavelength-division multiplexing to improve network efficiency and performance. In this paper, we design an 80 Gbps Passive Optical Network (PON), which meets the need of the Next Generation PON Stage 2 (NGPON2) proposed in this paper. The hybrid of the Time and Wavelength division multiplexing (TWDM) is said to be the best solution for the implementation of NGPON2, according to Full-Service Access Network (FSAN). To co-exist with or replace the current PON technologies, many wavelengths of the TWDM can be implemented simultaneously. By utilizing 8 pairs of wavelengths that are multiplexed and then transmitted over optical fiber for 40 Kms and on the receiving side, they are distributed among 256 users, which shows that the solution is reliable for implementation with an acceptable data rate. From the results, it can be concluded that the overall performance, Quality Factor, and bandwidth of the network are increased, and the Bit Error rate is minimized by the integration of this approach.Keywords: bit error rate, fiber to the home, passive optical network, time and wavelength division multiplexing
Procedia PDF Downloads 703712 Design and Creation of a BCI Videogame for Training and Measure of Sustained Attention in Children with ADHD
Authors: John E. Muñoz, Jose F. Lopez, David S. Lopez
Abstract:
Attention Deficit Hyperactivity Disorder (ADHD) is a disorder that affects 1 out of 5 Colombian children, converting into a real public health problem in the country. Conventional treatments such as medication and neuropsychological therapy have been proved to be insufficient in order to decrease high incidence levels of ADHD in the principal Colombian cities. This work demonstrates a design and development of a videogame that uses a brain computer interface not only to serve as an input device but also as a tool to monitor neurophysiologic signal. The video game named “The Harvest Challenge” puts a cultural scene of a Colombian coffee grower in its context, where a player can use his/her avatar in three mini games created in order to reinforce four fundamental aspects: i) waiting ability, ii) planning ability, iii) ability to follow instructions and iv) ability to achieve objectives. The details of this collaborative designing process of the multimedia tool according to the exact clinic necessities and the description of interaction proposals are presented through the mental stages of attention and relaxation. The final videogame is presented as a tool for sustained attention training in children with ADHD using as an action mechanism the neuromodulation of Beta and Theta waves through an electrode located in the central part of the front lobe of the brain. The processing of an electroencephalographic signal is produced automatically inside the videogame allowing to generate a report of the theta/beta ratio evolution - a biological marker, which has been demonstrated to be a sufficient measure to discriminate of children with deficit and without.Keywords: BCI, neuromodulation, ADHD, videogame, neurofeedback, theta/beta ratio
Procedia PDF Downloads 3713711 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization
Authors: Subhajit Das, Nirjhar Dhang
Abstract:
Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization
Procedia PDF Downloads 2153710 Detection of Alzheimer's Protein on Nano Designed Polymer Surfaces in Water and Artificial Saliva
Authors: Sevde Altuntas, Fatih Buyukserin
Abstract:
Alzheimer’s disease is responsible for irreversible neural damage of brain parts. One of the disease markers is Amyloid-β 1-42 protein that accumulates in the brain in the form plaques. The basic problem for detection of the protein is the low amount of protein that cannot be detected properly in body liquids such as blood, saliva or urine. To solve this problem, tests like ELISA or PCR are proposed which are expensive, require specialized personnel and can contain complex protocols. Therefore, Surface-enhanced Raman Spectroscopy (SERS) a good candidate for detection of Amyloid-β 1-42 protein. Because the spectroscopic technique can potentially allow even single molecule detection from liquid and solid surfaces. Besides SERS signal can be improved by using nanopattern surface and also is specific to molecules. In this context, our study proposes to fabricate diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin - T to detect low concentrations of Amyloid-β 1-42 protein in water and artificial saliva medium by the enhancement of protein SERS signal. The nanopatterned PC surface that was used to enhance SERS signal was fabricated by using Anodic Alumina Membranes (AAM) as a template. It is possible to produce AAMs with different column structures and varying thicknesses depending on voltage and anodization time. After fabrication process, the pore diameter of AAMs can be arranged with dilute acid solution treatment. In this study, two different columns structures were prepared. After a surface modification to decrease their surface energy, AAMs were treated with PC solution. Following the solvent evaporation, nanopatterned PC films with tunable pillared structures were peeled off from the membrane surface. The PC film was then modified with Au and Thioflavin-T for the detection of Amyloid-β 1-42 protein. The protein detection studies were conducted first in water via this biosensor platform. Same measurements were conducted in artificial saliva to detect the presence of Amyloid Amyloid-β 1-42 protein. SEM, SERS and contact angle measurements were carried out for the characterization of different surfaces and further demonstration of the protein attachment. SERS enhancement factor calculations were also completed via experimental results. As a result, our research group fabricated diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin-T to detect low concentrations of Alzheimer’s Amiloid – β protein in water and artificial saliva medium. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Grant No: 214Z167.Keywords: alzheimer, anodic aluminum oxide, nanotopography, surface enhanced Raman spectroscopy
Procedia PDF Downloads 2913709 MRI Quality Control Using Texture Analysis and Spatial Metrics
Authors: Kumar Kanudkuri, A. Sandhya
Abstract:
Typically, in a MRI clinical setting, there are several protocols run, each indicated for a specific anatomy and disease condition. However, these protocols or parameters within them can change over time due to changes to the recommendations by the physician groups or updates in the software or by the availability of new technologies. Most of the time, the changes are performed by the MRI technologist to account for either time, coverage, physiological, or Specific Absorbtion Rate (SAR ) reasons. However, giving properly guidelines to MRI technologist is important so that they do not change the parameters that negatively impact the image quality. Typically a standard American College of Radiology (ACR) MRI phantom is used for Quality Control (QC) in order to guarantee that the primary objectives of MRI are met. The visual evaluation of quality depends on the operator/reviewer and might change amongst operators as well as for the same operator at various times. Therefore, overcoming these constraints is essential for a more impartial evaluation of quality. This makes quantitative estimation of image quality (IQ) metrics for MRI quality control is very important. So in order to solve this problem, we proposed that there is a need for a robust, open-source, and automated MRI image control tool. The Designed and developed an automatic analysis tool for measuring MRI image quality (IQ) metrics like Signal to Noise Ratio (SNR), Signal to Noise Ratio Uniformity (SNRU), Visual Information Fidelity (VIF), Feature Similarity (FSIM), Gray level co-occurrence matrix (GLCM), slice thickness accuracy, slice position accuracy, High contrast spatial resolution) provided good accuracy assessment. A standardized quality report has generated that incorporates metrics that impact diagnostic quality.Keywords: ACR MRI phantom, MRI image quality metrics, SNRU, VIF, FSIM, GLCM, slice thickness accuracy, slice position accuracy
Procedia PDF Downloads 1703708 Routing and Energy Efficiency through Data Coupled Clustering in Large Scale Wireless Sensor Networks (WSNs)
Authors: Jainendra Singh, Zaheeruddin
Abstract:
A typical wireless sensor networks (WSNs) consists of several tiny and low-power sensors which use radio frequency to perform distributed sensing tasks. The longevity of wireless sensor networks (WSNs) is a major issue that impacts the application of such networks. While routing protocols are striving to save energy by acting on sensor nodes, recent studies show that network lifetime can be enhanced by further involving sink mobility. A common approach for energy efficiency is partitioning the network into clusters with correlated data, where the representative nodes simply transmit or average measurements inside the cluster. In this paper, we propose an energy- efficient homogenous clustering (EHC) technique. In this technique, the decision of each sensor is based on their residual energy and an estimate of how many of its neighboring cluster heads (CHs) will benefit from it being a CH. We, also explore the routing algorithm in clustered WSNs. We show that the proposed schemes significantly outperform current approaches in terms of packet delay, hop count and energy consumption of WSNs.Keywords: wireless sensor network, energy efficiency, clustering, routing
Procedia PDF Downloads 2653707 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI
Authors: James Rigor Camacho, Wansu Lim
Abstract:
Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors
Procedia PDF Downloads 1053706 Improvements of the Difficulty in Hospital Acceptance at the Scene by the Introduction of Smartphone Application for Emergency-Medical-Service System: A Population-Based Before-And-After Observation Study in Osaka City, Japan
Authors: Yusuke Katayama, Tetsuhisa Kitamura, Kosuke Kiyohara, Sumito Hayashida, Taku Iwami, Takashi Kawamura, Takeshi Shimazu
Abstract:
Background: Recently, the number of ambulance dispatches has been increasing in Japan and it is, therefore, difficult to accept emergency patients to hospitals smoothly and appropriately because of the limited hospital capacity. To facilitate the request for patient transport by ambulances and hospital acceptance, the emergency information system using information technology has been built up and introduced in various communities. However, its effectiveness has not been insufficiently revealed in Japan. In 2013, we developed a smartphone application system that enables the emergency-medical-service (EMS) personnel to share information about on-scene ambulance and hospital situation. The aim of this study was to assess the introduction effect of this application for EMS system in Osaka City, Japan. Methods: This study was a retrospective study with population-based ambulance records of Osaka Municipal Fire Department. This study period was six years from January 1, 2010 to December 31, 2015. In this study, we enrolled emergency patients that on-scene EMS personnel conducted the hospital selection for them. The main endpoint was difficulty in hospital acceptance at the scene. The definition of difficulty in hospital acceptance at the scene was to make >=5 phone calls by EMS personnel at the scene to each hospital until a decision to transport was determined. The definition of the smartphone application group was emergency patients transported in the period of 2013-2015 after the introduction of this application, and we assessed the introduction effect of smartphone application with multivariable logistic regression model. Results: A total of 600,526 emergency patients for whom EMS personnel selected hospitals were eligible for our analysis. There were 300,131 smartphone application group (50.0%) in 2010-2012 and 300,395 non-smartphone application group (50.0%) in 2013-2015. The proportion of the difficulty in hospital acceptance was 14.2% (42,585/300,131) in the smartphone application group and 10.9% (32,819/300,395) in the non-smartphone application group, and the difficulty in hospital acceptance significantly decreased by the introduction of the smartphone application (adjusted odds ration; 0.730, 95% confidence interval; 0.718-0.741, P<0.001). Conclusions: Sharing information between ambulance and hospital by introducing smartphone application at the scene was associated with decreasing the difficulty in hospital acceptance. Our findings may be considerable useful for developing emergency medical information system with using IT in other areas of the world.Keywords: difficulty in hospital acceptance, emergency medical service, infomation technology, smartphone application
Procedia PDF Downloads 2743705 Performance Analysis of a Hybrid Channel for Foglet Assisted Smart Asset Reporting
Authors: Hasan Farahneh
Abstract:
Smart asset management along roadsides and in deserted areas is a topic of deprived attention. We find most of the work in emergency reporting services in intelligent transportation systems (ITS) and rural areas but not much in asset reporting. Currently, available asset management mechanisms are based on scheduled maintenance and do not effectively report any emergency situation in a timely manner. This paper is the continuation of our previous work, in which we proposed the usage of Foglets and VLC link between smart vehicles and road side assets. In this paper, we propose a hybrid communication system for asset management and emergency reporting architecture for smart transportation. We incorporate Foglets along with visible light communication (VLC) and radio frequency (RF) communication. We present the channel model and parameters of a hybrid model to support an intelligent transportation system (ITS) system. Simulations show high improvement in the system performance in terms of communication range and received data. We present a comparative analysis of a hybrid ITS system.Keywords: Internet of Things, Foglets, VLC, RF, smart vehicle, roadside asset management
Procedia PDF Downloads 1333704 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction
Authors: Yan Zhang
Abstract:
Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.Keywords: Internet of Things, machine learning, predictive maintenance, streaming data
Procedia PDF Downloads 3863703 Translation, War and Humanitarian Action: A Case Study of the Kindertransporte to Switzerland
Authors: Lisa Mockli, Chelsea Sambells
Abstract:
By combining the methodologies of history and translation studies, this study will explore the interplay between humanitarian action, politics, and translation within the advertising for a lesser-known Swiss child evacuation project of some 60.000 Belgium and French children to Switzerland for three month periods from 1940 to 1945. Inspired by Descriptive-Explanatory Translation Studies, this project compares Swiss speeches published between May and September 1942 (the termination of the evacuations). Radio broadcasts, leaflets and newspapers will triangulate the data. First, linguistic and content-related differences will be identified and described. Second, based on findings from the Swiss Federal Archives, the evidence from the comparative textual analysis will then be evaluated in order to explore how the speeches were modified, for what purpose, and which key issues were raised during their modification. By exploring these questions, this paper provides new insights into (I) Switzerland’s understanding of Swiss neutrality and humanitarianism during the Second World War, (II) the role of children in war and (III) the role of translation in shaping political discourse and humanitarian action. Moreover, this interdisciplinary approach also demonstrates how scholarly collaboration may help to make some elements of humanitarian action more self-reflexive and effective.Keywords: children, history, humanitarianism, politics, translation
Procedia PDF Downloads 2953702 The Relationship between Employee Commitment, Job Satisfaction and External Market Orientation in Vietnamese Joint-Stock Commercial Banks
Authors: Nguyen Ngoc Que Tran
Abstract:
Purpose: The purpose of this paper is to investigate the relationship between internal market orientation, external market orientation, employee commitment and job satisfaction. Design/methodology/approach: This study collected data through a survey and utilized simple linear regression and multiple regression analysis to determine if there was any support for the research hypotheses as presented in the previous chapter. Findings: Using data from 256 employees of four leading joint stock banks in Vietnam, the empirical results indicates that employee commitment is positively related with external market orientation, job satisfaction is positively related to employee commitment, and employee commitment and job satisfaction are positively related to external market orientation. However, job satisfaction has no significant positive effect on external market orientation. Theoretical contribution: The primary contribution to marketing theory arising from this study is the integration of job satisfaction, employee commitment, and external market orientation in a single research model. Practical implications: The major contribution to practice is an external market oriented bank has to respond rapidly to the future needs and preferences of its customers. This could result in high levels of commitment to the service process and in doing so provide Vietnamese joint-stock commercial banks with a competitive advantage. The finding is important for the banking service sector in general and the Vietnamese banking industry in particular.Keywords: employee commitment, job satisfaction and external market orientation, vietnam, bank
Procedia PDF Downloads 4153701 Assessment of Food Safety Culture in Select Restaurants and a Produce Market in Doha, Qatar
Authors: Ipek Goktepe, Israa Elnemr, Hammad Asim, Hao Feng, Mosbah Kushad, Hee Park, Sheikha Alzeyara, Mohammad Alhajri
Abstract:
Food safety management in Qatar is under the shared oversight of multiple agencies in two government ministries (Ministry of Public Health and Ministry of Municipality and Environment). Despite the increasing number and diversity of the food service establishments, no systematic food surveillance system is in place in the country, which creates a gap in terms of determining the food safety attitudes and practices applied in the food service operations. Therefore, this study seeks to partially address this gap through determination of food safety knowledge among food handlers, specifically with respect to food preparation and handling practices, and sanitation methods applied in food service providers (FSPs) and a major market in Doha, Qatar. The study covered a sample of 53 FSPs randomly selected out of 200 FSPs. Face-to-face interviews with managers at participating FSPs were conducted using a 40-questions survey. Additionally, 120 produce handlers who are in direct contact with fresh produce at the major produce market in Doha were surveyed using a questionnaire containing 21 questions. A written informed consent was obtained from each survey participant. The survey data were analyzed using the chi-square test and correlation test. The significance was evaluated at p ˂ 0.05. The results from the FSPs surveys indicated that the average age of FSPs was 11 years, with the oldest and newest being established in 1982 and 2015, respectively. Most managers (66%) had college degree and 68% of them were trained on the food safety management system known as HACCP. These surveys revealed that FSP managers’ training and education level were highly correlated with the probability of their employees receiving food safety training while managers with lower education level had no formal training on food safety for themselves nor for their employees. Casual sit-in and fine dine-in restaurants consistently kept records (100%), followed by fast food (36%), and catering establishments (14%). The produce handlers’ survey results showed that none of the workers had any training on safe produce handling practices. The majority of the workers were in the age range of 31-40 years (37%) and only 38% of them had high-school degree. Over 64% of produce handlers claimed to wash their hands 4-5 times per day but field observations pointed limited handwashing as there was soap in the settings. This observation suggests potential food safety risks since a significant correlation (p ˂ 0.01) between the educational level and the hand-washing practices was determined. This assessment on food safety culture through determination of food and produce handlers' level of knowledge and practices, the first of its kind in Qatar, demonstrated that training and education are important factors which directly impact the food safety culture in FSPs and produce markets. These findings should help in identifying the need for on-site training of food handlers for effective food safety practices in food establishments in Qatar.Keywords: food safety, food safety culture, food service providers, food handlers
Procedia PDF Downloads 3403700 Celebrity Culture and Social Role of Celebrities in Türkiye during the 1990s: The Case of Türkiye, Newspaper, Radio, Televison (TGRT) Channel
Authors: Yelda Yenel, Orkut Acele
Abstract:
In a media-saturated world, celebrities have become ubiquitous figures, encountered both in public spaces and within the privacy of our homes, seamlessly integrating into daily life. From Alexander the Great to contemporary media personalities, the image of celebrity has persisted throughout history, manifesting in various forms and contexts. Over time, as the relationship between society and the market evolved, so too did the roles and behaviors of celebrities. These transformations offer insights into the cultural climate, revealing shifts in habits and worldviews. In Türkiye, the emergence of private television channels brought an influx of celebrities into everyday life, making them a pervasive part of daily routines. To understand modern celebrity culture, it is essential to examine the ideological functions of media within political, economic, and social contexts. Within this framework, celebrities serve as both reflections and creators of cultural values and, at times, act as intermediaries, offering insights into the society of their era. Starting its broadcasting life in 1992 with religious films and religious conversation, Türkiye Newspaper, Radio, Television channel (TGRT) later changed its appearance, slogan, and the celebrities it featured in response to the political atmosphere. Celebrities played a critical role in transforming from the existing slogan 'Peace has come to the screen' to 'Watch and see what will happen”. Celebrities hold significant roles in society, and their images are produced and circulated by various actors, including media organizations and public relations teams. Understanding these dynamics is crucial for analyzing their influence and impact. This study aims to explore Turkish society in the 1990s, focusing on TGRT and its visual and discursive characteristics regarding celebrity figures such as Seda Sayan. The first section examines the historical development of celebrity culture and its transformations, guided by the conceptual framework of celebrity studies. The complex and interconnected image of celebrity, as introduced by post-structuralist approaches, plays a fundamental role in making sense of existing relationships. This section traces the existence and functions of celebrities from antiquity to the present day. The second section explores the economic, social, and cultural contexts of 1990s Türkiye, focusing on the media landscape and visibility that became prominent in the neoliberal era following the 1980s. This section also discusses the political factors underlying TGRT's transformation, such as the 1997 military memorandum. The third section analyzes TGRT as a case study, focusing on its significance as an Islamic television channel and the shifts in its public image, categorized into two distinct periods. The channel’s programming, which aligned with Islamic teachings, and the celebrities who featured prominently during these periods became the public face of both TGRT and the broader society. In particular, the transition to a more 'secular' format during TGRT's second phase is analyzed, focusing on changes in celebrity attire and program formats. This study reveals that celebrities are used as indicators of ideology, benefiting from this instrumentalization by enhancing their own fame and reflecting the prevailing cultural hegemony in society.Keywords: celebrity culture, media, neoliberalism, TGRT
Procedia PDF Downloads 303699 Constructing Evaluation Indicators for the Supply of Urban-Friendly Shelters from the Perspective of the Needs of the Elderly People in Taiwan
Authors: Chuan-Ming Tung, Tzu-Chiao Yuan
Abstract:
This research aims to construct the supply indicators and weights of shelter space from a perspective of the needs of the elderly by virtue of literature review, a systematical compilation of related regulations, and the use of the Analytical Hierarchy Process method, the questionnaires regarding the indicators filled out by 16 experts and scholars. The researcher then used 3 schools and 2 activity centers in Banqiao District, New Taipei City, as study cases to evaluate the ‘friendliness’ degree/level for the supply of shelters meeting the needs of elderly people. The supply evaluation indicators of friendly shelters meeting the needs of the elderly include "Administrative Operations and Service Needs" and "Residence-related and Living Needs"; under the "Administrative Operations and Service Needs" are "Management Operations and Information Provision", "Shelter Space Preparedness and Logistics Support", "Medical Care and Social Support", and "Shelters and Medical Environment", a total of 17 assessment items in four indicators, while under the "Residence-related and Living Needs" are "Dietary Needs", "Sleep Needs", "Hygiene and Sanitation Needs", "Accessibility and Convenience Needs ", etc., a total of 18 assessment items in four indicators. The results show that "Residence-related and Living Needs" is the most important item in the main levels of the supply indicators of the needs for friendly shelters to elderly people (weigh value 0.5504), followed by "Administrative Operations and Service Needs" (0.4496). The order of importance of the supply indicators of friendly shelters for the needs of elderly people is as follows: "Hygiene and Sanitation Needs" (0.1721), "Dietary Needs" (0.1340), "Medical Care and Social Support" (0.1300), "Sleep Needs" (0.1277), "Accessibility and Convenience Needs" (0.1166), "Basic Environment of Shelters" (0.1145), "Shelter Space Preparedness and Logistics Support" (0.1115) and "Management Operations and Information Provision" (0.0936). In addition, it can be noticed from the results of the case evaluation that the provision of refuges and shelters, mainly from schools and activity centers, is extremely inadequate for the needs of the elderly. In a set of comprehensive comparisons and contrasts, the evaluation indicators of refuges and shelters that need to be improved are "Medical Care and Social Support", "Hygiene and Sanitation Needs", "Sleep Needs", "Dietary Needs", and "Shelter Space Preparedness and Logistics Support".Keywords: needs of the elderly people, urban shelters, evaluation indicators/indices., taiwan
Procedia PDF Downloads 803698 Global News Coverage of the Pandemic: Towards an Ethical Framework for Media Professionalism
Authors: Anantha S. Babbili
Abstract:
This paper analyzes the current media practices dominant in global journalistic practices within the framework of world press theories of Libertarian, Authoritarian, Communist, and Social Responsibility to evaluate their efficacy in addressing their role in the coverage of the coronavirus, also known as COVID-19. The global media flows, determinants of news coverage, and international awareness and the Western view of the world will be critically analyzed within the context of the prevalent news values that underpin free press and media coverage of the world. While evaluating the global discourse paramount to a sustained and dispassionate understanding of world events, this paper proposes an ethical framework that brings clarity devoid of sensationalism, partisanship, right-wing and left-wing interpretations to a breaking and dangerous development of a pandemic. As the world struggles to contain the coronavirus pandemic with death climbing close to 6,000 from late January to mid-March, 2020, the populations of the developed as well as the developing nations are beset with news media renditions of the crisis that are contradictory, confusing and evoking anxiety, fear and hysteria. How are we to understand differing news standards and news values? What lessons do we as journalism and mass media educators, researchers, and academics learn in order to construct a better news model and structure of media practice that addresses science, health, and media literacy among media practitioners, journalists, and news consumers? As traditional media struggles to cover the pandemic to its audience and consumers, social media from which an increasing number of consumers get their news have exerted their influence both in a positive way and in a negative manner. Even as the world struggles to grasp the full significance of the pandemic, the World Health Organization (WHO) has been feverishly battling an additional challenge related to the pandemic in what it termed an 'infodemic'—'an overabundance of information, some accurate and some not, that makes it hard for people to find trustworthy sources and reliable guidance when they need it.' There is, indeed, a need for journalism and news coverage in times of pandemics that reflect social responsibility and ethos of public service journalism. Social media and high-tech information corporations, collectively termed GAMAF—Google, Apple, Microsoft, Amazon, and Facebook – can team up with reliable traditional media—newspapers, magazines, book publishers, radio and television corporates—to ease public emotions and be helpful in times of a pandemic outbreak. GAMAF can, conceivably, weed out sensational and non-credible sources of coronavirus information, exotic cures offered for sale on a quick fix, and demonetize videos that exploit peoples’ vulnerabilities at the lowest ebb. Credible news of utility delivered in a sustained, calm, and reliable manner serves people in a meaningful and helpful way. The world’s consumers of news and information, indeed, deserve a healthy and trustworthy news media – at least in the time of pandemic COVID-19. Towards this end, the paper will propose a practical model for news media and journalistic coverage during times of a pandemic.Keywords: COVID-19, international news flow, social media, social responsibility
Procedia PDF Downloads 1123697 A Fast Calculation Approach for Position Identification in a Distance Space
Authors: Dawei Cai, Yuya Tokuda
Abstract:
The market of localization based service (LBS) is expanding. The acquisition of physical location is the fundamental basis for LBS. GPS, the de facto standard for outdoor localization, does not work well in indoor environment due to the blocking of signals by walls and ceiling. To acquire high accurate localization in an indoor environment, many techniques have been developed. Triangulation approach is often used for identifying the location, but a heavy and complex computation is necessary to calculate the location of the distances between the object and several source points. This computation is also time and power consumption, and not favorable to a mobile device that needs a long action life with battery. To provide a low power consumption approach for a mobile device, this paper presents a fast calculation approach to identify the location of the object without online solving solutions to simultaneous quadratic equations. In our approach, we divide the location identification into two parts, one is offline, and other is online. In offline mode, we make a mapping process that maps the location area to distance space and find a simple formula that can be used to identify the location of the object online with very light computation. The characteristic of the approach is a good tradeoff between the accuracy and computational amount. Therefore, this approach can be used in smartphone and other mobile devices that need a long work time. To show the performance, some simulation experimental results are provided also in the paper.Keywords: indoor localization, location based service, triangulation, fast calculation, mobile device
Procedia PDF Downloads 1743696 Analysis of a Discrete-time Geo/G/1 Queue Integrated with (s, Q) Inventory Policy at a Service Facility
Authors: Akash Verma, Sujit Kumar Samanta
Abstract:
This study examines a discrete-time Geo/G/1 queueing-inventory system attached with (s, Q) inventory policy. Assume that the customers follow the Bernoulli process on arrival. Each customer demands a single item with arbitrarily distributed service time. The inventory is replenished by an outside supplier, and the lead time for the replenishment is determined by a geometric distribution. There is a single server and infinite waiting space in this facility. Demands must wait in the specified waiting area during a stock-out period. The customers are served on a first-come-first-served basis. With the help of the embedded Markov chain technique, we determine the joint probability distributions of the number of customers in the system and the number of items in stock at the post-departure epoch using the Matrix Analytic approach. We relate the system length distribution at post-departure and outside observer's epochs to determine the joint probability distribution at the outside observer's epoch. We use probability distributions at random epochs to determine the waiting time distribution. We obtain the performance measures to construct the cost function. The optimum values of the order quantity and reordering point are found numerically for the variety of model parameters.Keywords: discrete-time queueing inventory model, matrix analytic method, waiting-time analysis, cost optimization
Procedia PDF Downloads 443695 A Structure-Switching Electrochemical Aptasensor for Rapid, Reagentless and Single-Step, Nanomolar Detection of C-Reactive Protein
Authors: William L. Whitehouse, Louisa H. Y. Lo, Andrew B. Kinghorn, Simon C. C. Shiu, Julian. A. Tanner
Abstract:
C-reactive protein (CRP) is an acute-phase reactant and sensitive indicator for sepsis and other life-threatening pathologies, including systemic inflammatory response syndrome (SIRS). Currently, clinical turn-around times for established CRP detection methods take between 30 minutes to hours or even days from centralized laboratories. Here, we report the development of an electrochemical biosensor using redox probe-tagged DNA aptamers functionalized onto cheap, commercially available screen-printed electrodes. Binding-induced conformational switching of the CRP-targeting aptamer induces a specific and selective signal-ON event, which enables single-step and reagentless detection of CRP in as little as 1 minute. The aptasensor dynamic range spans 5-1000nM (R=0.97) or 5-500nM (R=0.99) in 50% diluted human serum, with a LOD of 3nM, corresponding to 2-orders of magnitude sensitivity under the clinically relevant cut-off for CRP. The sensor is stable for up to one week and can be reused numerous times, as judged from repeated real-time dosing and dose-response assays. By decoupling binding events from the signal induction mechanism, structure-switching electrochemical aptamer-based sensors (SS-EABs) provide considerable advantages over their adsorption-based counterparts. Our work expands on the retinue of such sensors reported in the literature and is the first instance of an SS-EAB for reagentless CRP detection. We hope this study can inspire further investigations into the suitability of SS-EABs for diagnostics, which will aid translational R&D toward fully realized devices aimed at point-of-care applications or for use more broadly by the public.Keywords: structure-switching, C-reactive protein, electrochemical, biosensor, aptasensor.
Procedia PDF Downloads 703694 Next-Gen Solutions: How Generative AI Will Reshape Businesses
Authors: Aishwarya Rai
Abstract:
This study explores the transformative influence of generative AI on startups, businesses, and industries. We will explore how large businesses can benefit in the area of customer operations, where AI-powered chatbots can improve self-service and agent effectiveness, greatly increasing efficiency. In marketing and sales, generative AI could transform businesses by automating content development, data utilization, and personalization, resulting in a substantial increase in marketing and sales productivity. In software engineering-focused startups, generative AI can streamline activities, significantly impacting coding processes and work experiences. It can be extremely useful in product R&D for market analysis, virtual design, simulations, and test preparation, altering old workflows and increasing efficiency. Zooming into the retail and CPG industry, industry findings suggest a 1-2% increase in annual revenues, equating to $400 billion to $660 billion. By automating customer service, marketing, sales, and supply chain management, generative AI can streamline operations, optimizing personalized offerings and presenting itself as a disruptive force. While celebrating economic potential, we acknowledge challenges like external inference and adversarial attacks. Human involvement remains crucial for quality control and security in the era of generative AI-driven transformative innovation. This talk provides a comprehensive exploration of generative AI's pivotal role in reshaping businesses, recognizing its strategic impact on customer interactions, productivity, and operational efficiency.Keywords: generative AI, digital transformation, LLM, artificial intelligence, startups, businesses
Procedia PDF Downloads 763693 SIM (Subscriber Identity Module) Banking
Authors: Okanta Andrew, Richmond Kweku Frempong
Abstract:
As mobile networks are upgraded with technologies like WAP, GPRS and UMTS to deliver next-generation multimedia services, so are the banks and other financial institutions also getting ready to unleash the financial products on the mobile platform to meet growing demand for mobile based application services. Hence, the onset of Unstructured Supplementary Services (USSD) Banking which would make banking services available at anywhere, anytime through a string of interactive SMS sessions between a mobile device and an application server of a service provider. The aim of this studies was to find out whether the public will accept the sim banking service when it is implemented. Our target group includes: Working class. E. g. Businessmen/women, office workers, fishermen, market women, teachers etc. Nonworking class. E. g. Students (Tertiary, Senior High School), housewives. etc. The survey was in the form of a questionnaire and a verbal interview (video) which was to investigate their idea about the current banking system and the yet to be introduced sim banking concept. Meanwhile, some challenges accompanied the progression of data gathering because some populace showed reluctance in freeing their information. One other suggestion was that government should put measures against foremost challenges obstructing sim banking in Ghana counter to computers hackers. Government and individual have a key role to undertake to give suitable support to facelift the sim banking industry in the country. It was also suggested that Government put strong regulations on the use of sim banking products and services to streamline all the activities and also create awareness of the need for sim banking and emphasize its relevance in the aspect of national GDP.Keywords: banking, mobile banking, SIM banking, mobile banking in Ghana
Procedia PDF Downloads 4843692 Effects of Acute Exposure to WIFI Signals (2,45 GHz) on Heart Variability and Blood Pressure in Albinos Rabbit
Authors: Linda Saili, Amel Hanini, Chiraz Smirani, Iness Azzouz, Amina Azzouz, Hafedh Abdemelek, Zihad Bouslama
Abstract:
Electrocardiogram and arterial pressure measurements were studied under acute exposures to WIFI (2.45 GHz) during one hour in adult male rabbits. Antennas of WIFI were placed at 25 cm at the right side near the heart. Acute exposure of rabbits to WIFI increased heart frequency (+ 22%) and arterial blood pressure (+14%). Moreover, analysis of ECG revealed that WIFI induced a combined increase of PR and QT intervals. By contrast, the same exposure failed to alter the maximum amplitude and P waves. After intravenously injection of dopamine (0.50 ml/kg) and epinephrine (0.50ml/kg) under acute exposure to RF we found that WIFI alter catecholamines(dopamine, epinephrine) action on heart variability and blood pressure compared to control. These results suggest for the first time, as far as we know, that exposure to WIFI affect heart rhythm, blood pressure, and catecholamines efficacy on cardiovascular system; indicating that radio frequency can act directly and/or indirectly on the cardiovascular system.Keywords: heart rate (HR), arterial pressure (PA), electrocardiogram (ECG), the efficacy of catecholamines, dopamine, epinephrine
Procedia PDF Downloads 4523691 An Empirical Study for the Data-Driven Digital Transformation of the Indian Telecommunication Service Providers
Authors: S. Jigna, K. Nanda Kumar, T. Anna
Abstract:
Being a major contributor to the Indian economy and a critical facilitator for the country’s digital India vision, the Indian telecommunications industry is also a major source of employment for the country. Since the last few years, the Indian telecommunication service providers (TSPs), however, are facing business challenges related to increasing competition, losses, debts, and decreasing revenue. The strategic use of digital technologies for a successful digital transformation has the potential to equip organizations to meet these business challenges. Despite an increased focus on digital transformation, the telecom service providers globally, including Indian TSPs, have seen limited success so far. The purpose of this research was thus to identify the factors that are critical for the digital transformation and to what extent they influence the successful digital transformation of the Indian TSPs. The literature review of more than 300 digital transformation-related articles, mostly from 2013-2019, demonstrated a lack of an empirical model consisting of factors for the successful digital transformation of the TSPs. This study theorizes a research framework grounded in multiple theories, and a research model consisting of 7 constructs that may be influencing business success during the digital transformation of the organization was proposed. The questionnaire survey of senior managers in the Indian telecommunications industry was seeking to validate the research model. Based on 294 survey responses, the validation of the Structural equation model using the statistical tool ADANCO 2.1.1 was found to be robust. Results indicate that Digital Capabilities, Digital Strategy, and Corporate Level Data Strategy in that order has a strong influence on the successful Business Performance, followed by IT Function Transformation, Digital Innovation, and Transformation Management respectively. Even though Digital Organization did not have a direct significance on Business Performance outcomes, it had a strong influence on IT Function Transformation, thus affecting the Business Performance outcomes indirectly. Amongst numerous practical and theoretical contributions of the study, the main contribution for the Indian TSPs is a validated reference for prioritizing the transformation initiatives in their strategic roadmap. Also, the main contribution to the theory is the possibility to use the research framework artifact of the present research for quantitative validation in different industries and geographies.Keywords: corporate level data strategy, digital capabilities, digital innovation, digital strategy
Procedia PDF Downloads 1293690 Energy-Efficient Internet of Things Communications: A Comparative Study of Long-Term Evolution for Machines and Narrowband Internet of Things Technologies
Authors: Nassim Labdaoui, Fabienne Nouvel, Stéphane Dutertre
Abstract:
The Internet of Things (IoT) is emerging as a crucial communication technology for the future. Many solutions have been proposed, and among them, licensed operators have put forward LTE-M and NB-IoT. However, implementing these technologies requires a good understanding of the device energy requirements, which can vary depending on the coverage conditions. In this paper, we investigate the power consumption of LTE-M and NB-IoT devices using Ublox SARA-R422S modules based on relevant standards from two French operators. The measurements were conducted under different coverage conditions, and we also present an empirical consumption model based on the different states of the radio modem as per the RRC protocol specifications. Our findings indicate that these technologies can achieve a 5 years operational battery life under certain conditions. Moreover, we conclude that the size of transmitted data does not have a significant impact on the total power consumption of the device under favorable coverage conditions. However, it can quickly influence the battery life of the device under harsh coverage conditions. Overall, this paper offers insights into the power consumption of LTE-M and NBIoT devices and provides useful information for those considering the use of these technologies.Keywords: internet of things, LTE-M, NB-IoT, MQTT, cellular IoT, power consumption
Procedia PDF Downloads 1423689 Choice Analysis of Ground Access to São Paulo/Guarulhos International Airport Using Adaptive Choice-Based Conjoint Analysis (ACBC)
Authors: Carolina Silva Ansélmo
Abstract:
Airports are demand-generating poles that affect the flow of traffic around them. The airport access system must be fast, convenient, and adequately planned, considering its potential users. An airport with good ground access conditions can provide the user with a more satisfactory access experience. When several transport options are available, service providers must understand users' preferences and the expected quality of service. The present study focuses on airport access in a comparative scenario between bus, private vehicle, subway, taxi and urban mobility transport applications to São Paulo/Guarulhos International Airport. The objectives are (i) to identify the factors that influence the choice, (ii) to measure Willingness to Pay (WTP), and (iii) to estimate the market share for each modal. The applied method was Adaptive Choice-based Conjoint Analysis (ACBC) technique using Sawtooth Software. Conjoint analysis, rooted in Utility Theory, is a survey technique that quantifies the customer's perceived utility when choosing alternatives. Assessing user preferences provides insights into their priorities for product or service attributes. An additional advantage of conjoint analysis is its requirement for a smaller sample size compared to other methods. Furthermore, ACBC provides valuable insights into consumers' preferences, willingness to pay, and market dynamics, aiding strategic decision-making to provide a better customer experience, pricing, and market segmentation. In the present research, the ACBC questionnaire had the following variables: (i) access time to the boarding point, (ii) comfort in the vehicle, (iii) number of travelers together, (iv) price, (v) supply power, and (vi) type of vehicle. The case study questionnaire reached 213 valid responses considering the scenario of access from the São Paulo city center to São Paulo/Guarulhos International Airport. As a result, the price and the number of travelers are the most relevant attributes for the sample when choosing airport access. The market share of the selection is mainly urban mobility transport applications, followed by buses, private vehicles, taxis and subways.Keywords: adaptive choice-based conjoint analysis, ground access to airport, market share, willingness to pay
Procedia PDF Downloads 783688 Analysis of Real Time Seismic Signal Dataset Using Machine Learning
Authors: Sujata Kulkarni, Udhav Bhosle, Vijaykumar T.
Abstract:
Due to the closeness between seismic signals and non-seismic signals, it is vital to detect earthquakes using conventional methods. In order to distinguish between seismic events and non-seismic events depending on their amplitude, our study processes the data that come from seismic sensors. The authors suggest a robust noise suppression technique that makes use of a bandpass filter, an IIR Wiener filter, recursive short-term average/long-term average (STA/LTA), and Carl short-term average (STA)/long-term average for event identification (LTA). The trigger ratio used in the proposed study to differentiate between seismic and non-seismic activity is determined. The proposed work focuses on significant feature extraction for machine learning-based seismic event detection. This serves as motivation for compiling a dataset of all features for the identification and forecasting of seismic signals. We place a focus on feature vector dimension reduction techniques due to the temporal complexity. The proposed notable features were experimentally tested using a machine learning model, and the results on unseen data are optimal. Finally, a presentation using a hybrid dataset (captured by different sensors) demonstrates how this model may also be employed in a real-time setting while lowering false alarm rates. The planned study is based on the examination of seismic signals obtained from both individual sensors and sensor networks (SN). A wideband seismic signal from BSVK and CUKG station sensors, respectively located near Basavakalyan, Karnataka, and the Central University of Karnataka, makes up the experimental dataset.Keywords: Carl STA/LTA, features extraction, real time, dataset, machine learning, seismic detection
Procedia PDF Downloads 1243687 Smart Water Main Inspection and Condition Assessment Using a Systematic Approach for Pipes Selection
Authors: Reza Moslemi, Sebastien Perrier
Abstract:
Water infrastructure deterioration can result in increased operational costs owing to increased repair needs and non-revenue water and consequently cause a reduced level of service and customer service satisfaction. Various water main condition assessment technologies have been introduced to the market in order to evaluate the level of pipe deterioration and to develop appropriate asset management and pipe renewal plans. One of the challenges for any condition assessment and inspection program is to determine the percentage of the water network and the combination of pipe segments to be inspected in order to obtain a meaningful representation of the status of the entire water network with a desirable level of accuracy. Traditionally, condition assessment has been conducted by selecting pipes based on age or location. However, this may not necessarily offer the best approach, and it is believed that by using a smart sampling methodology, a better and more reliable estimate of the condition of a water network can be achieved. This research investigates three different sampling methodologies, including random, stratified, and systematic. It is demonstrated that selecting pipes based on the proposed clustering and sampling scheme can considerably improve the ability of the inspected subset to represent the condition of a wider network. With a smart sampling methodology, a smaller data sample can provide the same insight as a larger sample. This methodology offers increased efficiency and cost savings for condition assessment processes and projects.Keywords: condition assessment, pipe degradation, sampling, water main
Procedia PDF Downloads 1503686 A Local Invariant Generalized Hough Transform Method for Integrated Circuit Visual Positioning
Authors: Wei Feilong
Abstract:
In this study, an local invariant generalized Houghtransform (LI-GHT) method is proposed for integrated circuit (IC) visual positioning. The original generalized Hough transform (GHT) is robust to external noise; however, it is not suitable for visual positioning of IC chips due to the four-dimensionality (4D) of parameter space which leads to the substantial storage requirement and high computational complexity. The proposed LI-GHT method can reduce the dimensionality of parameter space to 2D thanks to the rotational invariance of local invariant geometric feature and it can estimate the accuracy position and rotation angle of IC chips in real-time under noise and blur influence. The experiment results show that the proposed LI-GHT can estimate position and rotation angle of IC chips with high accuracy and fast speed. The proposed LI-GHT algorithm was implemented in IC visual positioning system of radio frequency identification (RFID) packaging equipment.Keywords: Integrated Circuit Visual Positioning, Generalized Hough Transform, Local invariant Generalized Hough Transform, ICpacking equipment
Procedia PDF Downloads 2643685 E-Book: An Essential Tool for Promoting Reading and Learning Amongst Students of Niger State College of Education, Minna
Authors: Abdulkadir Mustapha Gana, Musa Baba Adamu, Edimeh Augustine Jr
Abstract:
There are growing concerns over the astronomical decline inquality of teaching and learning amongst youths especially in developing countries, and handful research have been conducted in this regard. However, results from many of these studies revealed similar findings which all pointed to the steady decline in quality of teaching and learning across the globe. One common factor attributed for this drawback was the new media due to the evolution and advancement of technology as studies have revealed. In the beginning, what was then the new media (broadcast media of radio and television) was singled out as being responsible for diverting people’s attention from reading; particularly television. At present times, it was revealed that the social media and internet connectivity were responsible for diverting the attention of many, thus distracting attentions from reading. However, it is pertinent to note that the devastating effects, social media platforms have a couple of tools that could improve reading by extension teaching and learning amongst students. Therefore, this study reviewed the literature on the advantageous aspect of social media to reading and learning; whilst laying emphasis on how youths can utilize social media to improve their reading habits.Keywords: ebook, reading, learning, students
Procedia PDF Downloads 78