Search results for: classifiers accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3835

Search results for: classifiers accuracy

1915 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application

Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob

Abstract:

Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.

Keywords: robotic vision, image processing, applications of robotics, artificial intelligent

Procedia PDF Downloads 97
1914 Experimental Analysis of Control in Electric Vehicle Charging Station Based Grid Tied Photovoltaic-Battery System

Authors: A. Hassoune, M. Khafallah, A. Mesbahi, T. Bouragba

Abstract:

This work presents an improved strategy of control for charging a lithium-ion battery in an electric vehicle charging station using two charger topologies i.e. single ended primary inductor converter (SEPIC) and forward converter. In terms of rapidity and accuracy, the power system consists of a topology/control diagram that would overcome the performance constraints, for instance the power instability, the battery overloading and how the energy conversion blocks would react efficiently to any kind of perturbations. Simulation results show the effectiveness of the proposed topologies operated with a power management algorithm based on voltage/peak current mode controls. In order to provide credible findings, a low power prototype is developed to test the control strategy via experimental evaluations of the converter topology and its controls.

Keywords: battery storage buffer, charging station, electric vehicle, experimental analysis, management algorithm, switches control

Procedia PDF Downloads 166
1913 Design Modification in CNC Milling Machine to Reduce the Weight of Structure

Authors: Harshkumar K. Desai, Anuj K. Desai, Jay P. Patel, Snehal V. Trivedi, Yogendrasinh Parmar

Abstract:

The need of continuous improvement in a product or process in this era of global competition leads to apply value engineering for functional and aesthetic improvement in consideration with economic aspect too. Solar industries located at G.I.D.C., Makarpura, Vadodara, Gujarat, India; a manufacturer of variety of CNC Machines had a challenge to analyze the structural design of column, base, carriage and table of CNC Milling Machine in the account of reduction of overall weight of a machine without affecting the rigidity and accuracy at the time of operation. The identified task is the first attempt to validate and optimize the proposed design of ribbed structure statically using advanced modeling and analysis tools in a systematic way. Results of stress and deformation obtained using analysis software are validated with theoretical analysis and found quite satisfactory. Such optimized results offer a weight reduction of the final assembly which is desired by manufacturers in favor of reduction of material cost, processing cost and handling cost finally.

Keywords: CNC milling machine, optimization, finite element analysis (FEA), weight reduction

Procedia PDF Downloads 277
1912 Machine Learning Approach for Yield Prediction in Semiconductor Production

Authors: Heramb Somthankar, Anujoy Chakraborty

Abstract:

This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.

Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis

Procedia PDF Downloads 110
1911 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce

Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada

Abstract:

With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.

Keywords: distributed algorithm, MapReduce, multi-class, support vector machine

Procedia PDF Downloads 401
1910 Evaluation of P16, Human Papillomavirus Capsid Protein L1 and Ki67 in Cervical Intraepithelial Lesions: Potential Utility in Diagnosis and Prognosis

Authors: Hanan Alsaeid Alshenawy

Abstract:

Background: Cervical dysplasia, which is potentially precancerous, has increased in young women. Detection of cervical is important for reducing morbidity and mortality in cervical cancer. This study analyzes the immunohistochemical expression of p16, HPV L1 capsid protein and Ki67 in cervical intraepithelial lesions and correlates them with lesion grade to develop a set of markers for diagnosis and detect the prognosis of cervical cancer precursors. Methods: 75 specimens were analyzed including 15 cases CIN 1, 28 CIN 2, 20 CIN 3, and 12 cervical squamous carcinoma, besides 10 normal cervical tissues. They were stained for p16, HPV L1 and Ki-67. Sensitivity, specificity, predictive values and accuracy were evaluated for each marker. Results: p16 expression increased during the progression from CIN 1 to carcinoma. HPV L1 positivity was detected in CIN 2 and decreased gradually as the CIN grade increased but disappear in carcinoma. Strong Ki-67 expression was observed with high grades CIN and carcinoma. p16, HPV L1 and Ki67 were sensitive but with variable specificity in detecting CIN lesions. Conclusions: p16, HPV L1 and Ki67 are useful set of markers in establishing the risk of high-grade CIN. They complete each other to reach accurate diagnosis and prognosis.

Keywords: p16, HPV L1, Ki67, CIN, cervical carcinoma

Procedia PDF Downloads 343
1909 Pattern Recognition Based on Simulation of Chemical Senses (SCS)

Authors: Nermeen El Kashef, Yasser Fouad, Khaled Mahar

Abstract:

No AI-complete system can model the human brain or behavior, without looking at the totality of the whole situation and incorporating a combination of senses. This paper proposes a Pattern Recognition model based on Simulation of Chemical Senses (SCS) for separation and classification of sign language. The model based on human taste controlling strategy. The main idea of the introduced model is motivated by the facts that the tongue cluster input substance into its basic tastes first, and then the brain recognizes its flavor. To implement this strategy, two level architecture is proposed (this is inspired from taste system). The separation-level of the architecture focuses on hand posture cluster, while the classification-level of the architecture to recognizes the sign language. The efficiency of proposed model is demonstrated experimentally by recognizing American Sign Language (ASL) data set. The recognition accuracy obtained for numbers of ASL is 92.9 percent.

Keywords: artificial intelligence, biocybernetics, gustatory system, sign language recognition, taste sense

Procedia PDF Downloads 295
1908 Early Detection of Kidney Failure by Using a Distinct Technique for Sweat Analysis

Authors: Saba. T. Suliman, Alaa. H. Osman, Sara. T. Ahmed, Zeinab. A. Mustafa, Akram. I. Omara, Banazier. A. Ibraheem

Abstract:

Diagnosis by sweat is one of the emerging methods whereby sweat can identify many diseases in the human body. Sweat contains many elements that help in the diagnostic process. In this research, we analyzed sweat samples by using a Colorimeter device to identify the disease of kidney failure in its various stages. This analysis is a non-invasive method where the sample is collected from outside the body, and then this sample is analyzed. Urea refers to the disease of kidney failure when its quantity is high in the blood and then in the sweat, and by experience, we found that the amount of urea for males differs from its quantity for females, where there is a noticeable increase for males in normal and pathological cases. In this research, we took many samples from a normal group that does not suffer from renal failure and another who suffers from the disease to compare the percentage of urea, and after analysis, we found that the urea percentage is high in people with kidney failure disease. with an accuracy of results of 85%.

Keywords: sweat analysis, kidney failure, urea, non-invasive, eccrine glands, mineral composition, sweat test

Procedia PDF Downloads 44
1907 Beyond Classic Program Evaluation and Review Technique: A Generalized Model for Subjective Distributions with Flexible Variance

Authors: Byung Cheol Kim

Abstract:

The Program Evaluation and Review Technique (PERT) is widely used for project management, but it struggles with subjective distributions, particularly due to its assumptions of constant variance and light tails. To overcome these limitations, we propose the Generalized PERT (G-PERT) model, which enhances PERT by incorporating variability in three-point subjective estimates. Our methodology extends the original PERT model to cover the full range of unimodal beta distributions, enabling the model to handle thick-tailed distributions and offering formulas for computing mean and variance. This maintains the simplicity of PERT while providing a more accurate depiction of uncertainty. Our empirical analysis demonstrates that the G-PERT model significantly improves performance, particularly when dealing with heavy-tail subjective distributions. In comparative assessments with alternative models such as triangular and lognormal distributions, G-PERT shows superior accuracy and flexibility. These results suggest that G-PERT offers a more robust solution for project estimation while still retaining the user-friendliness of the classic PERT approach.

Keywords: PERT, subjective distribution, project management, flexible variance

Procedia PDF Downloads 21
1906 Spatial-Temporal Awareness Approach for Extensive Re-Identification

Authors: Tyng-Rong Roan, Fuji Foo, Wenwey Hseush

Abstract:

Recent development of AI and edge computing plays a critical role to capture meaningful events such as detection of an unattended bag. One of the core problems is re-identification across multiple CCTVs. Immediately following the detection of a meaningful event is to track and trace the objects related to the event. In an extensive environment, the challenge becomes severe when the number of CCTVs increases substantially, imposing difficulties in achieving high accuracy while maintaining real-time performance. The algorithm that re-identifies cross-boundary objects for extensive tracking is referred to Extensive Re-Identification, which emphasizes the issues related to the complexity behind a great number of CCTVs. The Spatial-Temporal Awareness approach challenges the conventional thinking and concept of operations which is labor intensive and time consuming. The ability to perform Extensive Re-Identification through a multi-sensory network provides the next-level insights – creating value beyond traditional risk management.

Keywords: long-short-term memory, re-identification, security critical application, spatial-temporal awareness

Procedia PDF Downloads 114
1905 The Effectiveness and Accuracy of the Schulte Holt IOL Toric Calculator Processor in Comparison to Manually Input Data into the Barrett Toric IOL Calculator

Authors: Gabrielle Holt

Abstract:

This paper is looking to prove the efficacy of the Schulte Holt IOL Toric Calculator Processor (Schulte Holt ITCP). It has been completed using manually inputted data into the Barrett Toric Calculator and comparing the number of minutes taken to complete the Toric calculations, the number of errors identified during completion, and distractions during completion. It will then compare that data to the number of minutes taken for the Schulte Holt ITCP to complete also, using the Barrett method, as well as the number of errors identified in the Schulte Holt ITCP. The data clearly demonstrate a momentous advantage to the Schulte Holt ITCP and notably reduces time spent doing Toric Calculations, as well as reducing the number of errors. With the ever-growing number of cataract surgeries taking place around the world and the waitlists increasing -the Schulte Holt IOL Toric Calculator Processor may well demonstrate a way forward to increase the availability of ophthalmologists and ophthalmic staff while maintaining patient safety.

Keywords: Toric, toric lenses, ophthalmology, cataract surgery, toric calculations, Barrett

Procedia PDF Downloads 94
1904 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: bioassay, machine learning, preprocessing, virtual screen

Procedia PDF Downloads 276
1903 Investigate and Solving Analytic of Nonlinear Differential at Vibrations (Earthquake)and Beam-Column, by New Approach “AGM”

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Sara Akbari

Abstract:

In this study, we investigate building structures nonlinear behavior also solving analytic of nonlinear differential at vibrations. As we know most of engineering systems behavior in practical are non- linear process (especial at structural) and analytical solving (no numerical) these problems are complex, difficult and sometimes impossible (of course at form of analytical solving). In this symposium, we are going to exposure one method in engineering, that can solve sets of nonlinear differential equations with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical Method (Runge-Kutte 4th) and exact solutions. Finally, we can proof AGM method could be created huge evolution for researcher and student (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software, we can analytical solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations.

Keywords: new method AGM, vibrations, beam-column, angular frequency, energy dissipated, critical load

Procedia PDF Downloads 393
1902 Four-dimensional (4D) Decoding Information Presented in Reports of Project Progress in Developing Countries

Authors: Vahid Khadjeh Anvary, Hamideh Karimi Yazdi

Abstract:

Generally, the tool of comparison between performance of each stage in the life of a project, is the number of project progress during that period, which in most cases is only determined as one-dimensional with referring to one of three factors (physical, time, and financial). In many projects in developing countries there are controversies on accuracy and the way of analyzing progress report of projects that hinders getting definitive and engineering conclusions on the status of project.Identifying weakness points of this kind of one-dimensional look on project and determining a reliable and engineering approach for multi-dimensional decoding information receivable from project is of great importance in project management.This can be a tool to help identification of hidden diseases of project before appearing irreversible symptoms that are usually delays or increased costs of execution. The method used in this paper is defining and evaluating a hypothetical project as an example analyzing different scenarios and numerical comparison of them along with related graphs and tables. Finally, by analyzing different possible scenarios in the project, possibility or impossibility of predicting their occurrence is examine through the evidence.

Keywords: physical progress, time progress, financial progress, delays, critical path

Procedia PDF Downloads 375
1901 Cross Ventilation in Waterfront Urban Canyons: The Case Study of Alexandria

Authors: Bakr Gomaa

Abstract:

Cross ventilation is an important and practical mean to achieve thermal comfort and conserve energy. This is especially true in the breezy waterfront settings. However, due to a number of factors, cross ventilation in buildings is usually studied by using oversimplified scenarios. It is then reasonable to study the impact of complex set of factors on the accuracy of predicting air flow rate because of wind driven cross ventilation. The objective of this paper is to provide architects with the tools necessary to achieve natural ventilation for cooling purposes in a waterfront urban canyon context. Also, urban canyons have not received much attention in terms of their impact on cross ventilation, and while we know how the wind flows between buildings in different urban canyon settings, the effect of the parallel-to-the-wind urban canyon on cross ventilation in buildings remains unclear. For this, we use detailed weather data, boundary layer correction factor, and CFD simulations to study the pressure patterns that form on the canyons surfaces in the case study of Alexandria. We found that the simplified numerical methods of calculating the cross ventilation in buildings can lead to inaccurate design decisions.

Keywords: cross ventilation, Alexandria, CFD, urban canyon

Procedia PDF Downloads 255
1900 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey

Authors: Lavanya Madhuri Bollipo, K. V. Kadambari

Abstract:

Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.

Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)

Procedia PDF Downloads 399
1899 Experimental Study and Neural Network Modeling in Prediction of Surface Roughness on Dry Turning Using Two Different Cutting Tool Nose Radii

Authors: Deba Kumar Sarma, Sanjib Kr. Rajbongshi

Abstract:

Surface finish is an important product quality in machining. At first, experiments were carried out to investigate the effect of the cutting tool nose radius (considering 1mm and 0.65mm) in prediction of surface finish with process parameters of cutting speed, feed and depth of cut. For all possible cutting conditions, full factorial design was considered as two levels four parameters. Commercial Mild Steel bar and High Speed Steel (HSS) material were considered as work-piece and cutting tool material respectively. In order to obtain functional relationship between process parameters and surface roughness, neural network was used which was found to be capable for the prediction of surface roughness within a reasonable degree of accuracy. It was observed that tool nose radius of 1mm provides better surface finish in comparison to 0.65 mm. Also, it was observed that feed rate has a significant influence on surface finish.

Keywords: full factorial design, neural network, nose radius, surface finish

Procedia PDF Downloads 368
1898 An Integrated Approach to Find the Effect of Strain Rate on Ultimate Tensile Strength of Randomly Oriented Short Glass Fiber Composite in Combination with Artificial Neural Network

Authors: Sharad Shrivastava, Arun Jalan

Abstract:

In this study tensile testing was performed on randomly oriented short glass fiber/epoxy resin composite specimens which were prepared using hand lay-up method. Samples were tested over a wide range of strain rate/loading rate from 2mm/min to 40mm/min to see the effect on ultimate tensile strength of the composite. A multi layered 'back propagation artificial neural network of supervised learning type' was used to analyze and predict the tensile properties with strain rate and temperature as given input and output as UTS to predict. Various network structures were designed and investigated with varying parameters and network sizes, and an optimized network structure was proposed to predict the UTS of short glass fiber/epoxy resin composite specimens with reasonably good accuracy.

Keywords: glass fiber composite, mechanical properties, strain rate, artificial neural network

Procedia PDF Downloads 437
1897 Artificial Intelligent Methodology for Liquid Propellant Engine Design Optimization

Authors: Hassan Naseh, Javad Roozgard

Abstract:

This paper represents the methodology based on Artificial Intelligent (AI) applied to Liquid Propellant Engine (LPE) optimization. The AI methodology utilized from Adaptive neural Fuzzy Inference System (ANFIS). In this methodology, the optimum objective function means to achieve maximum performance (specific impulse). The independent design variables in ANFIS modeling are combustion chamber pressure and temperature and oxidizer to fuel ratio and output of this modeling are specific impulse that can be applied with other objective functions in LPE design optimization. To this end, the LPE’s parameter has been modeled in ANFIS methodology based on generating fuzzy inference system structure by using grid partitioning, subtractive clustering and Fuzzy C-Means (FCM) clustering for both inferences (Mamdani and Sugeno) and various types of membership functions. The final comparing optimization results shown accuracy and processing run time of the Gaussian ANFIS Methodology between all methods.

Keywords: ANFIS methodology, artificial intelligent, liquid propellant engine, optimization

Procedia PDF Downloads 591
1896 Evaluating the Diagnostic Accuracy of the ctDNA Methylation for Liver Cancer

Authors: Maomao Cao

Abstract:

Objective: To test the performance of ctDNA methylation for the detection of liver cancer. Methods: A total of 1233 individuals have been recruited in 2017. 15 male and 15 female samples (including 10 cases of liver cancer) were randomly selected in the present study. CfDNA was extracted by MagPure Circulating DNA Maxi Kit. The concentration of cfDNA was obtained by Qubit™ dsDNA HS Assay Kit. A pre-constructed predictive model was used to analyze methylation data and to give a predictive score for each cfDNA sample. Individuals with a predictive score greater than or equal to 80 were classified as having liver cancer. CT tests were considered the gold standard. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the diagnosis of liver cancer were calculated. Results: 9 patients were diagnosed with liver cancer according to the prediction model (with high sensitivity and threshold of 80 points), with scores of 99.2, 91.9, 96.6, 92.4, 91.3, 92.5, 96.8, 91.1, and 92.2, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of ctDNA methylation for the diagnosis of liver cancer were 0.70, 0.90, 0.78, and 0.86, respectively. Conclusions: ctDNA methylation could be an acceptable diagnostic modality for the detection of liver cancer.

Keywords: liver cancer, ctDNA methylation, detection, diagnostic performance

Procedia PDF Downloads 153
1895 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks

Authors: Anne-Lena Kampen, Øivind Kure

Abstract:

Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.

Keywords: central machine learning, embedded machine learning, energy consumption, local machine learning, wireless sensor networks, WSN

Procedia PDF Downloads 156
1894 Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation

Authors: Yan Lyu, Yiqun Pan, Zhizhong Huang

Abstract:

In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building, Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that this simplification would only lead to the error that is less than 7% for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which can cover most situations.

Keywords: building energy model, simulation, geometric simplification, design, regression

Procedia PDF Downloads 182
1893 Digital Platform of Crops for Smart Agriculture

Authors: Pascal François Faye, Baye Mor Sall, Bineta Dembele, Jeanne Ana Awa Faye

Abstract:

In agriculture, estimating crop yields is key to improving productivity and decision-making processes such as financial market forecasting and addressing food security issues. The main objective of this paper is to have tools to predict and improve the accuracy of crop yield forecasts using machine learning (ML) algorithms such as CART , KNN and SVM . We developed a mobile app and a web app that uses these algorithms for practical use by farmers. The tests show that our system (collection and deployment architecture, web application and mobile application) is operational and validates empirical knowledge on agro-climatic parameters in addition to proactive decision-making support. The experimental results obtained on the agricultural data, the performance of the ML algorithms are compared using cross-validation in order to identify the most effective ones following the agricultural data. The proposed applications demonstrate that the proposed approach is effective in predicting crop yields and provides timely and accurate responses to farmers for decision support.

Keywords: prediction, machine learning, artificial intelligence, digital agriculture

Procedia PDF Downloads 80
1892 Reducing Uncertainty of Monte Carlo Estimated Fatigue Damage in Offshore Wind Turbines Using FORM

Authors: Jan-Tore H. Horn, Jørgen Juncher Jensen

Abstract:

Uncertainties related to fatigue damage estimation of non-linear systems are highly dependent on the tail behaviour and extreme values of the stress range distribution. By using a combination of the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), the accuracy of the fatigue estimations may be improved for the same computational efforts. The method is applied to a bottom-fixed, monopile-supported large offshore wind turbine, which is a non-linear and dynamically sensitive system. Different curve fitting techniques to the fatigue damage distribution have been used depending on the sea-state dependent response characteristics, and the effect of a bi-linear S-N curve is discussed. Finally, analyses are performed on several environmental conditions to investigate the long-term applicability of this multistep method. Wave loads are calculated using state-of-the-art theory, while wind loads are applied with a simplified model based on rotor thrust coefficients.

Keywords: fatigue damage, FORM, monopile, Monte Carlo, simulation, wind turbine

Procedia PDF Downloads 263
1891 Transporting the Setting of the Beloved Musical, Peter Pan, to Colonial India

Authors: R. Roznowski

Abstract:

This paper is an examination of a recent Michigan State University production of the classic musical, Peter Pan. In this production, approved by the licensor, the action was moved to Colonial India transforming the musical’s message to include themes of cultural identity, racism, classism and ultimately inclusion. Major character changes and casting decisions expanded the scope of the musical while still retaining the original book and score. Major changes included reframing the Darlings as British Colonials stationed in India. The Lost Boy’s as mixed race children of British officials and their Indian nannies, the Pirates were a female 'fishing fleet' a group of women sent from England to keep the British soldiers from mixing with the locals and the Michigan State University Bhangra Dance Team played the Indians in the production. Traditional Indian theatrical techniques were also employed in the storytelling. The presentation will cover the key changes to the musical, the rehearsal process, historical accuracy and audience reaction. A final analysis of cultural appropriation versus historical reframing will be examined.

Keywords: directing, history, musical theatre, producing

Procedia PDF Downloads 252
1890 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification

Procedia PDF Downloads 349
1889 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.

Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics

Procedia PDF Downloads 59
1888 Determination of the Local Elastic Moduli of Shungite by Laser Ultrasonic Spectroscopy

Authors: Elena B. Cherepetskaya, Alexander A.Karabutov, Vladimir A. Makarov, Elena A. Mironova, Ivan A. Shibaev

Abstract:

In our study, the object of laser ultrasonic testing was plane-parallel plate of shungit (length 41 mm, width 31 mm, height 15 mm, medium exchange density 2247 kg/m3). We used laser-ultrasonic defectoscope with wideband opto-acoustic transducer in our investigation of the velocities of longitudinal and shear elastic ultrasound waves. The duration of arising elastic pulses was less than 100 ns. Under known material thickness, the values of the velocities were determined by the time delay of the pulses reflected from the bottom surface of the sample with respect to reference pulses. The accuracy of measurement was 0.3% in the case of longitudinal wave velocity and 0.5% in the case of shear wave velocity (scanning pitch along the surface was 2 mm). On the base of found velocities of elastic waves, local elastic moduli of shungit (Young modulus, shear modulus and Poisson's ratio) were uniquely determined.

Keywords: laser ultrasonic testing , local elastic moduli, shear wave velocity, shungit

Procedia PDF Downloads 308
1887 Sentiment Analysis: An Enhancement of Ontological-Based Features Extraction Techniques and Word Equations

Authors: Mohd Ridzwan Yaakub, Muhammad Iqbal Abu Latiffi

Abstract:

Online business has become popular recently due to the massive amount of information and medium available on the Internet. This has resulted in the huge number of reviews where the consumers share their opinion, criticisms, and satisfaction on the products they have purchased on the websites or the social media such as Facebook and Twitter. However, to analyze customer’s behavior has become very important for organizations to find new market trends and insights. The reviews from the websites or the social media are in structured and unstructured data that need a sentiment analysis approach in analyzing customer’s review. In this article, techniques used in will be defined. Definition of the ontology and description of its possible usage in sentiment analysis will be defined. It will lead to empirical research that related to mobile phones used in research and the ontology used in the experiment. The researcher also will explore the role of preprocessing data and feature selection methodology. As the result, ontology-based approach in sentiment analysis can help in achieving high accuracy for the classification task.

Keywords: feature selection, ontology, opinion, preprocessing data, sentiment analysis

Procedia PDF Downloads 200
1886 Leveraging Sentiment Analysis for Quality Improvement in Digital Healthcare Services

Authors: Naman Jain, Shaun Fernandes

Abstract:

With the increasing prevalence of online healthcare services, selecting the most suitable doctor has become a complex task, requiring careful consideration of both public sentiment and personal preferences. This paper proposes a sentiment analysis-driven method that integrates public reviews with user-specific criteria and correlated attributes to recommend online doctors. By leveraging Natural Language Processing (NLP) techniques, public sentiment is extracted from online reviews, which is then combined with user-defined preferences such as specialty, years of experience, location, and consultation fees. Additionally, correlated attributes like education and certifications are incorporated to enhance the recommendation accuracy. Experimental results demonstrate that the proposed system significantly improves user satisfaction by providing personalized doctor recommendations that align with both public opinion and individual needs.

Keywords: sentiment analysis, online doctors, personal preferences, correlated attributes, recommendation system, healthcare, natural language processing

Procedia PDF Downloads 14