Search results for: maximum pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7715

Search results for: maximum pressure

5825 Asymptotic Analysis of the Viscous Flow through a Pipe and the Derivation of the Darcy-Weisbach Law

Authors: Eduard Marusic-Paloka

Abstract:

The Darcy-Weisbach formula is used to compute the pressure drop of the fluid in the pipe, due to the friction against the wall. Because of its simplicity, the Darcy-Weisbach formula became widely accepted by engineers and is used for laminar as well as the turbulent flows through pipes, once the method to compute the mysterious friction coefficient was derived. Particularly in the second half of the 20th century. Formula is empiric, and our goal is to derive it from the basic conservation law, via rigorous asymptotic analysis. We consider the case of the laminar flow but with significant Reynolds number. In case of the perfectly smooth pipe, the situation is trivial, as the Navier-Stokes system can be solved explicitly via the Poiseuille formula leading to the friction coefficient in the form 64/Re. For the rough pipe, the situation is more complicated and some effects of the roughness appear in the friction coefficient. We start from the Navier-Stokes system in the pipe with periodically corrugated wall and derive an asymptotic expansion for the pressure and for the velocity. We use the homogenization techniques and the boundary layer analysis. The approximation derived by formal analysis is then justified by rigorous error estimate in the norm of the appropriate Sobolev space, using the energy formulation and classical a priori estimates for the Navier-Stokes system. Our method leads to the formula for the friction coefficient. The formula involves resolution of the appropriate boundary layer problems, namely the boundary value problems for the Stokes system in an infinite band, that needs to be done numerically. However, theoretical analysis characterising their nature can be done without solving them.

Keywords: Darcy-Weisbach law, pipe flow, rough boundary, Navier law

Procedia PDF Downloads 349
5824 Effects of Waist-to-Hip Ratio and Visceral Fat Measurements Improvement on Offshore Petrochemical Company Shift Employees' Work Efficiency

Authors: Essam Amerian

Abstract:

The aim of this study was to investigate the effects of improving waist-to-hip ratio (WHR) and visceral fat components on the health of shift workers in an offshore petrochemical company. A total of 100 male shift workers participated in the study, with an average age of 40.5 years and an average BMI of 28.2 kg/m². The study employed a randomized controlled trial design, with participants assigned to either an intervention group or a control group. The intervention group received a 12-week program that included dietary counseling, physical activity recommendations, and stress management techniques. The control group received no intervention. The outcomes measured were changes in WHR, visceral fat components, blood pressure, and lipid profile. The results showed that the intervention group had a statistically significant improvement in WHR (p<0.001) and visceral fat components (p<0.001) compared to the control group. Furthermore, there were statistically significant improvements in systolic blood pressure (p=0.015) and total cholesterol (p=0.034) in the intervention group compared to the control group. These findings suggest that implementing a 12-week program that includes dietary counseling, physical activity recommendations, and stress management techniques can effectively improve WHR, visceral fat components, and cardiovascular health among shift workers in an offshore petrochemical company.

Keywords: body composition, waist-hip-ratio, visceral fat, shift worker, work efficiency

Procedia PDF Downloads 75
5823 Estimation of Bio-Kinetic Coefficients for Treatment of Brewery Wastewater

Authors: Abimbola M. Enitan, J. Adeyemo

Abstract:

Anaerobic modeling is a useful tool to describe and simulate the condition and behaviour of anaerobic treatment units for better effluent quality and biogas generation. The present investigation deals with the anaerobic treatment of brewery wastewater with varying organic loads. The chemical oxygen demand (COD) and total suspended solids (TSS) of the influent and effluent of the bioreactor were determined at various retention times to generate data for kinetic coefficients. The bio-kinetic coefficients in the modified Stover–Kincannon kinetic and methane generation models were determined to study the performance of anaerobic digestion process. At steady-state, the determination of the kinetic coefficient (K), the endogenous decay coefficient (Kd), the maximum growth rate of microorganisms (µmax), the growth yield coefficient (Y), ultimate methane yield (Bo), maximum utilization rate constant Umax and the saturation constant (KB) in the model were calculated to be 0.046 g/g COD, 0.083 (dˉ¹), 0.117 (d-¹), 0.357 g/g, 0.516 (L CH4/gCODadded), 18.51 (g/L/day) and 13.64 (g/L/day) respectively. The outcome of this study will help in simulation of anaerobic model to predict usable methane and good effluent quality during the treatment of industrial wastewater. Thus, this will protect the environment, conserve natural resources, saves time and reduce cost incur by the industries for the discharge of untreated or partially treated wastewater. It will also contribute to a sustainable long-term clean development mechanism for the optimization of the methane produced from anaerobic degradation of waste in a close system.

Keywords: brewery wastewater, methane generation model, environment, anaerobic modeling

Procedia PDF Downloads 261
5822 Investigation of Processing Conditions on Rheological Features of Emulsion Gels and Oleogels Stabilized by Biopolymers

Authors: M. Sarraf, J. E. Moros, M. C. Sánchez

Abstract:

Oleogels are self-standing systems that are able to trap edible liquid oil into a tridimensional network and also help to use less fat by forming crystallization oleogelators. There are different ways to generate oleogelation and oil structuring, including direct dispersion, structured biphasic systems, oil sorption, and indirect method (emulsion-template). The selection of processing conditions as well as the composition of the oleogels is essential to obtain a stable oleogel with characteristics suitable for its purpose. In this sense, one of the ingredients widely used in food products to produce oleogels and emulsions is polysaccharides. Basil seed gum (BSG), with the scientific name Ocimum basilicum, is a new native polysaccharide with high viscosity and pseudoplastic behavior because of its high molecular weight in the food industry. Also, proteins can stabilize oil in water due to the presence of amino and carboxyl moieties that result in surface activity. Whey proteins are widely used in the food industry due to available, cheap ingredients, nutritional and functional characteristics such as emulsifier and a gelling agent, thickening, and water-binding capacity. In general, the interaction of protein and polysaccharides has a significant effect on the food structures and their stability, like the texture of dairy products, by controlling the interactions in macromolecular systems. Using edible oleogels as oil structuring helps for targeted delivery of a component trapped in a structural network. Therefore, the development of efficient oleogel is essential in the food industry. A complete understanding of the important points, such as the ratio oil phase, processing conditions, and concentrations of biopolymers that affect the formation and stability of the emulsion, can result in crucial information in the production of a suitable oleogel. In this research, the effects of oil concentration and pressure used in the manufacture of the emulsion prior to obtaining the oleogel have been evaluated through the analysis of droplet size and rheological properties of obtained emulsions and oleogels. The results show that the emulsion prepared in the high-pressure homogenizer (HPH) at higher pressure values has smaller droplet sizes and a higher uniformity in the size distribution curve. On the other hand, in relation to the rheological characteristics of the emulsions and oleogels obtained, the predominantly elastic character of the systems must be noted, as they present values of the storage modulus higher than those of losses, also showing an important plateau zone, typical of structured systems. In the same way, if steady-state viscous flow tests have been analyzed on both emulsions and oleogels, the result is that, once again, the pressure used in the homogenizer is an important factor for obtaining emulsions with adequate droplet size and the subsequent oleogel. Thus, various routes for trapping oil inside a biopolymer matrix with adjustable mechanical properties could be applied for the creation of the three-dimensional network in order to the oil absorption and creating oleogel.

Keywords: basil seed gum, particle size, viscoelastic properties, whey protein

Procedia PDF Downloads 61
5821 Design and Simulation of Low Cost Boost-Half- Bridge Microinverter with Grid Connection

Authors: P. Bhavya, P. R. Jayasree

Abstract:

This paper presents a low cost transformer isolated boost half bridge micro-inverter for single phase grid connected PV system. Since the output voltage of a single PV panel is as low as 20~50V, a high voltage gain inverter is required for the PV panel to connect to the single-phase grid. The micro-inverter has two stages, an isolated dc-dc converter stage and an inverter stage with a dc link. To achieve MPPT and to step up the PV voltage to the dc link voltage, a transformer isolated boost half bridge dc-dc converter is used. To output the synchronised sinusoidal current with unity power factor to the grid, a pulse width modulated full bridge inverter with LCL filter is used. Variable step size Maximum Power Point Tracking (MPPT) method is adopted such that fast tracking and high MPPT efficiency are both obtained. AC voltage as per grid requirement is obtained at the output of the inverter. High power factor (>0.99) is obtained at both heavy and light loads. This paper gives the results of computer simulation program of a grid connected solar PV system using MATLAB/Simulink and SIM Power System tool.

Keywords: boost-half-bridge, micro-inverter, maximum power point tracking, grid connection, MATLAB/Simulink

Procedia PDF Downloads 334
5820 Behavior of GRS Abutment Facing under Variable Cycles of Lateral Excitation through Physical Model Tests

Authors: Ashutosh Verma, Satyendra Mittal

Abstract:

Numerous geosynthetic reinforced soil (GRS) abutment failures over the years have been attributed to the loss of strength at the facing-reinforcement interface due to seasonal thermal expansion/contraction of the bridge deck. This causes excessive settlement below the bridge seat, causing bridge bumps along the approach road which reduces the design life of any abutment. Before designers while choosing the type of facing, a broad range of facing configurations are undoubtedly available. Generally speaking, these configurations can be divided into three groups: modular (panels/block), continuous, and full height rigid (FHR). The purpose of the current study is to use 1g physical model tests under serviceable cyclic lateral displacements to experimentally investigate the behaviour of these three facing classifications. To simulate field behaviour, a field instrumented GRS abutment prototype was modeled into a N scaled down 1g physical model (N = 5) with adjustable facing arrangements to represent these three facing classifications. For cyclic lateral displacement (d/H) of top facing at loading rate of 1mm/min, the peak earth pressure coefficient (K) on the facing and vertical settlement of the footing (s/B) at 25, 50, 75 and 100 cycles have been measured. For a constant footing offset of x/H = 0.1, three forms of cyclic displacements have been performed to simulate active condition (CA), passive condition (CP), and active-passive condition (CAP). The findings showed that when reinforcements are integrated into the wall along with presence of gravel gabions i.e. FHR design, a rather substantial earth pressure occurs over the facing. Despite this, the FHR facing's continuous nature works in conjunction with the reinforcements' membrane resilience to reduce footing settlement. On the other hand, the pressure over the wall is released upon lateral excitation by the relative displacement between the panels in modular facing reducing the connection strength at the interface and leading to greater settlements below footing. On the contrary, continuous facing do not exhibit relative displacement along the depth of facing rather fails through rotation about the base, which extends the zone of active failure in the backfill leading to large depressions in the backfill region around the bridge seat. Conservatively, FHR facing shows relatively stable responses under lateral cyclic excitations as compared to modular or continuous type of abutment facing.

Keywords: GRS abutments, 1g physical model, full height rigid, cyclic lateral displacement

Procedia PDF Downloads 74
5819 Association of Preoperative Pain Catastrophizing with Postoperative Pain after Lower Limb Trauma Surgery

Authors: Asish Subedi, Krishna Pokharel, Birendra Prasad Sah, Pashupati Chaudhary

Abstract:

Objectives: To evaluate an association between preoperative Nepali pain catastrophizing scale (N-PCS) scores and postoperative pain intensity and total opioid consumption. Methods: In this prospective cohort study we enrolled 135 patients with an American Society of Anaesthesiologists physical status I or II, aged between 18 and 65 years, and scheduled for surgery for lower-extremity fracture under spinal anaesthesia. Maximum postoperative pain reported during the 24 h was classified into two groups, no-mild pain group (Numeric rating scale [NRS] scores 1 to 3) and a moderate-severe pain group (NRS 4-10). The Spearman correlation coefficient was used to compare the association between the baseline N-PCS scores and outcome variables, i.e., the maximum NRS pain score and the total tramadol consumption within the first 24 h after surgery. Logistic regression models were used to identify the predictors for the intensity of postoperative pain. Results: As four patients violated the protocol, the data of 131 patients were analysed. Mean N-PCS scores reported by the moderate-severe pain group was 27.39 ±9.50 compared to 18.64 ±10 mean N-PCS scores by the no-mild pain group (p<0.001). Preoperative PCS scores correlated positively with postoperative pain intensity (r =0.39, [95% CI 0.23-0.52], p<0.001) and total tramadol consumption (r =0.32, [95% CI 0.16-0.47], p<0.001). An increase in catastrophizing scores was associated with postoperative moderate-severe pain (odds ratio, 1.08 [95% confidence interval, 1.02-1.15], p=0.006) after adjusting for gender, ethnicity and preoperative anxiety. Conclusion: Patients who reported higher pain catastrophizing preoperatively were at increased risk of experiencing moderate-severe postoperative pain.

Keywords: nepali, pain catastrophizing, postoperative pain, trauma

Procedia PDF Downloads 116
5818 Accelerated Carbonation of Construction Materials by Using Slag from Steel and Metal Production as Substitute for Conventional Raw Materials

Authors: Karen Fuchs, Michael Prokein, Nils Mölders, Manfred Renner, Eckhard Weidner

Abstract:

Due to the high CO₂ emissions, the energy consumption for the production of sand-lime bricks is of great concern. Especially the production of quicklime from limestone and the energy consumption for hydrothermal curing contribute to high CO₂ emissions. Hydrothermal curing is carried out under a saturated steam atmosphere at about 15 bar and 200°C for 12 hours. Therefore, we are investigating the opportunity to replace quicklime and sand in the production of building materials with different types of slag as calcium-rich waste from steel production. We are also investigating the possibility of substituting conventional hydrothermal curing with CO₂ curing. Six different slags (Linz-Donawitz (LD), ferrochrome (FeCr), ladle (LS), stainless steel (SS), ladle furnace (LF), electric arc furnace (EAF)) provided by "thyssenkrupp MillServices & Systems GmbH" were ground at "Loesche GmbH". Cylindrical blocks with a diameter of 100 mm were pressed at 12 MPa. The composition of the blocks varied between pure slag and mixtures of slag and sand. The effects of pressure, temperature, and time on the CO₂ curing process were studied in a 2-liter high-pressure autoclave. Pressures between 0.1 and 5 MPa, temperatures between 25 and 140°C, and curing times between 1 and 100 hours were considered. The quality of the CO₂-cured blocks was determined by measuring the compressive strength by "Ruhrbaustoffwerke GmbH & Co. KG." The degree of carbonation was determined by total inorganic carbon (TIC) and X-ray diffraction (XRD) measurements. The pH trends in the cross-section of the blocks were monitored using phenolphthalein as a liquid pH indicator. The parameter set that yielded the best performing material was tested on all slag types. In addition, the method was scaled to steel slag-based building blocks (240 mm x 115 mm x 60 mm) provided by "Ruhrbaustoffwerke GmbH & Co. KG" and CO₂-cured in a 20-liter high-pressure autoclave. The results show that CO₂ curing of building blocks consisting of pure wetted LD slag leads to severe cracking of the cylindrical specimens. The high CO₂ uptake leads to an expansion of the specimens. However, if LD slag is used only proportionally to replace quicklime completely and sand proportionally, dimensionally stable bricks with high compressive strength are produced. The tests to determine the optimum pressure and temperature show 2 MPa and 50°C as promising parameters for the CO₂ curing process. At these parameters and after 3 h, the compressive strength of LD slag blocks reaches the highest average value of almost 50 N/mm². This is more than double that of conventional sand-lime bricks. Longer CO₂ curing times do not result in higher compressive strengths. XRD and TIC measurements confirmed the formation of carbonates. All tested slag-based bricks show higher compressive strengths compared to conventional sand-lime bricks. However, the type of slag has a significant influence on the compressive strength values. The results of the tests in the 20-liter plant agreed well with the results of the 2-liter tests. With its comparatively moderate operating conditions, the CO₂ curing process has a high potential for saving CO₂ emissions.

Keywords: CO₂ curing, carbonation, CCU, steel slag

Procedia PDF Downloads 101
5817 Revealing the Sustainable Development Mechanism of Guilin Tourism Based on Driving Force/Pressure/State/Impact/Response Framework

Authors: Xiujing Chen, Thammananya Sakcharoen, Wilailuk Niyommaneerat

Abstract:

China's tourism industry is in a state of shock and recovery, although COVID-19 has brought great impact and challenges to the tourism industry. The theory of sustainable development originates from the contradiction of increasing awareness of environmental protection and the pursuit of economic interests. The sustainable development of tourism should consider social, economic, and environmental factors and develop tourism in a planned and targeted way from the overall situation. Guilin is one of the popular tourist cities in China. However, there exist several problems in Guilin tourism, such as low quality of scenic spot construction and low efficiency of tourism resource development. Due to its unwell-managed, Guilin's tourism industry is facing problems such as supply and demand crowding pressure for tourists. According to the data from 2009 to 2019, there is a change in the degree of sustainable development of Guilin tourism. This research aimed to evaluate the sustainable development state of Guilin tourism using the DPSIR (driving force/pressure/state/impact/response) framework and to provide suggestions and recommendations for sustainable development in Guilin. An improved TOPSIS (technology for order preference by similarity to an ideal solution) model based on the entropy weights relationship is applied to the quantitative analysis and to analyze the mechanisms of sustainable development of tourism in Guilin. The DPSIR framework organizes indicators into sub-five categories: of which twenty-eight indicators related to sustainable aspects of Guilin tourism are classified. The study analyzed and summarized the economic, social, and ecological effects generated by tourism development in Guilin from 2009-2019. The results show that the conversion rate of tourism development in Guilin into regional economic benefits is more efficient than that into social benefits. Thus, tourism development is an important driving force of Guilin's economic growth. In addition, the study also analyzed the static weights of 28 relevant indicators of sustainable development of tourism in Guilin and ranked them from largest to smallest. Then it was found that the economic and social factors related to tourism revenue occupy the highest weight, which means that the economic and social development of Guilin can influence the sustainable development of Guilin tourism to a greater extent. Therefore, there is a two-way causal relationship between tourism development and economic growth in Guilin. At the same time, ecological development-related indicators also have relatively large weights, so ecological and environmental resources also have a great influence on the sustainable development of Guilin tourism.

Keywords: DPSIR framework, entropy weights analysis, sustainable development of tourism, TOPSIS analysis

Procedia PDF Downloads 89
5816 Biofuel Potential and Invasive Species Control: Exploring Prosopis Juliflora Pod Mash for Sustainable Energy Production

Authors: Mebrahtu Haile

Abstract:

Fuels obtained from renewable resources have garnered significant enthusiasm in recent decades due to concerns about fossil fuel depletion and climate change. This study aimed to investigate the potential of Prosopis juliflora pods mash for bio-ethanol production and its hydrolysis solid waste for solid fuel. Various parameters, such as acid concentration, hydrolysis times, fermentation times, fermentation temperature, and pH, were evaluated for their impact on bio-ethanol production using Saccharomyces cerevisiae yeast. The results showed that increasing acid concentration (up to 1 molar H₂SO₄) led to an increase in sugar content, reaching a maximum of 96.13%v/v. Optimal conditions for bio-ethanol production were found at 1 molar H₂SO₄ concentration (4.2%v/v), 48 hours fermentation time (5.1%v/v), 20 minutes hydrolysis time (5.57%v/v), 30°C fermentation temperature (5.57%v/v), and pH 5 (6.01%v/v), resulting in a maximum bio-ethanol yield of 6.01%v/v. The solid waste remaining after bio-ethanol production exhibited potential for use as a solid fuel, with a calorific value of 18.22 MJ/kg. These findings demonstrate the promising potential of Prosopis juliflora pods mash for bio-ethanol production and suggest a viable solution for addressing disposal challenges associated with solid waste, contributing to the exploration of renewable fuel sources in the face of fossil fuel depletion and climate change.

Keywords: prosopis juliflora, pods mash, invasive species, bio-ethanol, fermentation, Saccharomyces cerevisiae, solid fuel

Procedia PDF Downloads 26
5815 Classification of Hyperspectral Image Using Mathematical Morphological Operator-Based Distance Metric

Authors: Geetika Barman, B. S. Daya Sagar

Abstract:

In this article, we proposed a pixel-wise classification of hyperspectral images using a mathematical morphology operator-based distance metric called “dilation distance” and “erosion distance”. This method involves measuring the spatial distance between the spectral features of a hyperspectral image across the bands. The key concept of the proposed approach is that the “dilation distance” is the maximum distance a pixel can be moved without changing its classification, whereas the “erosion distance” is the maximum distance that a pixel can be moved before changing its classification. The spectral signature of the hyperspectral image carries unique class information and shape for each class. This article demonstrates how easily the dilation and erosion distance can measure spatial distance compared to other approaches. This property is used to calculate the spatial distance between hyperspectral image feature vectors across the bands. The dissimilarity matrix is then constructed using both measures extracted from the feature spaces. The measured distance metric is used to distinguish between the spectral features of various classes and precisely distinguish between each class. This is illustrated using both toy data and real datasets. Furthermore, we investigated the role of flat vs. non-flat structuring elements in capturing the spatial features of each class in the hyperspectral image. In order to validate, we compared the proposed approach to other existing methods and demonstrated empirically that mathematical operator-based distance metric classification provided competitive results and outperformed some of them.

Keywords: dilation distance, erosion distance, hyperspectral image classification, mathematical morphology

Procedia PDF Downloads 78
5814 Adsorption and Transformation of Lead in Coimbatore Urban Soils

Authors: K. Sivasubramanin, S. Mahimairaja, S. Pavithrapriya

Abstract:

Heavy metal pollution originating from industrial wastes is becoming a serious problem in many urban environments. These heavy metals, if not properly managed, could enter into the food chain and cause a serious health hazards in animals and humans. Industrial wastes, sewage sludge, and automobile emissions also contribute to heavy metal like Pb pollution in the urban environment. However, information is scarce on the heavy metal pollution in Coimbatore urban environment. Therefore, the current study was carried out to examine the extent of lead pollution in Coimbatore urban environment the maximum Pb concentration in Coimbatore urban environment was found in ukkadam, whose concentration in soils 352 mg kg-1. In many places, the Pb concentration was found exceeded the permissible limit of 100 mg kg-1. In laboratory, closed incubation experiment showed that the concentration of different species of Pb viz., water soluble Pb(H2O-Pb), exchangeable Pb(KNO3-Pb), organic-Pb(NaOH-Pb), and organic plus metal (Fe & Al) oxides bound-Pb(Na2 EDTA-Pb) was found significantly increased during the 15 days incubation, mainly due to biotransformation processes. Both the moisture content of soil and ambient temperature exerted a profound influence on the transformation of Pb. The results of a batch experiment has shown that the sorption data was adequately described by the Freundlich equation as indicated by the high correlation coefficients (R2= 0.64) than the Langmuir equation (R2 = 0.33). A maximum of 86 mg of Pb was found adsorbed per kilogram of soil. Consistently, a soil column experiment result had shown that only a small amount of Pb( < 1.0 µg g-1 soil) alone was found leached from the soil. This might be due to greater potential of the soil towards Pb adsorption.

Keywords: lead pollution, adsorption, transformation, heavy metal pollution

Procedia PDF Downloads 320
5813 Propranalol is Not Effective in Preventing the Progression to Severe Portal Hypertensive Gastropathy in Cirrhotic Patients who Had Undergone Variceal Eradication: A Randomised Controlled Trial

Authors: Jeffey George, Varghese Thomas

Abstract:

Background and Objectives: PHG is an important source of gastrointestinal bleeding in patients with portal hypertension. Aim: To assess the progression to severe portal hypertensive gastropathy(PHG) in patients with cirrhosis who were treated with maximum tolerated dose of propranalol, after variceal eradication to grade II or below. Methods: Cirrhotic patients(child A and B) presenting with upper gastrointestinal bleeding with endoscopic findings of mild or no PHG were followed up over 6 months after variceal eradication to assess the progression to severe PHG. Included patients were randomised to either maximum tolerated doses of propranalol (group A) or to no treatment (group B). Primary end point of the study were the development of gastrointestinal bleed, evidence of hepatic decompensation and death. Progression to severe PHG were compared between the two groups. Results: 56 patients (49 males) were enrolled (group A = 28, group B = 28). 8 patients were excluded from final analysis (gi bleed=5, encephalopathy=2,HCC=1 including 4 deaths).3 patients were lost to follow-up, and 1 developed intolerance to propranalol. Mean dose of propranalol used was 60 mg per day. Progression to severe PHG in the fundus over 6 months was 23.8% in group A versus 15.8 % in group B (p = 0.52). Severe PHG was noted in body in 14.3% in group A versus 21.1% in group B (p = 0.57). 23.8 % in group A had progression to severe PHG compared with 15.8 % in group B (p =0.52). There was no statistically significant difference in the progression of PHG between the two groups(p=0.43). Conclusion: In this short term study propranalol was found not to prevent the progression to severe portal hypertensive gastropathy in cirrhotic patients who had undergone endotherapy for esophageal varices.

Keywords: propranalol, portal hypertensive gastropathy, cirrhotic patients, gastroenterology

Procedia PDF Downloads 339
5812 Experimental Study on Performance of a Planar Membrane Humidifier for a Proton Exchange Membrane Fuel Cell Stack

Authors: Chen-Yu Chen, Wei-Mon Yan, Chi-Nan Lai, Jian-Hao Su

Abstract:

The proton exchange membrane fuel cell (PEMFC) becomes more important as an alternative energy source recently. Maintaining proper water content in the membrane is one of the key requirements for optimizing the PEMFC performance. The planar membrane humidifier has the advantages of simple structure, low cost, low-pressure drop, light weight, reliable performance and good gas separability. Thus, it is a common external humidifier for PEMFCs. In this work, a planar membrane humidifier for kW-scale PEMFCs is developed successfully. The heat and mass transfer of humidifier is discussed, and its performance is analyzed in term of dew point approach temperature (DPAT), water vapor transfer rate (WVTR) and water recovery ratio (WRR). The DPAT of the humidifier with the counter flow approach reaches about 6°C under inlet dry air of 50°C and 60% RH and inlet humid air of 70°C and 100% RH. The rate of pressure loss of the humidifier is 5.0×10² Pa/min at the torque of 7 N-m, which reaches the standard of commercial planar membrane humidifiers. From the tests, it is found that increasing the air flow rate increases the WVTR. However, the DPAT and the WRR are not improved by increasing the WVTR as the air flow rate is higher than the optimal value. In addition, increasing the inlet temperature or the humidity of dry air decreases the WVTR and the WRR. Nevertheless, the DPAT is improved at elevated inlet temperatures or humidities of dry air. Furthermore, the performance of the humidifier with the counter flow approach is better than that with the parallel flow approach. The DPAT difference between the two flow approaches reaches up to 8 °C.

Keywords: heat and mass transfer, humidifier performance, PEM fuel cell, planar membrane humidifier

Procedia PDF Downloads 302
5811 Computational Analysis of Cavity Effect over Aircraft Wing

Authors: P. Booma Devi, Dilip A. Shah

Abstract:

This paper seeks the potentials of studying aerodynamic characteristics of inward cavities called dimples, as an alternative to the classical vortex generators. Increasing stalling angle is a greater challenge in wing design. But our examination is primarily focused on increasing lift. In this paper, enhancement of lift is mainly done by introduction of dimple or cavity in a wing. In general, aircraft performance can be enhanced by increasing aerodynamic efficiency that is lift to drag ratio of an aircraft wing. Efficiency improvement can be achieved by improving the maximum lift co-efficient or by reducing the drag co-efficient. At the time of landing aircraft, high angle of attack may lead to stalling of aircraft. To avoid this kind of situation, increase in the stalling angle is warranted. Hence, improved stalling characteristic is the best way to ease landing complexity. Computational analysis is done for the wing segment made of NACA 0012. Simulation is carried out for 30 m/s free stream velocity over plain airfoil and different types of cavities. The wing is modeled in CATIA V5R20 and analyses are carried out using ANSYS CFX. Triangle and square shapes are used as cavities for analysis. Simulations revealed that cavity placed on wing segment shows an increase of maximum lift co-efficient when compared to normal wing configuration. Flow separation is delayed at downstream of the wing by the presence of cavities up to a particular angle of attack.

Keywords: lift, drag reduce, square dimple, triangle dimple, enhancement of stall angle

Procedia PDF Downloads 342
5810 The Effect Training Program on Mixed Contractions on Both the Maximum Force and Explosive Force of the Lower Limbs Conducted Study to the Football Players Under the Age of 17 Years-Tiaret, Algeria

Authors: Saidia Houari

Abstract:

The game of football is one of the global sports activities that have witnessed a remarkable development in recent years in the physical, technical, rhetorical and psychological aspects, so the modern play in different teams and international teams quickly and forcefully in the exact technical performance, and this is due to the interest of international coaches. The good training of the players during the youth stage at the level of various aspects to develop all the techniques that have a great effectiveness in competitions according to scientific methods studied. The muscle strength plays a very important role achieving the performance player during the game and it is clear the need for the player in many situations, especially when jumping to hit the ball head or the goal on the goal or long passes of different types and in the performance of various skills by force and speed appropriate to the possession of the ball or the control of the court of the court while overcoming the body weight during the game it is known that the stronger the muscles of the athlete and the reduced joints injuries, and the strength increases energy saving such as Latin phosphate and glycogen, and develop the player for a game football volitional qualities of the most important of courage, determination And self-confidence. There are also some skill movements that can not be performed without a certain level of strength, so the development of power may affect the effectiveness of the long-term training system.

Keywords: trainning program, maximum force and expolosive force, lowers limbs, under 17 years

Procedia PDF Downloads 96
5809 Relocating Migration for Higher Education: Analytical Account of Students' Perspective

Authors: Sumit Kumar

Abstract:

The present study aims to identify the factors responsible for the internal migration of students other than push & pull factors; associated with the source region and destination region, respectively, as classified in classical geography. But in this classification of factors responsible for the migration of students, an agency of individual and the family he/she belongs to, have not been recognized which has later become the centre of the argument for describing and analyzing migration in New Economic theory of migration and New Economics of labour migration respectively. In this backdrop, the present study aims to understand the agency of an individual and the family members regarding one’s migration for higher education. Therefore, this study draws upon New Economic theory of migration and New Economics of labour migration for identifying the agency of individual or family in the context of migration. Further, migration for higher education consists not only the decision to migrate but also where to migrate (location), which university, which college and which course to pursue, also. In order to understand the role of various individuals at various stage of student migration, present study seeks help from the social networking approach for migration which identifies the individuals who facilitate the process of migration by reducing negative externalities of migration through sharing information and various other sorts of help to the migrant. Furthermore, this study also aims to rank those individuals who have helped migrants at various stages of migration for higher education in taking a decision, along with the factors responsible for their migration on the basis of their perception. In order to fulfill the above mentioned objectives of this study, quantification of qualitative data (perception of respondents) has been done employing through frequency distribution analysis. Qualitative data has been collected at two levels but questionnaire survey was the tool for data collection at both the occasions. Twenty five students who have migrated to other state for the purpose of higher education have been approached for pre-questionnaire survey consisting open-ended questions while one hundred students belonging to the same clientele have been approached for questionnaire survey consisting close-ended questions. This study has identified social pressure, peer group pressure and parental pressure; variables not constituting push & pull factors, very important for students’ migration. They have been even assigned better ranked by the respondents than push factors. Further, self (migrant themselves) have been ranked followed by parents by the respondents when it comes to take various decisions attached with the process of migration. Therefore, it can be said without sounding cynical that there are other factors other than push & pull factors which do facilitate the process of migration for higher education not only at the level to migrate but also at other levels intrinsic to the process of migration for higher education.

Keywords: agency, migration for higher education, perception, push and pull factors

Procedia PDF Downloads 237
5808 Response of Summer Sesame to Irrigation Regimes and Nitrogen Levels

Authors: Kalpana Jamdhade, Anita Chorey, Bharti Tijare, V. M. Bhale

Abstract:

A field experiment was conducted during summer season of 2011 at Agronomy research farm, Dr. PDKV, Akola, to study the effect of irrigation regime and nitrogen levels on growth and productivity of summer sesame. The experiment was laid out in split plot Design in which three irrigation scheduling on the basis of IW/CPE ratio viz., irrigation at 0.6, 0.8 and 1.0 IW/CPE ratios (I1, I2 and I3, respectively) and one irrigation scheduling based on critical growth stages of sesame (I4), in main plot and three nitrogen levels 0, 30 and 60 kg N ha-1 (N0, N1 and N2, respectively) in subplot. The result showed that plant height, number of leaves plant-1, leaf area and dry matter accumulation were maximum in irrigation scheduling at 1.0 IW/CPE ratio, which significantly superior over 0.6 IW/CPE ratio and irrigation at critical growth stages but were statistically at par with irrigation at 0.8 IW/CPE ratio. Nitrogen levels, application of 60 kg N ha-1 was recorded significantly superior all growth parameters over treatment 30 kg N ha-1 and 0 kg N ha-1. In case of yield attributes viz., No. of capsules plant-1, Test wt., grain yield and Stalk yield (qha-1) were maximum in irrigation scheduling at 1.0 IW/CPE ratio and were significantly superior over 0.8 IW/CPE ratio, 0.6 IW/CPE ratio and irrigation at critical growth stages. Application of 60 kg N ha-1 increased all yield attributing characters over application of 30 and 0 kg N ha-1. In case of economics of crop same trend was found and the highest B:C ration was obtained in irrigation scheduling at 1.0 IW/CPE ratio. Whereas, application of 30 kg N ha-1 was recorded highest B:C ration over application of 60 and 0 kg N ha-1. Interaction effect of irrigation and nitrogen levels were found to be non significant in summer season.

Keywords: irrigation regimes, nitrogen levels, summer sesame, agricultural technology

Procedia PDF Downloads 360
5807 Artificial Intelligence in the Design of a Retaining Structure

Authors: Kelvin Lo

Abstract:

Nowadays, numerical modelling in geotechnical engineering is very common but sophisticated. Many advanced input settings and considerable computational efforts are required to optimize the design to reduce the construction cost. To optimize a design, it usually requires huge numerical models. If the optimization is conducted manually, there is a potentially dangerous consequence from human errors, and the time spent on the input and data extraction from output is significant. This paper presents an automation process introduced to numerical modelling (Plaxis 2D) of a trench excavation supported by a secant-pile retaining structure for a top-down tunnel project. Python code is adopted to control the process, and numerical modelling is conducted automatically in every 20m chainage along the 200m tunnel, with maximum retained height occurring in the middle chainage. Python code continuously changes the geological stratum and excavation depth under groundwater flow conditions in each 20m section. It automatically conducts trial and error to determine the required pile length and the use of props to achieve the required factor of safety and target displacement. Once the bending moment of the pile exceeds its capacity, it will increase in size. When the pile embedment reaches the default maximum length, it will turn on the prop system. Results showed that it saves time, increases efficiency, lowers design costs, and replaces human labor to minimize error.

Keywords: automation, numerical modelling, Python, retaining structures

Procedia PDF Downloads 47
5806 Future Projection of Glacial Lake Outburst Floods Hazard: A Hydrodynamic Study of the Highest Lake in the Dhauliganga Basin, Uttarakhand

Authors: Ashim Sattar, Ajanta Goswami, Anil V. Kulkarni

Abstract:

Glacial lake outburst floods (GLOF) highly contributes to mountain hazards in the Himalaya. Over the past decade, high altitude lakes in the Himalaya has been showing notable growth in their size and number. The key reason is rapid retreat of its glacier front. Hydrodynamic modeling GLOF using shallow water equations (SWE) would result in understanding its impact in the downstream region. The present study incorporates remote sensing based ice thickness modeling to determine the future extent of the Dhauliganga Lake to map the over deepening extent around the highest lake in the Dhauliganga basin. The maximum future volume of the lake calculated using area-volume scaling is used to model a GLOF event. The GLOF hydrograph is routed along the channel using one dimensional and two dimensional model to understand the flood wave propagation till it reaches the 1st hydropower station located 72 km downstream of the lake. The present extent of the lake calculated using SENTINEL 2 images is 0.13 km². The maximum future extent of the lake, mapped by investigating the glacier bed has a calculated scaled volume of 3.48 x 106 m³. The GLOF modeling releasing the future volume of the lake resulted in a breach hydrograph with a peak flood of 4995 m³/s at just downstream of the lake. Hydraulic routing

Keywords: GLOF, glacial lake outburst floods, mountain hazard, Central Himalaya, future projection

Procedia PDF Downloads 157
5805 Nutritional Evaluation of Different Quercus Species in Temperate Regions of Himachal Pradesh

Authors: Ankush Verma, Rohit Bishist

Abstract:

The present investigation was carried out at different locations of Shimla and Kinnaur district and nutrient analysis was done in the laboratory of Department of Silviculture and Agroforestry, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Distt. Solan, Himachal Pradesh during 2019-2020 with the objectives to study the seasonal variation in the nutritive value of different Quercus species and to study the farmers’ preference rating of fodder tress species. From each location leaf samples were collected at 3 months interval from each Quercus spp. The findings of the present study revealed that the nutritional traits of leaves of different Quercus species varied among different seasons throughout the year. The dry matter (61.12 to 64.99%), ether extract (4.07 to 4.42%), crude fibre (34.38 to 37.85%), neutral detergent fibre (57.70 to 61.54%), acid detergent fibre (44.64 to 48.51%), total ash (3.57 to 3.91%), acid insoluble ash (44.64 to 48.51%) and calcium (1.31 to 1.53%) increased with the maturity in the leaves of different Quercus species. While, crude protein (9.10 to 10.61%), nitrogen free extract (44.73 to 47.41%), organic matter (96.09 to 96.43%), and phosphorus (0.16 to 0.31%) decreased with the advancing maturity in the leaves of different Quercus species. Maximum mean values for dry matter (65.05%), ether extract (4.45%), crude fibre (40.82%), neutral detergent fibre (61.48%), acid detergent fibre (48.44%), and organic matter (96.67%) among different Quercus species were recorded in Quercus ilex, while, Maximum mean values for crude protein (10.54%), nitrogen free extract (50.53%), total ash (4.05%), acid insoluble ash (0.59%), calcium (1.61%) and phosphorus (0.40%) were recorded in Quercus leucotrichophora.

Keywords: nutritional evaluation, fodder species, crude protein, carbohydrates

Procedia PDF Downloads 77
5804 Numerical Simulation of the Dynamic Behavior of a LaNi5 Water Pumping System

Authors: Miled Amel, Ben Maad Hatem, Askri Faouzi, Ben Nasrallah Sassi

Abstract:

Metal hydride water pumping system uses hydrogen as working fluid to pump water for low head and high discharge. The principal operation of this pump is based on the desorption of hydrogen at high pressure and its absorption at low pressure by a metal hydride. This work is devoted to study a concept of the dynamic behavior of a metal hydride pump using unsteady model and LaNi5 as hydriding alloy. This study shows that with MHP, it is possible to pump 340l/kg-cycle of water in 15 000s using 1 Kg of LaNi5 at a desorption temperature of 360 K, a pumping head equal to 5 m and a desorption gear ratio equal to 33. This study reveals also that the error given by the steady model, using LaNi5 is about 2%.A dimensional mathematical model and the governing equations of the pump were presented to predict the coupled heat and mass transfer within the MHP. Then, a numerical simulation is carried out to present the time evolution of the specific water discharge and to test the effect of different parameters (desorption temperature, absorption temperature, desorption gear ratio) on the performance of the water pumping system (specific water discharge, pumping efficiency and pumping time). In addition, a comparison between results obtained with steady and unsteady model is performed with different hydride mass. Finally, a geometric configuration of the reactor is simulated to optimize the pumping time.

Keywords: dynamic behavior, LaNi5, performance of water pumping system, unsteady model

Procedia PDF Downloads 197
5803 A Transient Coupled Numerical Analysis of the Flow of Magnetorheological Fluids in Closed Domains

Authors: Wael Elsaady, S. Olutunde Oyadiji, Adel Nasser

Abstract:

The non-linear flow characteristics of magnetorheological (MR) fluids in MR dampers are studied via a coupled numerical approach that incorporates a two-phase flow model. The approach couples the Finite Element (FE) modelling of the damper magnetic circuit, with the Computational Fluid Dynamics (CFD) analysis of the flow field in the damper. The two-phase flow CFD model accounts for the effect of fluid compressibility due to the presence of liquid and gas in the closed domain of the damper. The dynamic mesh model included in ANSYS/Fluent CFD solver is used to simulate the movement of the MR damper piston in order to perform the fluid excitation. The two-phase flow analysis is studied by both Volume-Of-Fluid (VOF) model and mixture model that are included in ANSYS/Fluent. The CFD models show that the hysteretic behaviour of MR dampers is due to the effect of fluid compressibility. The flow field shows the distributions of pressure, velocity, and viscosity contours. In particular, it shows the high non-Newtonian viscosity in the affected fluid regions by the magnetic field and the low Newtonian viscosity elsewhere. Moreover, the dependence of gas volume fraction on the liquid pressure inside the damper is predicted by the mixture model. The presented approach targets a better understanding of the complicated flow characteristics of viscoplastic fluids that could be applied in different applications.

Keywords: viscoplastic fluid, magnetic FE analysis, computational fluid dynamics, two-phase flow, dynamic mesh, user-defined functions

Procedia PDF Downloads 171
5802 The Effect of Exercise, Reflexology and Chrome on Metabolic Syndrome

Authors: F. Arslan, S.D. Guven, A. Özcan, H. Vatansev, Ö. Taşgin

Abstract:

Weight, hypertension and dyslipidemia control and increased physical activity are required for the treatment of metabolic syndrome (METS). The purpose of this study was to investigate the effect of core exercise, reflexology and intake chrome picolinate on METS. This study comprised a twelve-week randomized controlled trial. A total of 25 university workers with metabolic risk factors participated in this study voluntarily. They were randomly divided into three groups: Those undertaking a core exercise program (n=7), reflexology intervention group (n=8) and intake chrome group (n=10). The subjects took part in a core exercise program for one hour per day, three days a week and a reflexology interfered for thirty minutes per day, one days a week and chrome group took chrome picolinate every day in week for twelve weeks. The components of metabolic syndrome were analyzed before and after the completion of all the intervention. There were significant differences at pre-prandial blood glucose in the core exercise group and at systolic blood pressure in chrome group after the twelve week interventions (p < 0.005). While High Density Lipoprotein (HDL) excluding the components of METS decreased after the interventions on the all groups; levels of HDL and the other components of METS decreased in reflexology group. There was a clear response to the twelve-week interventions in terms of METS control. Besides, the reflexology intervention should not be applied to individuals with low HDL levels and core exercise and intake chrome picolinate suggested to improve the components of METS.

Keywords: blood pressure, body mass index, exercise, METS, pre-prandial blood glucose

Procedia PDF Downloads 441
5801 Distribution and Population Status of Canis spp. Threats and Conservation in Lehri Nature Park, Salt Range, District Jhelum

Authors: Muhammad Saad, AzherBaig, Anwar Maqsood, Muhammad Waseem

Abstract:

The grey wolf has been ranked endangered and Asiatic jackal as near threatened in Pakistan. Scientific data on population and threats to these species are not available in Pakistan, which is required for their proper management and conservation. The present study was conducted to collect data on distribution range, population status and threats to both of these Canis species in Lehri Nature Park. The data were collected using direct observations and indirect signs in the field. The population of grey wolf and Asiatic jackal were scattered into pocket of the study area and its surroundings. The current population of grey wolf was estimated 06 individuals and that of Asiatic jackal 28 individuals in the study area. The present study showed that grey wolf and Asiatic jackal were distributed in the northern and southern part of the study area having dense vegetation cover of tress and shrub between the altitudes of 330 m and 515 m. The research finding revealed that the scrub forest is the most preferred habitat of both the species but due to anthropogenic pressure the scrub forest is under severe threat. The dominant trees species were Acacia modesta, Zizyphus nummularia, and Prosopis juliflora and shrubs species of Dodonea-viscosa, Calotropis procera and Adhatoda vasica. Urial is one of the natural prey species: their population is low due to a number of reasons and therefore the maximum dependence of the wolves was on the livestock of the local and nomadic shepherds. The main prey species in the livestock was goats and sheep. The interviews were conducted with the eye witnesses of wolf attacks including livestock being killed by 5-6 numbers of wolves in different hamlets in the study area. The killing rate of the livestock by the wolves was greater when the nomadic shepherds were present in the area and decreased when they left the area. Presence of nomadic shepherds and killing rate has relation with the shifting of the wolves from the study area. It is further concluded that the population of the grey wolf and Asiatic jackal has decreased over time due to less availability of the natural prey species and habitat destruction.

Keywords: wildlife ecology, population conservation, rehabilitation, conservation

Procedia PDF Downloads 497
5800 Optimization Based Design of Decelerating Duct for Pumpjets

Authors: Mustafa Sengul, Enes Sahin, Sertac Arslan

Abstract:

Pumpjets are one of the marine propulsion systems frequently used in underwater vehicles nowadays. The reasons for frequent use of pumpjet as a propulsion system are that it has higher relative efficiency at high speeds, better cavitation, and acoustic performance than its rivals. Pumpjets are composed of rotor, stator, and duct, and there are two different types of pumpjet configurations depending on the desired hydrodynamic characteristic, which are with accelerating and decelerating duct. Pumpjet with an accelerating channel is used at cargo ships where it works at low speeds and high loading conditions. The working principle of this type of pumpjet is to maximize the thrust by reducing the pressure of the fluid through the channel and throwing the fluid out from the channel with high momentum. On the other hand, for decelerating ducted pumpjets, the main consideration is to prevent the occurrence of the cavitation phenomenon by increasing the pressure of the fluid about the rotor region. By postponing the cavitation, acoustic noise naturally falls down, so decelerating ducted systems are used at noise-sensitive vehicle systems where acoustic performance is vital. Therefore, duct design becomes a crucial step during pumpjet design. This study, it is aimed to optimize the duct geometry of a decelerating ducted pumpjet for a highly speed underwater vehicle by using proper optimization tools. The target output of this optimization process is to obtain a duct design that maximizes fluid pressure around the rotor region to prevent from cavitation and minimizes drag force. There are two main optimization techniques that could be utilized for this process which are parameter-based optimization and gradient-based optimization. While parameter-based algorithm offers more major changes in interested geometry, which makes user to get close desired geometry, gradient-based algorithm deals with minor local changes in geometry. In parameter-based optimization, the geometry should be parameterized first. Then, by defining upper and lower limits for these parameters, design space is created. Finally, by proper optimization code and analysis, optimum geometry is obtained from this design space. For this duct optimization study, a commercial codedparameter-based optimization algorithm is used. To parameterize the geometry, duct is represented with b-spline curves and control points. These control points have x and y coordinates limits. By regarding these limits, design space is generated.

Keywords: pumpjet, decelerating duct design, optimization, underwater vehicles, cavitation, drag minimization

Procedia PDF Downloads 201
5799 A Picture is worth a Billion Bits: Real-Time Image Reconstruction from Dense Binary Pixels

Authors: Tal Remez, Or Litany, Alex Bronstein

Abstract:

The pursuit of smaller pixel sizes at ever increasing resolution in digital image sensors is mainly driven by the stringent price and form-factor requirements of sensors and optics in the cellular phone market. Recently, Eric Fossum proposed a novel concept of an image sensor with dense sub-diffraction limit one-bit pixels (jots), which can be considered a digital emulation of silver halide photographic film. This idea has been recently embodied as the EPFL Gigavision camera. A major bottleneck in the design of such sensors is the image reconstruction process, producing a continuous high dynamic range image from oversampled binary measurements. The extreme quantization of the Poisson statistics is incompatible with the assumptions of most standard image processing and enhancement frameworks. The recently proposed maximum-likelihood (ML) approach addresses this difficulty, but suffers from image artifacts and has impractically high computational complexity. In this work, we study a variant of a sensor with binary threshold pixels and propose a reconstruction algorithm combining an ML data fitting term with a sparse synthesis prior. We also show an efficient hardware-friendly real-time approximation of this inverse operator. Promising results are shown on synthetic data as well as on HDR data emulated using multiple exposures of a regular CMOS sensor.

Keywords: binary pixels, maximum likelihood, neural networks, sparse coding

Procedia PDF Downloads 197
5798 Atmospheric Dispersion Modeling for a Hypothetical Accidental Release from the 3 MW TRIGA Research Reactor of Bangladesh

Authors: G. R. Khan, Sadia Mahjabin, A. S. Mollah, M. R. Mawla

Abstract:

Atmospheric dispersion modeling is significant for any nuclear facilities in the country to predict the impact of radiological doses on environment as well as human health. That is why to ensure safety of workers and population at plant site; Atmospheric dispersion modeling and radiation dose calculations were carried out for a hypothetical accidental release of airborne radionuclide from the 3 MW TRIGA research reactor of Savar, Bangladesh. It is designed with reactor core which consists of 100 fuel elements(1.82245 cm in diameter and 38.1 cm in length), arranged in an annular corefor steady-state and square wave power level of 3 MW (thermal) and for pulsing with maximum power level of 860MWth.The fuel is in the form of a uniform mixture of 20% uranium and 80% zirconium hydride. Total effective doses (TEDs) to the public at various downwind distances were evaluated with a health physics computer code “HotSpot” developed by Lawrence Livermore National Laboratory, USA. The doses were estimated at different Pasquill stability classes (categories A-F) with site-specific averaged meteorological conditions. The meteorological data, such as, average wind speed, frequency distribution of wind direction, etc. have also been analyzed based on the data collected near the reactor site. The results of effective doses obtained remain within the recommended maximum effective dose.

Keywords: accidental release, dispersion modeling, total effective dose, TRIGA

Procedia PDF Downloads 132
5797 Profit Efficiency and Technology Adoption of Boro Rice Production in Bangladesh

Authors: Fazlul Hoque, Tahmina Akter Joya, Asma Akter, Supawat Rungsuriyawiboon

Abstract:

Rice is the staple food in Bangladesh, and therefore, self-sufficiency in rice production remains a major concern. However, Bangladesh is experiencing insufficiency in rice production due to high production cost and low national average productivity of 2.848 ton/ha in comparison to other rice-growing countries in the world. This study aims to find out the profit efficiency and determinants of profit efficiency in Boro rice cultivation in Manikganj and Dhaka districts of Bangladesh. It also focuses on technology adoption and effect of technology adoption on profit efficiency of Boro rice cultivation in Bangladesh. The data were collected from 300 households growing Boro rice through face to face interviews by one set structured questionnaire; Frontier Version 4.1 and STATA 15 software were employed to analyze the data according to the purpose of the study. Maximum likelihood estimates of the specified profit model showed that profit efficiency of the farmer varied between 23% and 97% with a mean of 76% which implied as 24% of the profit is lost due to a combination of technical and allocative inefficiencies in Boro rice cultivation in the study area. The inefficiency model revealed that the education level of the farmer, farm size, variety of seed, and training and extension service influence the profit inefficiency significantly. The study also explained that the level of technology adoption index affects profit efficiency. The technology adoption in Boro rice cultivation is influenced by the education level of the farmer, farm size and farm capital.

Keywords: farmer, maximum likelihood estimation, profit efficiency, rice

Procedia PDF Downloads 129
5796 Development of Gully Erosion Prediction Model in Sokoto State, Nigeria, using Remote Sensing and Geographical Information System Techniques

Authors: Nathaniel Bayode Eniolorunda, Murtala Abubakar Gada, Sheikh Danjuma Abubakar

Abstract:

The challenge of erosion in the study area is persistent, suggesting the need for a better understanding of the mechanisms that drive it. Thus, the study evolved a predictive erosion model (RUSLE_Sok), deploying Remote Sensing (RS) and Geographical Information System (GIS) tools. The nature and pattern of the factors of erosion were characterized, while soil losses were quantified. Factors’ impacts were also measured, and the morphometry of gullies was described. Data on the five factors of RUSLE and distances to settlements, rivers and roads (K, R, LS, P, C, DS DRd and DRv) were combined and processed following standard RS and GIS algorithms. Harmonized World Soil Data (HWSD), Shuttle Radar Topographical Mission (SRTM) image, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Sentinel-2 image accessed and processed within the Google Earth Engine, road network and settlements were the data combined and calibrated into the factors for erosion modeling. A gully morphometric study was conducted at some purposively selected sites. Factors of soil erosion showed low, moderate, to high patterns. Soil losses ranged from 0 to 32.81 tons/ha/year, classified into low (97.6%), moderate (0.2%), severe (1.1%) and very severe (1.05%) forms. The multiple regression analysis shows that factors statistically significantly predicted soil loss, F (8, 153) = 55.663, p < .0005. Except for the C-Factor with a negative coefficient, all other factors were positive, with contributions in the order of LS>C>R>P>DRv>K>DS>DRd. Gullies are generally from less than 100m to about 3km in length. Average minimum and maximum depths at gully heads are 0.6 and 1.2m, while those at mid-stream are 1 and 1.9m, respectively. The minimum downstream depth is 1.3m, while that for the maximum is 4.7m. Deeper gullies exist in proximity to rivers. With minimum and maximum gully elevation values ranging between 229 and 338m and an average slope of about 3.2%, the study area is relatively flat. The study concluded that major erosion influencers in the study area are topography and vegetation cover and that the RUSLE_Sok well predicted soil loss more effectively than ordinary RUSLE. The adoption of conservation measures such as tree planting and contour ploughing on sloppy farmlands was recommended.

Keywords: RUSLE_Sok, Sokoto, google earth engine, sentinel-2, erosion

Procedia PDF Downloads 66