Search results for: optimal sensing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4205

Search results for: optimal sensing

2345 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxics Gases

Authors: Slimane Ouhmad, Abdellah Halimi

Abstract:

In this work, we have applied neural networks method MLP type to a database from an array of six sensors for the detection of three toxic gases. As the choice of the number of hidden layers and the weight values has a great influence on the convergence of the learning algorithm, we proposed, in this article, a mathematical formulation to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases on the one hand, and optimize the computation time on the other hand, the comparison to other results achieved in this case.

Keywords: MLP Neural Network, back-propagation, number of neurons in the hidden layer, identification, computing time

Procedia PDF Downloads 346
2344 Flood Risk Assessment in the Niger River Basin in Support of the Conception of a Flood Risk Management Plan: Case Study of the District of Malanville, Benin

Authors: Freddy Houndekindo

Abstract:

A study was carried out to evaluate the flood risk in the district of Malanville located along the Niger River. The knowledge produce by this study is useful in the implementation of adaptation and/or mitigation measures to alleviate the impact of the flooding on the populations, the economy and the environment. Over the course of the study, the lack of data in the area of interest has been one of the main challenges encountered. Therefore, in the analysis of the flood hazard different sources of remotely sensed data were used. Moreover, the flood hazard was analysed by applying a 1D hydraulic model: HEC-RAS. After setting up the model for the study area, the different flood scenarios considered were simulated and mapped using ArcGIS and the HEC-GEORAS extension. The result of the simulation gave information about the inundated areas and the water depths at each location. From the analysis of the flood hazard, it was found that between 47% and 50% of the total area of the district of Malanville would be flooded in the different flood scenarios considered, and the water depth varies between 1 and 7 m. The townships of Malanville most at risk of flooding are Momkassa and Galiel, located in a high-risk and very high-risk zone, respectively. Furthermore, the assessment of the flood risk showed that the most vulnerable sector to the inundations is the agricultural sector. Indeed, the cultivated floodplains were the most affected areas by the floodwater in every flood scenarios. Knowing that a high proportion of the population of the district relies on their farmlands in these floodplains for their livelihood, the floods pose a challenge not only to the food security in the area but also to its development.

Keywords: flood risk management, Niger, remote sensing, vulnerability

Procedia PDF Downloads 151
2343 Optimal Selection of Replenishment Policies Using Distance Based Approach

Authors: Amit Gupta, Deepak Juneja, Sorabh Gupta

Abstract:

This paper presents a model based on distance based approach (DBA) method employed for evaluation, selection, and ranking of replenishment policies for a single location inventory, which hitherto not developed in the literature. This work recognizes the significance of the selection problem, identifies the selection criteria, the relative importance of selection criteria for this research problem. The developed model is capable of comparing any number of alternate inventory policies for various selection criteria where cardinal values are assigned as a rating to alternate inventory polices for selection criteria and weights of selection criteria. The illustrated example demonstrates the model and presents the result in terms of ranking of replenishment policies.

Keywords: DBA, ranking, replenishment policies, selection criteria

Procedia PDF Downloads 156
2342 Volarization of Sugarcane Bagasse: The Effect of Alkali Concentration, Soaking Time and Temperature on Fibre Yield

Authors: Tamrat Tesfaye, Tilahun Seyoum, K. Shabaridharan

Abstract:

The objective of this paper was to determine the effect of NaOH concentration, soaking time, soaking temperature and their interaction on percentage yield of fibre extract using Response Surface Methodology (RSM). A Box-Behnken design was employed to optimize the extraction process of cellulosic fibre from sugar cane by-product bagasse using low alkaline extraction technique. The quadratic model with the optimal technological conditions resulted in a maximum fibre yield of 56.80% at 0.55N NaOH concentration, 4 h steeping time and 60ᵒC soaking temperature. Among the independent variables concentration was found to be the most significant (P < 0.005) variable and the interaction effect of concentration and soaking time leads to securing the optimized processes.

Keywords: sugarcane bagasse, low alkaline, Box-Behnken, fibre

Procedia PDF Downloads 245
2341 Free Fatty Acid Assessment of Crude Palm Oil Using a Non-Destructive Approach

Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim, Rashidah Ghazali, Noramli Abdul Razak

Abstract:

Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of prediction models has facilitated the estimation process in recent years. In this study, 110 crude palm oil (CPO) samples were used to build a free fatty acid (FFA) prediction model. 60% of the collected data were used for training purposes and the remaining 40% used for testing. The visible peaks on the NIR spectrum were at 1725 nm and 1760 nm, indicating the existence of the first overtone of C-H bands. Principal component regression (PCR) was applied to the data in order to build this mathematical prediction model. The optimal number of principal components was 10. The results showed R2=0.7147 for the training set and R2=0.6404 for the testing set.

Keywords: palm oil, fatty acid, NIRS, regression

Procedia PDF Downloads 504
2340 Evaluation Method for Fouling Risk Using Quartz Crystal Microbalance

Authors: Natsuki Kishizawa, Keiko Nakano, Hussam Organji, Amer Shaiban, Mohammad Albeirutty

Abstract:

One of the most important tasks in operating desalination plants using a reverse osmosis (RO) method is preventing RO membrane fouling caused by foulants found in seawater. Optimal design of the pre-treatment process of RO process for plants enables the reduction of foulants. Therefore, a quantitative evaluation of the fouling risk in pre-treated water, which is fed to RO, is required for optimal design. Some measurement methods for water quality such as silt density index (SDI) and total organic carbon (TOC) have been conservatively applied for evaluations. However, these methods have not been effective in some situations for evaluating the fouling risk of RO feed water. Furthermore, stable management of plants will be possible by alerts and appropriate control of the pre-treatment process by using the method if it can be applied to the inline monitoring system for the fouling risk of RO feed water. The purpose of this study is to develop a method to evaluate the fouling risk of RO feed water. We applied a quartz crystal microbalance (QCM) to measure the amount of foulants found in seawater using a sensor whose surface is coated with polyamide thin film, which is the main material of a RO membrane. The increase of the weight of the sensor after a certain length of time in which the sample water passes indicates the fouling risk of the sample directly. We classified the values as “FP: Fouling Potential”. The characteristics of the method are to measure the very small amount of substances in seawater in a short time: < 2h, and from a small volume of the sample water: < 50mL. Using some RO cell filtration units, a higher correlation between the pressure increase given by RO fouling and the FP from the method than SDI and TOC was confirmed in the laboratory-scale test. Then, to establish the correlation in the actual bench-scale RO membrane module, and to confirm the feasibility of the monitoring system as a control tool for the pre-treatment process, we have started a long-term test at an experimental desalination site by the Red Sea in Jeddah, Kingdom of Saudi Arabia. Implementing inline equipment for the method made it possible to measure FP intermittently (4 times per day) and automatically. Moreover, for two 3-month long operations, the RO operation pressure among feed water samples of different qualities was compared. The pressure increase through a RO membrane module was observed at a high FP RO unit in which feed water was treated by a cartridge filter only. On the other hand, the pressure increase was not observed at a low FP RO unit in which feed water was treated by an ultra-filter during the operation. Therefore, the correlation in an actual scale RO membrane was established in two runs of two types of feed water. The result suggested that the FP method enables the evaluation of the fouling risk of RO feed water.

Keywords: fouling, monitoring, QCM, water quality

Procedia PDF Downloads 211
2339 Knowledge Based Behaviour Modelling and Execution in Service Robotics

Authors: Suraj Nair, Aravindkumar Vijayalingam, Alexander Perzylo, Alois Knoll

Abstract:

In the last decade robotics research and development activities have grown rapidly, especially in the domain of service robotics. Integrating service robots into human occupied spaces such as homes, offices, hospitals, etc. has become increasingly worked upon. The primary motive is to ease daily lives of humans by taking over some of the household/office chores. However, several challenges remain in systematically integrating such systems in human shared work-spaces. In addition to sensing and indoor-navigation challenges, programmability of such systems is a major hurdle due to the fact that the potential user cannot be expected to have knowledge in robotics or similar mechatronic systems. In this paper, we propose a cognitive system for service robotics which allows non-expert users to easily model system behaviour in an underspecified manner through abstract tasks and objects associated with them. The system uses domain knowledge expressed in the form of an ontology along with logical reasoning mechanisms to infer all the missing pieces of information required for executing the tasks. Furthermore, the system is also capable of recovering from failed tasks arising due to on-line disturbances by using the knowledge base and inferring alternate methods to execute the same tasks. The system is demonstrated through a coffee fetching scenario in an office environment using a mobile robot equipped with sensors and software capabilities for autonomous navigation and human-interaction through natural language.

Keywords: cognitive robotics, reasoning, service robotics, task based systems

Procedia PDF Downloads 242
2338 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.

Keywords: algorithm, LiDAR, object recognition, OBIA

Procedia PDF Downloads 242
2337 Analyzing the Effects of Adding Bitcoin to Portfolio

Authors: Shashwat Gangwal

Abstract:

This paper analyses the effect of adding Bitcoin, to the portfolio (stocks, bonds, Baltic index, MXEF, gold, real estate and crude oil) of an international investor by using daily data available from 2nd of July, 2010 to 2nd of August, 2016. We conclude that adding Bitcoin to portfolio, over the course of the considered period, always yielded a higher Sharpe ratio. This means that Bitcoin’s returns offset its high volatility. This paper, recognizing the fact that Bitcoin is a relatively new asset class, gives the readers a basic idea about the working of the virtual currency, the increasing number developments in the financial industry revolving around it, its unique features and the detailed look into its continuously growing acceptance across different fronts (Banks, Merchants and Countries) globally. We also construct optimal portfolios to reflect the highly lucrative and largely unexplored opportunities associated with investment in Bitcoin.

Keywords: bitcoin, financial instruments, portfolio management, risk adjusted return

Procedia PDF Downloads 230
2336 Approach on Conceptual Design and Dimensional Synthesis of the Linear Delta Robot for Additive Manufacturing

Authors: Efrain Rodriguez, Cristhian Riano, Alberto Alvares

Abstract:

In recent years, robots manipulators with parallel architectures are used in additive manufacturing processes – 3D printing. These robots have advantages such as speed and lightness that make them suitable to help with the efficiency and productivity of these processes. Consequently, the interest for the development of parallel robots for additive manufacturing applications has increased. This article deals with the conceptual design and dimensional synthesis of the linear delta robot for additive manufacturing. Firstly, a methodology based on structured processes for the development of products through the phases of informational design, conceptual design and detailed design is adopted: a) In the informational design phase the Mudge diagram and the QFD matrix are used to aid a set of technical requirements, to define the form, functions and features of the robot. b) In the conceptual design phase, the functional modeling of the system through of an IDEF0 diagram is performed, and the solution principles for the requirements are formulated using a morphological matrix. This phase includes the description of the mechanical, electro-electronic and computational subsystems that constitute the general architecture of the robot. c) In the detailed design phase, a digital model of the robot is drawn on CAD software. A list of commercial and manufactured parts is detailed. Tolerances and adjustments are defined for some parts of the robot structure. The necessary manufacturing processes and tools are also listed, including: milling, turning and 3D printing. Secondly, a dimensional synthesis method applied on design of the linear delta robot is presented. One of the most important key factors in the design of a parallel robot is the useful workspace, which strongly depends on the joint space, the dimensions of the mechanism bodies and the possible interferences between these bodies. The objective function is based on the verification of the kinematic model for a prescribed cylindrical workspace, considering geometric constraints that possibly lead to singularities of the mechanism. The aim is to determine the minimum dimensional parameters of the mechanism bodies for the proposed workspace. A method based on genetic algorithms was used to solve this problem. The method uses a cloud of points with the cylindrical shape of the workspace and checks the kinematic model for each of the points within the cloud. The evolution of the population (point cloud) provides the optimal parameters for the design of the delta robot. The development process of the linear delta robot with optimal dimensions for additive manufacture is presented. The dimensional synthesis enabled to design the mechanism of the delta robot in function of the prescribed workspace. Finally, the implementation of the robotic platform developed based on a linear delta robot in an additive manufacturing application using the Fused Deposition Modeling (FDM) technique is presented.

Keywords: additive manufacturing, delta parallel robot, dimensional synthesis, genetic algorithms

Procedia PDF Downloads 189
2335 A Reactive Flexible Job Shop Scheduling Model in a Stochastic Environment

Authors: Majid Khalili, Hamed Tayebi

Abstract:

This paper considers a stochastic flexible job-shop scheduling (SFJSS) problem in the presence of production disruptions, and reactive scheduling is implemented in order to find the optimal solution under uncertainty. In this problem, there are two main disruptions including machine failure which influences operation time, and modification or cancellation of the order delivery date during production. In order to decrease the negative effects of these difficulties, two derived strategies from reactive scheduling are used; the first one is relevant to being able to allocate multiple machine to each job, and the other one is related to being able to select the best alternative process from other job while some disruptions would be created in the processes of a job. For this purpose, a Mixed Integer Linear Programming model is proposed.

Keywords: flexible job-shop scheduling, reactive scheduling, stochastic environment, mixed integer linear programming

Procedia PDF Downloads 358
2334 On the Impact of Oil Price Fluctuations on Stock Markets: A Multivariate Long-Memory GARCH Framework

Authors: Manel Youssef, Lotfi Belkacem

Abstract:

This paper employs multivariate long memory GARCH models to simultaneously estimate mean and conditional variance spillover effects between oil prices and different financial markets. Since different financial assets are traded based on these market sector returns, it’s important for financial market participants to understand the volatility transmission mechanism over time and across these series in order to make optimal portfolio allocation decisions. We examine weekly returns from January 1, 2003 to November 30, 2012 and find evidence of significant transmission of shocks and volatilities between oil prices and some of the examined financial markets. The findings support the idea of cross-market hedging and sharing of common information by investors.

Keywords: oil prices, stock indices returns, oil volatility, contagion, DCC-multivariate (FI) GARCH

Procedia PDF Downloads 530
2333 Soil Macronutrients Sensing for Precision Agriculture Purpose Using Fourier Transform Infrared Spectroscopy

Authors: Hossein Navid, Maryam Adeli Khadem, Shahin Oustan, Mahmoud Zareie

Abstract:

Among the nutrients needed by the plants, three elements containing nitrate, phosphorus and potassium are more important. The objective of this research was measuring these nutrient amounts in soil using Fourier transform infrared spectroscopy in range of 400- 4000 cm-1. Soil samples for different soil types (sandy, clay and loam) were collected from different areas of East Azerbaijan. Three types of fertilizers in conventional farming (urea, triple superphosphate, potassium sulphate) were used for soil treatment. Each specimen was divided into two categories: The first group was used in the laboratory (direct measurement) to extract nitrate, phosphorus and potassium uptake by colorimetric method of Olsen and ammonium acetate. The second group was used to measure drug absorption spectrometry. In spectrometry, the small amount of soil samples mixed with KBr and was taken in a small pill form. For the tests, the pills were put in the center of infrared spectrometer and graphs were obtained. Analysis of data was done using MINITAB and PLSR software. The data obtained from spectrometry method were compared with amount of soil nutrients obtained from direct drug absorption using EXCEL software. There were good fitting between these two data series. For nitrate, phosphorus and potassium R2 was 79.5%, 92.0% and 81.9%, respectively. Also, results showed that the range of MIR (mid-infrared) is appropriate for determine the amount of soil nitrate and potassium and can be used in future research to obtain detailed maps of land in agricultural use.

Keywords: nitrate, phosphorus, potassium, soil nutrients, spectroscopy

Procedia PDF Downloads 401
2332 Comparative Analysis of Simulation-Based and Mixed-Integer Linear Programming Approaches for Optimizing Building Modernization Pathways Towards Decarbonization

Authors: Nico Fuchs, Fabian Wüllhorst, Laura Maier, Dirk Müller

Abstract:

The decarbonization of building stocks necessitates the modernization of existing buildings. Key measures for this include reducing energy demands through insulation of the building envelope, replacing heat generators, and installing solar systems. Given limited financial resources, it is impractical to modernize all buildings in a portfolio simultaneously; instead, prioritization of buildings and modernization measures for a given planning horizon is essential. Optimization models for modernization pathways can assist portfolio managers in this prioritization. However, modeling and solving these large-scale optimization problems, often represented as mixed-integer problems (MIP), necessitates simplifying the operation of building energy systems particularly with respect to system dynamics and transient behavior. This raises the question of which level of simplification remains sufficient to accurately account for realistic costs and emissions of building energy systems, ensuring a fair comparison of different modernization measures. This study addresses this issue by comparing a two-stage simulation-based optimization approach with a single-stage mathematical optimization in a mixed-integer linear programming (MILP) formulation. The simulation-based approach serves as a benchmark for realistic energy system operation but requires a restriction of the solution space to discrete choices of modernization measures, such as the sizing of heating systems. After calculating the operation of different energy systems in terms of the resulting final energy demands in simulation models on a first stage, the results serve as input for a second stage MILP optimization, where the design of each building in the portfolio is optimized. In contrast to the simulation-based approach, the MILP-based approach can capture a broader variety of modernization measures due to the efficiency of MILP solvers but necessitates simplifying the building energy system operation. Both approaches are employed to determine the cost-optimal design and dimensioning of several buildings in a portfolio to meet climate targets within limited yearly budgets, resulting in a modernization pathway for the entire portfolio. The comparison reveals that the MILP formulation successfully captures design decisions of building energy systems, such as the selection of heating systems and the modernization of building envelopes. However, the results regarding the optimal dimensioning of heating technologies differ from the results of the two-stage simulation-based approach, as the MILP model tends to overestimate operational efficiency, highlighting the limitations of the MILP approach.

Keywords: building energy system optimization, model accuracy in optimization, modernization pathways, building stock decarbonization

Procedia PDF Downloads 32
2331 Light Sensitive Plasmonic Nanostructures for Photonic Applications

Authors: Istvan Csarnovics, Attila Bonyar, Miklos Veres, Laszlo Himics, Attila Csik, Judit Kaman, Julia Burunkova, Geza Szanto, Laszlo Balazs, Sandor Kokenyesi

Abstract:

In this work, the performance of gold nanoparticles were investigated for stimulation of photosensitive materials for photonic applications. It was widely used for surface plasmon resonance experiments, not in the last place because of the manifestation of optical resonances in the visible spectral region. The localized surface plasmon resonance is rather easily observed in nanometer-sized metallic structures and widely used for measurements, sensing, in semiconductor devices and even in optical data storage. Firstly, gold nanoparticles on silica glass substrate satisfy the conditions for surface plasmon resonance in the green-red spectral range, where the chalcogenide glasses have the highest sensitivity. The gold nanostructures influence and enhance the optical, structural and volume changes and promote the exciton generation in gold nanoparticles/chalcogenide layer structure. The experimental results support the importance of localized electric fields in the photo-induced transformation of chalcogenide glasses as well as suggest new approaches to improve the performance of these optical recording media. Results may be utilized for direct, micrometre- or submicron size geometrical and optical pattern formation and used also for further development of the explanations of these effects in chalcogenide glasses. Besides of that, gold nanoparticles could be added to the organic light-sensitive material. The acrylate-based materials are frequently used for optical, holographic recording of optoelectronic elements due to photo-stimulated structural transformations. The holographic recording process and photo-polymerization effect could be enhanced by the localized plasmon field of the created gold nanostructures. Finally, gold nanoparticles widely used for electrochemical and optical sensor applications. Although these NPs can be synthesized in several ways, perhaps one of the simplest methods is the thermal annealing of pre-deposited thin films on glass or silicon surfaces. With this method, the parameters of the annealing process (time, temperature) and the pre-deposited thin film thickness influence and define the resulting size and distribution of the NPs on the surface. Localized surface plasmon resonance (LSPR) is a very sensitive optical phenomenon and can be utilized for a large variety of sensing purposes (chemical sensors, gas sensors, biosensors, etc.). Surface-enhanced Raman spectroscopy (SERS) is an analytical method which can significantly increase the yield of Raman scattering of target molecules adsorbed on the surface of metallic nanoparticles. The sensitivity of LSPR and SERS based devices is strongly depending on the used material and also on the size and geometry of the metallic nanoparticles. By controlling these parameters the plasmon absorption band can be tuned and the sensitivity can be optimized. The technological parameters of the generated gold nanoparticles were investigated and influence on the SERS and on the LSPR sensitivity was established. The LSPR sensitivity were simulated for gold nanocubes and nanospheres with MNPBEM Matlab toolbox. It was found that the enhancement factor (which characterize the increase in the peak shift for multi-particle arrangements compared to single-particle models) depends on the size of the nanoparticles and on the distance between the particles. This work was supported by GINOP- 2.3.2-15-2016-00041 project, which is co-financed by the European Union and European Social Fund. Istvan Csarnovics is grateful for the support through the New National Excellence Program of the Ministry of Human Capacities, supported by the ÚNKP-17-4 Attila Bonyár and Miklós Veres are grateful for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Keywords: light sensitive nanocomposites, metallic nanoparticles, photonic application, plasmonic nanostructures

Procedia PDF Downloads 304
2330 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms

Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat

Abstract:

In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.

Keywords: availability, design for maintenance (DFM), dynamic maintenance, life cycle cost (LCC), maintenance free operating period (MFOP), simultaneous optimization

Procedia PDF Downloads 116
2329 An Algorithm for Herding Cows by a Swarm of Quadcopters

Authors: Jeryes Danial, Yosi Ben Asher

Abstract:

Algorithms for controlling a swarm of robots is an active research field, out of which cattle herding is one of the most complex problems to solve. In this paper, we derive an independent herding algorithm that is specifically designed for a swarm of quadcopters. The algorithm works by devising flight trajectories that cause the cows to run-away in the desired direction and hence herd cows that are distributed in a given field towards a common gathering point. Unlike previously proposed swarm herding algorithms, this algorithm does not use a flocking model but rather stars each cow separately. The effectiveness of this algorithm is verified experimentally using a simulator. We use a special set of experiments attempting to demonstrate that the herding times of this algorithm correspond to field diameter small constant regardless of the number of cows in the field. This is an optimal result indicating that the algorithm groups the cows into intermediate groups and herd them as one forming ever closing bigger groups.

Keywords: swarm, independent, distributed, algorithm

Procedia PDF Downloads 174
2328 Backstepping Controller for a Variable Wind Speed Energy Conversion System Based on a DFIG

Authors: Sara Mensou, Ahmed Essadki, Issam Minka, Tamou Nasser, Badr Bououlid Idrissi

Abstract:

In this paper we present a contribution for the modeling and control of wind energy conversion system based on a Doubly Fed Induction Generator (DFIG). Since the wind speed is random the system has to produce an optimal electrical power to the Network and ensures important strength and stability. In this work, the Backstepping controller is used to control the generator via two converter witch placed a DC bus capacitor and connected to the grid by a Filter R-L, in order to optimize capture wind energy. All is simulated and presented under MATLAB/Simulink Software to show performance and robustness of the proposed controller.

Keywords: wind turbine, doubly fed induction generator, MPPT control, backstepping controller, power converter

Procedia PDF Downloads 189
2327 The Effects of Different Amounts of Additional Moisture on the Physical Properties of Cow Pea (Vigna unguiculata (L.) Walp.) Extrudates

Authors: L. Strauta, S. Muižniece-Brasava

Abstract:

Even though legumes possess high nutritional value and have a rather high protein content for plant origin products, they are underutilized mostly due to their lengthy cooking time. To increase the presence of legume-based products in human diet, new extruded products were made of cow peas (Vigna unguiculata (L.) Walp.). But as it is known, adding different moisture content to flour before extrusion can change the physical properties of the extruded product. Experiments were carried out to estimate the optimal moisture content for cow pea extrusion. After extrusion, the pH level had dropped from 6.7 to 6.5 and the lowest hardness rate was observed in the samples with additional 9 g 100g-1 of moisture - 28±4N, but the volume mass of the samples with additional 9 g100g-1 of water was 263±3 g L-1; all samples were approximately 7±1mm long.

Keywords: cow pea, extrusion–cooking, moisture, size

Procedia PDF Downloads 206
2326 Choice of Optimal Methods for Processing Phosphate Raw Materials into Complex Mineral Fertilizers

Authors: Andrey Norov

Abstract:

Based on the generalization of scientific and production experience and the latest developments of JSC “NIUIF”, the oldest (founded in September 1919) and the only Russian research institute for phosphorus-containing fertilizers, this paper shows the factors that determine the reasonable choice of a method for processing phosphate raw materials into complex fertilizers. These factors primarily include the composition of phosphate raw materials and the impurities contained in it, as well as some parameters of the process mode, wastelessness, ecofriendliness, energy saving, maximum use of the heat of chemical reactions, fire and explosion safety, efficiency, productive capacity, the required product range and the possibility of creating flexible technologies, compliance with BAT principles, etc. The presented data allow to choose the right technology for complex granular fertilizers, depending on the abovementioned factors.

Keywords: BAT, ecofriendliness, energy saving, phosphate raw materials, wastelessness

Procedia PDF Downloads 86
2325 Future Projection of Glacial Lake Outburst Floods Hazard: A Hydrodynamic Study of the Highest Lake in the Dhauliganga Basin, Uttarakhand

Authors: Ashim Sattar, Ajanta Goswami, Anil V. Kulkarni

Abstract:

Glacial lake outburst floods (GLOF) highly contributes to mountain hazards in the Himalaya. Over the past decade, high altitude lakes in the Himalaya has been showing notable growth in their size and number. The key reason is rapid retreat of its glacier front. Hydrodynamic modeling GLOF using shallow water equations (SWE) would result in understanding its impact in the downstream region. The present study incorporates remote sensing based ice thickness modeling to determine the future extent of the Dhauliganga Lake to map the over deepening extent around the highest lake in the Dhauliganga basin. The maximum future volume of the lake calculated using area-volume scaling is used to model a GLOF event. The GLOF hydrograph is routed along the channel using one dimensional and two dimensional model to understand the flood wave propagation till it reaches the 1st hydropower station located 72 km downstream of the lake. The present extent of the lake calculated using SENTINEL 2 images is 0.13 km². The maximum future extent of the lake, mapped by investigating the glacier bed has a calculated scaled volume of 3.48 x 106 m³. The GLOF modeling releasing the future volume of the lake resulted in a breach hydrograph with a peak flood of 4995 m³/s at just downstream of the lake. Hydraulic routing

Keywords: GLOF, glacial lake outburst floods, mountain hazard, Central Himalaya, future projection

Procedia PDF Downloads 160
2324 Pilot Scale Deproteinization Study on Fish Scale Using Response Surface Methodology

Authors: Fatima Bellali, Mariem Kharroubi

Abstract:

Fish scale wastes are one of the main sources of production of value-added products such as collagen. The main aim of this study is to investigate the optimization conditions of the sardine scale deproteinization using response surface methodology (RSM) on a pilot scale. In order to look for the optimal conditions, a Box–Behnken-based design of experiment (DOE) method was carried out. The model predicted values of product coal ash content were in good agreement with the experiment values (R2 = 0.9813). Finally, model-based optimization was carried out to identify the operating parameters (reaction time=4h and the solid-liquid ratio= 1/10) and to obtain the lowest collagen content.

Keywords: pilot scale, Plackett and Burman design, fish waste, deproteinization

Procedia PDF Downloads 159
2323 Research on the Torsional Vibration of a Power-Split Hybrid Powertrain Equipped with a Dual Mass Flywheel

Authors: Xiaolin Tang, Wei Yang, Xiaoan Chen

Abstract:

The research described in this paper was aimed at exploring the torsional vibration characteristics of a power-split hybrid powertrain equipped with a dual mass flywheel. The dynamic equations of governing torsional vibration for this hybrid driveline are presented, and the multi-body dynamic model for the powertrain is established with the software of ADAMS. Accordingly, different parameters of dual mass flywheel are investigated by forced vibration to reduce the torsional vibration of hybrid drive train. The analysis shows that the implementation of a dual mass flywheel is an effective way to decrease the torsional vibration of the hybrid powertrain. At last, the optimal combination of parameters yielding the lowest vibration is provided.

Keywords: dual mass flywheel, hybrid electric vehicle, torsional vibration, powertrain, dynamics

Procedia PDF Downloads 407
2322 Rational Memory Therapy: The Counselling Technique to Control Psychological and Psychosomatic Illnesses

Authors: Sachin Deshmukh

Abstract:

Mind and body synchronization occurs through memory and sensation production. Sensations are the guiding language of subconscious mind for conscious mind to take a proper action. Mind-mechanism is based upon memories collected so far since intrauterine life. There are three universal triggers for memory creation; they are persons, situations and objects. Memory is created as sensations experienced by special senses. Based upon experiencing comfort or discomfort, the triggers are categorized as safe or unsafe triggers. A memory comprises of ‘safe or unsafe feeling for triggers, and actions taken for that feeling’. Memories for triggers are created slowly, thoughtfully and consciously by the conscious mind, and archived in the subconscious mind for future references. Later on, similar triggers can come in contact with the individual. Subconscious mind uses these stored feelings to decide whether these triggers are safe or unsafe. It produces comfort or discomfort sensations as emotions accordingly and reacts in the same way as has been recorded in memory. Speed of sensing and processing the triggers, and reacting by subconscious mind is that of the speed of bioelectricity. Hence, formula for human emotions has been designed in this paper as follows: Emotion (Stress or Peace) = Trigger (Person or Situation or object) x Mass of feelings (stressful or peaceful) associated with the Trigger x Speed of Light². We also establish modern medical scientific facts about relationship between reflex activity and memory. This research further develops the ‘Rational Memory Therapy’ focusing on therapeutic feelings conversion techniques, for stress prevention and management.

Keywords: memory, sensations, feelings, emotions, rational memory therapy

Procedia PDF Downloads 254
2321 A Collective Approach to Optimisation of Renewing Warranty Policy

Authors: Ming Luo

Abstract:

In this real world, a manufacturer may produce more than one product. The products produced by the same manufacturer may share the same type of parts, similar design, and be produced in the same factory, i.e. some common causes. From the perspective of warranty management, the frequencies of those products’ warranty claims may have statistical dependence caused by the common causes. Warranty policy optimisation in the existing research, majorly, has not considered such dependence, which may increase bias in decision making. In the market, renewing warranty policies are provided to some unrepairable products and consumer electronic products. This paper optimises the renewing warranty policy collectively in a multi-product scenario with a consideration of the dependence among the warranty claims of the products produced by the same manufacturer. The existence of the optimal solution is proved. Numerical examples are used to validate the applicability of the proposed methods.

Keywords: mean-risk framework, modern portfolio theory, renewing warranty policy, warranty policy optimisation

Procedia PDF Downloads 298
2320 A Novel Eccentric Lapping Method with Two Rotatable Lapping Plates for Finishing Cemented Carbide Balls

Authors: C. C. Lv, Y. L. Sun, D. W. Zuo

Abstract:

Cemented carbide balls are usually implemented in industry under the environment of high speed, high temperature, corrosiveness and strong collisions. However, its application is limited due to high fabrication cost, processing efficiency and quality. A novel eccentric lapping method with two rotatable lapping plates was proposed in this paper. A mathematical model was constructed to analyze the influence of each design parameter on this lapping method. To validate this new lapping method, an orthogonal experiment was conducted with cemented carbide balls (YG6). The simulation model was verified and the optimal lapping parameters were derived. The results show that the surface roundness of the balls reaches to 0.65um from 2um in 1 hour using this lapping method. So, using this novel lapping method, it can effectively improve the machining precision and efficiency of cemented carbide balls.

Keywords: cemented carbide balls, eccentric lapping, high precision, lapping tracks, V-groove

Procedia PDF Downloads 393
2319 Assessment of the Number of Damaged Buildings from a Flood Event Using Remote Sensing Technique

Authors: Jaturong Som-ard

Abstract:

The heavy rainfall from 3rd to 22th January 2017 had swamped much area of Ranot district in southern Thailand. Due to heavy rainfall, the district was flooded which had a lot of effects on economy and social loss. The major objective of this study is to detect flooding extent using Sentinel-1A data and identify a number of damaged buildings over there. The data were collected in two stages as pre-flooding and during flood event. Calibration, speckle filtering, geometric correction, and histogram thresholding were performed with the data, based on intensity spectral values to classify thematic maps. The maps were used to identify flooding extent using change detection, along with the buildings digitized and collected on JOSM desktop. The numbers of damaged buildings were counted within the flooding extent with respect to building data. The total flooded areas were observed as 181.45 sq.km. These areas were mostly occurred at Ban khao, Ranot, Takhria, and Phang Yang sub-districts, respectively. The Ban khao sub-district had more occurrence than the others because this area is located at lower altitude and close to Thale Noi and Thale Luang lakes than others. The numbers of damaged buildings were high in Khlong Daen (726 features), Tha Bon (645 features), and Ranot sub-district (604 features), respectively. The final flood extent map might be very useful for the plan, prevention and management of flood occurrence area. The map of building damage can be used for the quick response, recovery and mitigation to the affected areas for different concern organization.

Keywords: flooding extent, Sentinel-1A data, JOSM desktop, damaged buildings

Procedia PDF Downloads 190
2318 Assessment of Soil Erosion Risk Using Soil and Water Assessment Tools Model: Case of Siliana Watershed, Northwest Tunisia

Authors: Sana Dridi, Jalel Aouissi, Rafla Attia, Taoufik Hermassi, Thouraya Sahli

Abstract:

Soil erosion is an increasing issue in Mediterranean countries. In Tunisia, the capacity of dam reservoirs continues to decrease as a consequence of soil erosion. This study aims to predict sediment yield to enrich soil management practices using Soil and Water Assessment Tools model (SWAT) in the Siliana watershed (1041.6 km²), located in the northwest of Tunisia. A database was constructed using remote sensing and Geographical Information System. Climatic and flow data were collected from water resources directorates in Tunisia. The SWAT model was built to simulate hydrological processes and sediment transport. A sensitivity analysis, calibration, and validation were performed using SWAT-CUP software. The model calibration of stream flow simulations shows a good performance with NSE and R² values of 0.77 and 0.79, respectively. The model validation shows a very good performance with values of NSE and R² for 0.8 and 0.88, respectively. After calibration and validation of stream flow simulation, the model was used to simulate the soil erosion and sediment load transport. The spatial distributions of soil loss rate for determining the critical sediment source areas show that 63 % of the study area has a low soil loss rate less than 7 t ha⁻¹y⁻¹. The annual average soil loss rate simulated with the SWAT model in the Siliana watershed is 4.62 t ha⁻¹y⁻¹.

Keywords: water erosion, SWAT model, streamflow, SWATCUP, sediment yield

Procedia PDF Downloads 99
2317 Hybrid EMPCA-Scott Approach for Estimating Probability Distributions of Mutual Information

Authors: Thuvanan Borvornvitchotikarn, Werasak Kurutach

Abstract:

Mutual information (MI) is widely used in medical image registration. In the different medical images analysis, it is difficult to choose an optimal bins size number for calculating the probability distributions in MI. As the result, this paper presents a new adaptive bins number selection approach that named a hybrid EMPCA-Scott approach. This work combines an expectation maximization principal component analysis (EMPCA) and the modified Scott’s rule. The proposed approach solves the binning problem from the various intensity values in medical images. Experimental results of this work show the lower registration errors compared to other adaptive binning approaches.

Keywords: mutual information, EMPCA, Scott, probability distributions

Procedia PDF Downloads 249
2316 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System

Authors: Afaneen Anwer, Samara M. Kamil

Abstract:

Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.

Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system

Procedia PDF Downloads 581