Search results for: diagnostic analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28701

Search results for: diagnostic analysis

26841 Morphological Processing of Punjabi Text for Sentiment Analysis of Farmer Suicides

Authors: Jaspreet Singh, Gurvinder Singh, Prabhsimran Singh, Rajinder Singh, Prithvipal Singh, Karanjeet Singh Kahlon, Ravinder Singh Sawhney

Abstract:

Morphological evaluation of Indian languages is one of the burgeoning fields in the area of Natural Language Processing (NLP). The evaluation of a language is an eminent task in the era of information retrieval and text mining. The extraction and classification of knowledge from text can be exploited for sentiment analysis and morphological evaluation. This study coalesce morphological evaluation and sentiment analysis for the task of classification of farmer suicide cases reported in Punjab state of India. The pre-processing of Punjabi text involves morphological evaluation and normalization of Punjabi word tokens followed by the training of proposed model using deep learning classification on Punjabi language text extracted from online Punjabi news reports. The class-wise accuracies of sentiment prediction for four negatively oriented classes of farmer suicide cases are 93.85%, 88.53%, 83.3%, and 95.45% respectively. The overall accuracy of sentiment classification obtained using proposed framework on 275 Punjabi text documents is found to be 90.29%.

Keywords: deep neural network, farmer suicides, morphological processing, punjabi text, sentiment analysis

Procedia PDF Downloads 328
26840 Cd2+ Ions Removal from Aqueous Solutions Using Alginite

Authors: Vladimír Frišták, Martin Pipíška, Juraj Lesný

Abstract:

Alginate has been evaluated as an efficient pollution control material. In this paper, alginate from maar Pinciná (SR) for removal of Cd2+ ions from aqueous solution was studied. The potential sorbent was characterized by X-Ray Fluorescence Analysis (RFA) analysis, Fourier Transform Infrared Spectral Analysis (FT-IR) and Specific Surface Area (SSA) was also determined. The sorption process was optimized from the point of initial cadmium concentration effect and effect of pH value. The Freundlich and Langmuir models were used to interpret the sorption behaviour of Cd2+ ions, and the results showed that experimental data were well fitted by the Langmuir equation. Alginate maximal sorption capacity (QMAX) for Cd2+ ions calculated from Langmuir isotherm was 34 mg/g. Sorption process was significantly affected by initial pH value in the range from 4.0-7.0. Alginate is a comparable sorbent with other materials for toxic metals removal.

Keywords: alginates, Cd2+, sorption, QMAX

Procedia PDF Downloads 359
26839 Copper Doped P-Type Nickel Oxide Transparent Conducting Oxide Thin Films

Authors: Kai Huang, Assamen Ayalew Ejigu, Mu-Jie Lin, Liang-Chiun Chao

Abstract:

Nickel oxide and copper-nickel oxide thin films have been successfully deposited by reactive ion beam sputter deposition. Experimental results show that nickel oxide deposited at 300°C is single phase NiO while best crystalline quality is achieved with an O_pf of 0.5. XRD analysis of nickel-copper oxide deposited at 300°C shows a Ni2O3 like crystalline structure at low O_pf while changes to NiO like crystalline structure at high O_pf. EDS analysis shows that nickel-copper oxide deposited at low O_pf is CuxNi2-xO3 with x = 1, while nickel-copper oxide deposited at high O_pf is CuxNi1-xO with x = 0.5, which is supported by Raman analysis. The bandgap of NiO is ~ 3.5 eV regardless of O_pf while the band gap of nickel-copper oxide decreases from 3.2 to 2.3 eV as Opf reaches 1.0.

Keywords: copper, ion beam, NiO, oxide, resistivity, transparent

Procedia PDF Downloads 313
26838 Magnetic Field Analysis of External Rotor Permanent-Magnet Synchronous Motors with Non Magnetic Rotor Core

Authors: Mabrak Samir

Abstract:

The motor performance created by permanent magnetic in a slotless air-gap of a surface mounted permanent-magnet synchronous motor with non magnetic rotor and either sinusoidal or mixed (quasi-Halbatch) magnetization is presented in this paper using polar coordinates. The analysis works for both internal and external rotor motor topologies, The effect of stator slots is introduced by modulating the magnetic field distribution in the slotless stator by the complex relative air-gap permeance, calculated from the conformal transformation of the slot geometry. We compare predicted results of flux density distribution and cogging torque with those obtained by finite-element analysis.

Keywords: air-cored, cogging torque, finite element magnetic field, permanent-magnet

Procedia PDF Downloads 372
26837 Rise in Public Interest in COVID-19 Symptoms and the Need for Proper Information: Insights from the Google Trends Analysis

Authors: Jaweriya Aftab, Madho Mal, Hamida Memon

Abstract:

The first case of coronavirus disease 2019 (COVID-19) in Pakistan was recorded on February 26th, 2020. While the country went through various phases of lockdowns, the importance of proper sensitization campaigns was highlighted by healthcare workers to combat misinformation. Past studies via Google trends analysis have shown a rise in public interest in multiple COVID-19-related symptoms as well as cardiovascular symptoms. As there is a paucity of data related to the trends in Pakistan, we conducted a retrospective analysis to bridge further information. Methods: As per the recommendations from past studies, a Google trend analysis was conducted for various symptoms, including ‘Fever’, ‘Chest Pain’, ‘Shortness of Breath’, and ‘Cough’ between 1st January 2019 to 31st December 2021. The trends in various search results were analyzed and modeled. Results: Our analysis found various rises in public interest in the various symptoms (fever, chest pain, shortness of breath, and cough) that correspond closely to the wave of the virus's spread in the country. Conclusion: Our study confirms similar trends in Pakistan as previously reported in studies from India, USA, and UK, whereby the public interest in various COVID-19 symptoms rose with the number of cases. This further highlights the need for a strong approach to combat misinformation during such a critical period.

Keywords: covid, trend, Pakistan, public

Procedia PDF Downloads 40
26836 The Role of Self-Confidence, Adversity Quotient, and Self-Efficacy Critical Thinking: Path Model

Authors: Bayu Dwi Cahyo, Ekohariadi, Theodorus Wiyanto Wibowo, I. G. P. Asto Budithahjanto, Eppy Yundra

Abstract:

The objective of this study is to examine the effects of self-confidence, adversity quotient, and self-efficacy variables on critical thinking. This research's participants are 137 cadets of Aviation Polytechnics of Surabaya with the sampling technique that was purposive sampling. In this study, the data collection method used a questionnaire with Linkert-scale and distributed or given to respondents by the specified number of samples. The SPSS AMOS v23 was used to test a number of a priori multivariate growth curve models and examining relationships between the variables via path analysis. The result of path analysis was (χ² = 88.463, df= 71, χ² /df= 1.246, GFI= .914, CFI= .988, P= .079, AGFI= .873, TLI= .985, RMSEA= .043). According to the analysis, there is a positive and significant relationship between self-confidence, adversity quotient, and self-efficacy variables on critical thinking.

Keywords: self-confidence, adversity quotient, self-efficacy variables, critical thinking

Procedia PDF Downloads 146
26835 Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder

Authors: Akalu Banbeta, Emmanuel Lesaffre, Reynaldo Martina, Joost Van Rosmalen

Abstract:

Including data from previous studies (historical data) in the analysis of the current study may reduce the sample size requirement and/or increase the power of analysis. The most common example is incorporating historical control data in the analysis of a current clinical trial. However, this only applies when the historical control dataare similar enough to the current control data. Recently, several Bayesian approaches for incorporating historical data have been proposed, such as the meta-analytic-predictive (MAP) prior and the modified power prior (MPP) both for single control as well as for multiple historical control arms. Here, we examine the performance of the MAP and the MPP approaches for the analysis of (over-dispersed) count data. To this end, we propose a computational method for the MPP approach for the Poisson and the negative binomial models. We conducted an extensive simulation study to assess the performance of Bayesian approaches. Additionally, we illustrate our approaches on an overactive bladder data set. For similar data across the control arms, the MPP approach outperformed the MAP approach with respect to thestatistical power. When the means across the control arms are different, the MPP yielded a slightly inflated type I error (TIE) rate, whereas the MAP did not. In contrast, when the dispersion parameters are different, the MAP gave an inflated TIE rate, whereas the MPP did not.We conclude that the MPP approach is more promising than the MAP approach for incorporating historical count data.

Keywords: count data, meta-analytic prior, negative binomial, poisson

Procedia PDF Downloads 120
26834 Social Innovation Rediscovered: An Analysis of Empirical Research

Authors: Imen Douzi, Karim Ben Kahla

Abstract:

In spite of the growing attention for social innovation, it is still considered to be in a stage of infancy with minimal progress in theory development. Upon examining the field of study, one would have to conclude that, over the past two decades, academic research has focused primarily on establishing a conceptual foundation. This has resulted in a considerable stream of conceptual papers which have outnumbered empirical articles. Nevertheless, despite its growing popularity, scholars and practitioners are far from reaching a consensus as to what social innovation actually means which resulted in competing definitions and approaches within the field of social innovation and lack of unifying conceptual framework. This paper reviews empirical research studies on social innovation, classifies them along three dimensions and summarizes research findings for each of these dimensions. Preliminary to the analysis of empirical researches, an overview of different perspectives of social innovation is presented.

Keywords: analysis of empirical research, definition, empirical research, social innovation perspectives

Procedia PDF Downloads 384
26833 Probability Model Accidents of Motorcyclist Based on Driver's Personality

Authors: Margareth E. Bolla, Ludfi Djakfar, Achmad Wicaksono

Abstract:

The increase in the number of motorcycle users in Indonesia is in line with the increase in accidents involving motorcycles. Several previous studies have shown that humans are the biggest factor causing accidents, and the driver's personality factor will affect his behavior on the road. This study was conducted to see how a person's personality traits will affect the probability of having an accident while driving. The Big Five Inventory (BFI) questionnaire and the Honda Riding Trainer (HRT) simulator were used as measuring tools, while the analysis carried out was logistic regression analysis. The results of the descriptive analysis of the respondent's personality based on the BFI show that the majority of drivers have the dominant character of neuroticism (34%), while the smallest group is the driver with the dominant type of openness character (6%). The percentage of motorists who were not involved in an accident was 54%. The results of the logistic regression analysis form a mathematical model as follows Y = -3.852 - 0.288 X1 + 0.596 X2 + 0.429 X3 - 0.386 X4 - 0.094 X5 + 0.436 X6 + 0.162 X7, where the results of hypothesis testing indicate that the variables openness, conscientiousness, extraversion, agreeableness, neuroticism, history of traffic accidents and age at starting driving did not have a significant effect on the probability of a motorcyclist being involved in an accident.

Keywords: accidents, BFI, probability, simulator

Procedia PDF Downloads 147
26832 Assessment of the State of Hygiene in a Tunisian Hospital Kitchen: Interest of Mycological and Parasitological Samples from Food Handlers and Environment

Authors: Bouchekoua Myriam, Aloui Dorsaf, Trabelsi Sonia

Abstract:

Introduction Food hygiene in hospitals is important, particularly among patients who could be more vulnerable than healthy subjects to microbiological and nutritional risks. The consumption of contaminated food may be responsible for foodborne diseases, which can be severe among hospitalized patients, especially those immunocompromised. The aim of our study was to assess the state of hygiene in the internal catering department of a Tunisian hospital. Methodology and major results: A prospective study was conducted for one year in the Parasitology-Mycology laboratory of Charles Nicolle Hospital. Samples were taken from the kitchen staff, worktops, and cooking utensils used in the internal catering department. Thirty one employees have benefited from stool exams and scotch tape in order to evaluate the degree of infestation of parasites. 35% of stool exams were positive. Protozoa were the only parasites detected. Blastocystis sp was the species mostly found in nine food handlers. Its role as a human pathogen is still controversial. Pathogenic protozoa were detected in two food handlers (Giardia intestinalis in one person and Dientamoeba fragilis in the other one. Non-pathogenic protozoa were found in two cases; among them, only one had digestive symptoms without a statistically significant association with the carriage of intestinal parasites. Moreover, samples were performed from the hands of the staff in order to search for a fungal carriage. Thus, 25 employees (81%) were colonized by fungi, including molds. Besides, mycological examination among food handlers with a suspected dermatomycosis for diagnostic confirmation concluded foot onychomycosis in 32% of cases and interdigital intertrigo in 26%. Only one person had hand onychomycosis. Among the 17 samples taken from worktops and kitchen utensils, fungal contamination was detected in 13 sites. Hot and cold equipment were the most contaminated. Molds were mainly identified as belonging to five different genera. Cladosporium sp was predominant. Conclusion: In the view of the importance of intestinal parasites among food handlers, the intensity of fungi hand carriage among these employees, and the high level of fungal contamination in worktops and kitchen utensils, a reinforcement of hygiene measures is more than essential in order to minimize the alimentary contamination-risk.

Keywords: hospital kitchen, environment, intestinal parasitosis, fungal carriage, fungal contamination

Procedia PDF Downloads 119
26831 PsyVBot: Chatbot for Accurate Depression Diagnosis using Long Short-Term Memory and NLP

Authors: Thaveesha Dheerasekera, Dileeka Sandamali Alwis

Abstract:

The escalating prevalence of mental health issues, such as depression and suicidal ideation, is a matter of significant global concern. It is plausible that a variety of factors, such as life events, social isolation, and preexisting physiological or psychological health conditions, could instigate or exacerbate these conditions. Traditional approaches to diagnosing depression entail a considerable amount of time and necessitate the involvement of adept practitioners. This underscores the necessity for automated systems capable of promptly detecting and diagnosing symptoms of depression. The PsyVBot system employs sophisticated natural language processing and machine learning methodologies, including the use of the NLTK toolkit for dataset preprocessing and the utilization of a Long Short-Term Memory (LSTM) model. The PsyVBot exhibits a remarkable ability to diagnose depression with a 94% accuracy rate through the analysis of user input. Consequently, this resource proves to be efficacious for individuals, particularly those enrolled in academic institutions, who may encounter challenges pertaining to their psychological well-being. The PsyVBot employs a Long Short-Term Memory (LSTM) model that comprises a total of three layers, namely an embedding layer, an LSTM layer, and a dense layer. The stratification of these layers facilitates a precise examination of linguistic patterns that are associated with the condition of depression. The PsyVBot has the capability to accurately assess an individual's level of depression through the identification of linguistic and contextual cues. The task is achieved via a rigorous training regimen, which is executed by utilizing a dataset comprising information sourced from the subreddit r/SuicideWatch. The diverse data present in the dataset ensures precise and delicate identification of symptoms linked with depression, thereby guaranteeing accuracy. PsyVBot not only possesses diagnostic capabilities but also enhances the user experience through the utilization of audio outputs. This feature enables users to engage in more captivating and interactive interactions. The PsyVBot platform offers individuals the opportunity to conveniently diagnose mental health challenges through a confidential and user-friendly interface. Regarding the advancement of PsyVBot, maintaining user confidentiality and upholding ethical principles are of paramount significance. It is imperative to note that diligent efforts are undertaken to adhere to ethical standards, thereby safeguarding the confidentiality of user information and ensuring its security. Moreover, the chatbot fosters a conducive atmosphere that is supportive and compassionate, thereby promoting psychological welfare. In brief, PsyVBot is an automated conversational agent that utilizes an LSTM model to assess the level of depression in accordance with the input provided by the user. The demonstrated accuracy rate of 94% serves as a promising indication of the potential efficacy of employing natural language processing and machine learning techniques in tackling challenges associated with mental health. The reliability of PsyVBot is further improved by the fact that it makes use of the Reddit dataset and incorporates Natural Language Toolkit (NLTK) for preprocessing. PsyVBot represents a pioneering and user-centric solution that furnishes an easily accessible and confidential medium for seeking assistance. The present platform is offered as a modality to tackle the pervasive issue of depression and the contemplation of suicide.

Keywords: chatbot, depression diagnosis, LSTM model, natural language process

Procedia PDF Downloads 72
26830 Fiber Based Pushover Analysis of Reinforced Concrete Frame

Authors: Shewangizaw Tesfaye Wolde

Abstract:

The current engineering community has developed a method called performance based seismic design in which we design structures based on predefined performance levels set by the parties. Since we design our structures economically for the maximum actions expected in the life of structures they go beyond their elastic limit, in need of nonlinear analysis. In this paper conventional pushover analysis (nonlinear static analysis) is used for the performance assessment of the case study Reinforced Concrete (RC) Frame building located in Addis Ababa City, Ethiopia where proposed peak ground acceleration value by RADIUS 1999 project and others is more than twice as of EBCS-8:1995 (RADIUS 1999 project) by taking critical planar frame. Fiber beam-column model is used to control material nonlinearity with tension stiffening effect. The reliability of the fiber model and validation of software outputs are checked under verification chapter. Therefore, the aim of this paper is to propose a way for structural performance assessment of existing reinforced concrete frame buildings as well as design check.

Keywords: seismic, performance, fiber model, tension stiffening, reinforced concrete

Procedia PDF Downloads 77
26829 Predicting Success and Failure in Drug Development Using Text Analysis

Authors: Zhi Hao Chow, Cian Mulligan, Jack Walsh, Antonio Garzon Vico, Dimitar Krastev

Abstract:

Drug development is resource-intensive, time-consuming, and increasingly expensive with each developmental stage. The success rates of drug development are also relatively low, and the resources committed are wasted with each failed candidate. As such, a reliable method of predicting the success of drug development is in demand. The hypothesis was that some examples of failed drug candidates are pushed through developmental pipelines based on false confidence and may possess common linguistic features identifiable through sentiment analysis. Here, the concept of using text analysis to discover such features in research publications and investor reports as predictors of success was explored. R studios were used to perform text mining and lexicon-based sentiment analysis to identify affective phrases and determine their frequency in each document, then using SPSS to determine the relationship between our defined variables and the accuracy of predicting outcomes. A total of 161 publications were collected and categorised into 4 groups: (i) Cancer treatment, (ii) Neurodegenerative disease treatment, (iii) Vaccines, and (iv) Others (containing all other drugs that do not fit into the 3 categories). Text analysis was then performed on each document using 2 separate datasets (BING and AFINN) in R within the category of drugs to determine the frequency of positive or negative phrases in each document. A relative positivity and negativity value were then calculated by dividing the frequency of phrases with the word count of each document. Regression analysis was then performed with SPSS statistical software on each dataset (values from using BING or AFINN dataset during text analysis) using a random selection of 61 documents to construct a model. The remaining documents were then used to determine the predictive power of the models. Model constructed from BING predicts the outcome of drug performance in clinical trials with an overall percentage of 65.3%. AFINN model had a lower accuracy at predicting outcomes compared to the BING model at 62.5% but was not effective at predicting the failure of drugs in clinical trials. Overall, the study did not show significant efficacy of the model at predicting outcomes of drugs in development. Many improvements may need to be made to later iterations of the model to sufficiently increase the accuracy.

Keywords: data analysis, drug development, sentiment analysis, text-mining

Procedia PDF Downloads 161
26828 Corporate Social Responsibility and Corporate Reputation: A Bibliometric Analysis

Authors: Songdi Li, Louise Spry, Tony Woodall

Abstract:

Nowadays, Corporate Social responsibility (CSR) is becoming a buzz word, and more and more academics are putting efforts on CSR studies. It is believed that CSR could influence Corporate Reputation (CR), and they hold a favourable view that CSR leads to a positive CR. To be specific, the CSR related activities in the reputational context have been regarded as ways that associate to excellent financial performance, value creation, etc. Also, it is argued that CSR and CR are two sides of one coin; hence, to some extent, doing CSR is equal to establishing a good reputation. Still, there is no consensus of the CSR-CR relationship in the literature; thus, a systematic literature review is highly in need. This research conducts a systematic literature review with both bibliometric and content analysis. Data are selected from English language sources, and academic journal articles only, then, keyword combinations are applied to identify relevant sources. Data from Scopus and WoS are gathered for bibliometric analysis. Scopus search results were saved in RIS and CSV formats, and Web of Science (WoS) data were saved in TXT format and CSV formats in order to process data in the Bibexcel software for further analysis which later will be visualised by the software VOSviewer. Also, content analysis was applied to analyse the data clusters and the key articles. In terms of the topic of CSR-CR, this literature review with bibliometric analysis has made four achievements. First, this paper has developed a systematic study which quantitatively depicts the knowledge structure of CSR and CR by identifying terms closely related to CSR-CR (such as ‘corporate governance’) and clustering subtopics emerged in co-citation analysis. Second, content analysis is performed to acquire insight on the findings of bibliometric analysis in the discussion section. And it highlights some insightful implications for the future research agenda, for example, a psychological link between CSR-CR is identified from the result; also, emerging economies and qualitative research methods are new elements emerged in the CSR-CR big picture. Third, a multidisciplinary perspective presents through the whole bibliometric analysis mapping and co-word and co-citation analysis; hence, this work builds a structure of interdisciplinary perspective which potentially leads to an integrated conceptual framework in the future. Finally, Scopus and WoS are compared and contrasted in this paper; as a result, Scopus which has more depth and comprehensive data is suggested as a tool for future bibliometric analysis studies. Overall, this paper has fulfilled its initial purposes and contributed to the literature. To the author’s best knowledge, this paper conducted the first literature review of CSR-CR researches that applied both bibliometric analysis and content analysis; therefore, this paper achieves its methodological originality. And this dual approach brings advantages of carrying out a comprehensive and semantic exploration in the area of CSR-CR in a scientific and realistic method. Admittedly, its work might exist subjective bias in terms of search terms selection and paper selection; hence triangulation could reduce the subjective bias to some degree.

Keywords: corporate social responsibility, corporate reputation, bibliometric analysis, software program

Procedia PDF Downloads 129
26827 An Analysis on the Appropriateness and Effectiveness of CCTV Location for Crime Prevention

Authors: Tae-Heon Moon, Sun-Young Heo, Sang-Ho Lee, Youn-Taik Leem, Kwang-Woo Nam

Abstract:

This study aims to investigate the possibility of crime prevention through CCTV by analyzing the appropriateness of the CCTV location, whether it is installed in the hotspot of crime-prone areas, and exploring the crime prevention effect and transition effect. The real crime and CCTV locations of case city were converted into the spatial data by using GIS. The data was analyzed by hotspot analysis and weighted displacement quotient(WDQ). As study methods, it analyzed existing relevant studies for identifying the trends of CCTV and crime studies based on big data from 1800 to 2014 and understanding the relation between CCTV and crime. Second, it investigated the current situation of nationwide CCTVs and analyzed the guidelines of CCTV installation and operation to draw attention to the problems and indicating points of domestic CCTV use. Third, it investigated the crime occurrence in case areas and the current situation of CCTV installation in the spatial aspects, and analyzed the appropriateness and effectiveness of CCTV installation to suggest a rational installation of CCTV and the strategic direction of crime prevention. The results demonstrate that there was no significant effect in the installation of CCTV on crime prevention. This indicates that CCTV should be installed and managed in a more scientific way reflecting local crime situations. In terms of CCTV, the methods of spatial analysis such as GIS, which can evaluate the installation effect, and the methods of economic analysis like cost-benefit analysis should be developed. In addition, these methods should be distributed to local governments across the nation for the appropriate installation of CCTV and operation. This study intended to find a design guideline of the optimum CCTV installation. In this regard, this study is meaningful in that it will contribute to the creation of a safe city.

Keywords: CCTV, safe city, crime prevention, spatial analysis

Procedia PDF Downloads 438
26826 Phylogenetic Analysis of the Myxosporea Detected from Emaciated Olive Flounder (Paralichthys olivaceus) in Korea

Authors: Seung Min Kim, Lyu Jin Jun, Joon Bum Jeong

Abstract:

The Myxosporea to cause emaciation disease in the olive flounder (Paralichthys olivaceus) is a pathogen to cause severe losses in the aquafarming industry in Korea. The 3,362 bp of DNA nucleotide sequences of four myxosporean strains (EM-HM-12, EM-MA-13, EM-JJ-14, and EM-MS-15) detected by PCR method from olive flounder suffering from emaciation disease in Korea during 2012-2015 were sequenced and deposited in GenBank database (GenBank accession numbers: KU377574, KT321705, KU377575 and KU377573, respectively). The homologies of DNA nucleotide sequences of four strains were compared to each other and were more than 99.7% homologous between the four strains. All of the strains were identified as Parvicapsula petunia based on the results of phylogenetic analysis. The results in this study would be useful for the research of emaciation disease in olive flounder of Korea.

Keywords: disease, emaciation, olive flounder, phylogenetic analysis

Procedia PDF Downloads 300
26825 A Discourse Study of Multimodal Intertextuality in Egyptian Social Media Memes

Authors: Ola Hafez

Abstract:

This study examines the way selected Egyptian digitally mediated memes utilize intertextuality as a means of expression. It is motivated by the emerging digital socio-political humorous practice using various forms of political commentary in Egyptian social media. One of these forms involves the use of memes incorporating (often doctored) video frames taken from Egyptian plays, films and songs, and relocated in a different socio-political context, often with a caption that re-appropriates the frame for the purpose of critical commentary, thus juxtaposing the socio-political phenomena being addressed and the Egyptian artistic and cultural heritage. The paper presents a discourse study of a convenience sample of a recent social media campaign and carries out two levels of analysis. At the micro level, the study pinpoints the various modes of intertextuality employed, including verbal as well as visual intertextuality in the light of the work of social semiotics by Kress and van Leeuwen. At the macro level, the paper sheds light on the socio-political implications of such practice in the light of Political Discourse Analysis.

Keywords: digitally mediated discourse, discourse analysis, Egyptian Arabic, intertextuality, memes, multimodality, political discourse analysis

Procedia PDF Downloads 218
26824 Analysis of Importance of Culture in Distributed Design Based on the Case Study at the University of Strathclyde

Authors: Zixuan Yang

Abstract:

This paper presents an analysis of the necessary consideration culture in distributed design through a thorough literature review and case study. The literature review has identified that the need for understanding cultural differences in product design and user evaluations is highlighted by analyzing cross-cultural influences; culture plays a significant role in distributed work, particularly in establishing team cohesion, trust, and credibility early in the project. By applying approaches of Geert Hofstede's dimensions and Fukuyama's trust analysis, a case study of a global design project, i.e., multicultural distributed teamwork solving the problem in terms of reducing the risk of deep vein thrombosis, showcases cultural dynamics, emphasizing trust-building and decision-making. The lessons learned emphasized the importance of cultural awareness, adaptability, and the utilization of scientific theories to enable effective cross-cultural collaborations in global design, providing valuable insights into navigating cultural diversity within design practices.

Keywords: culture, distributed design, global design, Geert Hofstede's dimensions, Fukuyama's trust analysis

Procedia PDF Downloads 71
26823 A Probability Analysis of Construction Project Schedule Using Risk Management Tool

Authors: A. L. Agarwal, D. A. Mahajan

Abstract:

Construction industry tumbled along with other industry/sectors during recent economic crash. Construction business could not regain thereafter and still pass through slowdown phase, resulted many real estate as well as infrastructure projects not completed on schedule and within budget. There are many theories, tools, techniques with software packages available in the market to analyze construction schedule. This study focuses on the construction project schedule and uncertainties associated with construction activities. The infrastructure construction project has been considered for the analysis of uncertainty on project activities affecting project duration and analysis is done using @RISK software. Different simulation results arising from three probability distribution functions are compiled to benefit construction project managers to plan more realistic schedule of various construction activities as well as project completion to document in the contract and avoid compensations or claims arising out of missing the planned schedule.

Keywords: construction project, distributions, project schedule, uncertainty

Procedia PDF Downloads 351
26822 Crushing Analysis of Foam-Filled Thin-Walled Aluminum Profiles Subjected to Axial Loading

Authors: Michał Rogala, Jakub Gajewski

Abstract:

As the automotive industry develops, passive safety is becoming an increasingly important aspect when designing motor vehicles. A commonly used solution is energy absorption by thin-walled construction. One such structure is a closed thin-walled profile fixed to the vehicle stringers. The article presents numerical tests of conical thin-walled profiles filled with aluminum foam. The columns were loaded axially with constant energy. On the basis of the results obtained, efficiency indicators were calculated. The efficiency of the foam filling was evaluated. Artificial neural networks were used for data analysis. The application of regression analysis was used as a tool to study the relationship between the quantities characteristic of the dynamic crush.

Keywords: aluminium foam, crashworthiness, neural networks, thin-walled structure

Procedia PDF Downloads 147
26821 Seismic Fragility for Sliding Failure of Weir Structure Considering the Process of Concrete Aging

Authors: HoYoung Son, Ki Young Kim, Woo Young Jung

Abstract:

This study investigated the change of weir structure performances when durability of concrete, which is the main material of weir structure, decreased due to their aging by mean of seismic fragility analysis. In the analysis, it was assumed that the elastic modulus of concrete was reduced by 10% in order to account for their aged deterioration. Additionally, the analysis of seismic fragility was based on Monte Carlo Simulation method combined with a 2D nonlinear finite element in ABAQUS platform with the consideration of deterioration of concrete. Finally, the comparison of seismic fragility of model pre- and post-deterioration was made to study the performance of weir. Results show that the probability of failure in moderate damage for deteriorated model was found to be larger than pre-deterioration model when peak ground acceleration (PGA) passed 0.4 g.

Keywords: weir, FEM, concrete, fragility, aging

Procedia PDF Downloads 426
26820 Using Discriminant Analysis to Forecast Crime Rate in Nigeria

Authors: O. P. Popoola, O. A. Alawode, M. O. Olayiwola, A. M. Oladele

Abstract:

This research work is based on using discriminant analysis to forecast crime rate in Nigeria between 1996 and 2008. The work is interested in how gender (male and female) relates to offences committed against the government, against other properties, disturbance in public places, murder/robbery offences and other offences. The data used was collected from the National Bureau of Statistics (NBS). SPSS, the statistical package was used to analyse the data. Time plot was plotted on all the 29 offences gotten from the raw data. Eigenvalues and Multivariate tests, Wilks’ Lambda, standardized canonical discriminant function coefficients and the predicted classifications were estimated. The research shows that the distribution of the scores from each function is standardized to have a mean O and a standard deviation of 1. The magnitudes of the coefficients indicate how strongly the discriminating variable affects the score. In the predicted group membership, 172 cases that were predicted to commit crime against Government group, 66 were correctly predicted and 106 were incorrectly predicted. After going through the predicted classifications, we found out that most groups numbers that were correctly predicted were less than those that were incorrectly predicted.

Keywords: discriminant analysis, DA, multivariate analysis of variance, MANOVA, canonical correlation, and Wilks’ Lambda

Procedia PDF Downloads 471
26819 3D Frictionless Contact Case between the Structure of E-Bike and the Ground

Authors: Lele Zhang, Hui Leng Choo, Alexander Konyukhov, Shuguang Li

Abstract:

China is currently the world's largest producer and distributor of electric bicycle (e-bike). The increasing number of e-bikes on the road is accompanied by rising injuries and even deaths of e-bike drivers. Therefore, there is a growing need to improve the safety structure of e-bikes. This 3D frictionless contact analysis is a preliminary, but necessary work for further structural design improvement of an e-bike. The contact analysis between e-bike and the ground was carried out as follows: firstly, the Penalty method was illustrated and derived from the simplest spring-mass system. This is one of the most common methods to satisfy the frictionless contact case; secondly, ANSYS static analysis was carried out to verify finite element (FE) models with contact pair (without friction) between e-bike and the ground; finally, ANSYS transient analysis was used to obtain the data of the penetration p(u) of e-bike with respect to the ground. Results obtained from the simulation are as estimated by comparing with that from theoretical method. In the future, protective shell will be designed following the stability criteria and added to the frame of e-bike. Simulation of side falling of the improved safety structure of e-bike will be confirmed with experimental data.

Keywords: frictionless contact, penalty method, e-bike, finite element

Procedia PDF Downloads 279
26818 Understanding Regional Circulations That Modulate Heavy Precipitations in the Kulfo Watershed

Authors: Tesfay Mekonnen Weldegerima

Abstract:

Analysis of precipitation time series is a fundamental undertaking in meteorology and hydrology. The extreme precipitation scenario of the Kulfo River watershed is studied using wavelet analysis and atmospheric transport, a lagrangian trajectory model. Daily rainfall data for the 1991-2020 study periods are collected from the office of the Ethiopian Meteorology Institute. Meteorological fields on a three-dimensional grid at 0.5o x 0.5o spatial resolution and daily temporal resolution are also obtained from the Global Data Assimilation System (GDAS). Wavelet analysis of the daily precipitation processed with the lag-1 coefficient reveals some high power recurred once every 38 to 60 days with greater than 95% confidence for red noise. The analysis also identified inter-annual periodicity in the periods 2002 - 2005 and 2017 - 2019. Back trajectory analysis for 3-day periods up to May 19/2011, indicates the Indian Ocean source; trajectories crossed the eastern African escarpment to arrive at the Kulfo watershed. Atmospheric flows associated with the Western Indian monsoon redirected by the low-level Somali winds and Arabian ridge are responsible for the moisture supply. The time-localization of the wavelet power spectrum yields valuable hydrological information, and the back trajectory approaches provide useful characterization of air mass source.

Keywords: extreme precipitation events, power spectrum, back trajectory, kulfo watershed

Procedia PDF Downloads 70
26817 Stock Price Prediction Using Time Series Algorithms

Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava

Abstract:

This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.

Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series

Procedia PDF Downloads 144
26816 Towards Modern Approaches of Intelligence Measurement for Clinical and Educational Practices

Authors: Alena Kulikova, Tatjana Kanonire

Abstract:

Intelligence research is one of the oldest fields of psychology. Many factors have made a research on intelligence, defined as reasoning and problem solving [1, 2], a very acute and urgent problem. Thus, it has been repeatedly shown that intelligence is a predictor of academic, professional, and social achievement in adulthood (for example, [3]); Moreover, intelligence predicts these achievements better than any other trait or ability [4]. The individual level, a comprehensive assessment of intelligence is a necessary criterion for the diagnosis of various mental conditions. For example, it is a necessary condition for psychological, medical and pedagogical commissions when deciding on educational needs and the most appropriate educational programs for school children. Assessment of intelligence is crucial in clinical psychodiagnostic and needs high-quality intelligence measurement tools. Therefore, it is not surprising that the development of intelligence tests is an essential part of psychological science and practice. Many modern intelligence tests have a long history and have been used for decades, for example, the Stanford-Binet test or the Wechsler test. However, the vast majority of these tests are based on the classic linear test structure, in which all respondents receive all tasks (see, for example, a critical review by [5]). This understanding of the testing procedure is a legacy of the pre-computer era, in which blank testing was the only diagnostic procedure available [6] and has some significant limitations that affect the reliability of the data obtained [7] and increased time costs. Another problem with measuring IQ is that classical line-structured tests do not fully allow to measure respondent's intellectual progress [8], which is undoubtedly a critical limitation. Advances in modern psychometrics allow for avoiding the limitations of existing tools. However, as in any rapidly developing industry, at the moment, psychometrics does not offer ready-made and straightforward solutions and requires additional research. In our presentation we would like to discuss the strengths and weaknesses of the current approaches to intelligence measurement and highlight “points of growth” for creating a test in accordance with modern psychometrics. Whether it is possible to create the instrument that will use all achievements of modern psychometric and remain valid and practically oriented. What would be the possible limitations for such an instrument? The theoretical framework and study design to create and validate the original Russian comprehensive computer test for measuring the intellectual development in school-age children will be presented.

Keywords: Intelligence, psychometrics, psychological measurement, computerized adaptive testing, multistage testing

Procedia PDF Downloads 80
26815 Thermodynamic Analysis of Zeotropic Mixture Used in Low Temperature Solar Rankine Cycle with Ejector for Power Generation

Authors: Basma Hamdi, Lakdar Kairouani, Ezzedine Nahdi

Abstract:

The objective of this work is to present a thermodynamic analysis of low temperature solar Rankine cycle with ejector for power generation using zeotropic mixtures. Based on theoretical calculation, effects of zeotropic mixtures compositions on the performance of solar Rankine cycle with ejector are discussed and compared with corresponding pure fluids. Variations of net power output, thermal efficiency were calculating with changing evaporation temperature. The ejector coefficient had analyzed as independent variable. The result show that (R245fa/R152a) has a higher thermal efficiency than using pure fluids.

Keywords: zeotropic mixture, thermodynamic analysis, ejector, low-temperature solar rankine cycle

Procedia PDF Downloads 282
26814 Seismic Analysis of Adjacent Buildings Connected with Dampers

Authors: Devyani D. Samarth, Sachin V. Bakre, Ratnesh Kumar

Abstract:

This work deals with two buildings adjacent to each other connected with dampers. The “Imperial Valley Earthquake - El Centro", "May 18, 1940 earthquake time history is used for dynamic analysis of the system in the time domain. The effectiveness of fluid joint dampers is then investigated in terms of the reduction of displacement, acceleration and base shear responses of adjacent buildings. Finally, an extensive parametric study is carried out to find optimum damper properties like stiffness (Kd) and damping coefficient (Cd) for adjacent buildings. Results show that using fluid dampers to connect the adjacent buildings of different fundamental frequencies can effectively reduce earthquake-induced responses of either building if damper optimum properties are selected.

Keywords: energy dissipation devices, time history analysis, viscous damper, optimum parameters

Procedia PDF Downloads 493
26813 A Knee Modular Orthosis Design Based on Kinematic Considerations

Authors: C. Copilusi, C. Ploscaru

Abstract:

This paper addresses attention to a research regarding the design of a knee orthosis in a modular form used on children walking rehabilitation. This research is focused on the human lower limb kinematic analysis which will be used as input data on virtual simulations and prototype validation. From this analysis, important data will be obtained and used as input for virtual simulations of the knee modular orthosis. Thus, a knee orthosis concept was obtained and validated through virtual simulations by using MSC Adams software. Based on the obtained results, the modular orthosis prototype will be manufactured and presented in this article.

Keywords: human lower limb, children orthoses, kinematic analysis, knee orthosis

Procedia PDF Downloads 287
26812 Investigation of the Role of Lipoprotein a rs10455872 Gene Polymorphism in Childhood Obesity

Authors: Mustafa M. Donma, Ayşen Haksayar, Bahadır Batar, Buse Tepe, Birol Topçu, Orkide Donma

Abstract:

Childhood obesity is an ever-increasing health problem. The Association of obesity with severe chronic diseases such as diabetes and cardiovascular diseases makes the problem life-threatening. Aside from psychological, societal and metabolic factors, genetic polymorphisms have gained importance concerning etiology in recent years. The aim of this study was to evaluate the relationship between rs10455872 gene polymorphism in the Lipoprotein (a) locus and the development of childhood obesity. This was a prospective study carried out according to the Helsinki Declarations. The study protocol was approved by the Institutional Ethics Committee. This study was supported by Tekirdag Namik Kemal University Rectorate, Scientific Research Projects Coordination Unit. Project No: NKUBAP.02.TU.20.278. A total of 180 children (103 obese (OB) and 77 healthy), aged 6-18 years, without any acute or chronic disease, participated in the study. Two different groups were created: OB and healthy control. Each group was divided into two further groups depending on the nature of the polymorphism. Anthropometric measurements were taken during the detailed physical examination. Laboratory tests and TANITA measurements were performed. For the statistical evaluations, SPSS version 28.0 was used. A P-value smaller than 0.05 was the statistical significance degree. The distribution of lipoprotein (a) rs10455872 gene polymorphism did not differ between OB and healthy children. Children with AG genotype in both OB and control groups had lower body mass index (BMI), diagnostic obesity notation model assessment index (DONMA II), body fat ratio (BFR), C-reactive protein (CRP), and metabolic syndrome index (MetS index) values compared to children with normal AA genotype. In the OB group, serum iron, vitamin B12, hemoglobin, MCV, and MCH values were found to be higher in the AG genotype group than those of children with the normal AA genotype. A significant correlation was found between the MetS index and BFR among OB children with normal homozygous genotype. MetS index increased as BFR increased in this group. However, such a correlation was not observed in the OB group with heterozygous AG genotype. To the best of our knowledge, the association of lipoprotein (a) rs10455872 gene polymorphism with the etiology of childhood obesity has not been studied yet. Therefore, this study was the first report suggesting polymorphism with AG genotype as a good risk factor for obesity.

Keywords: child, gene polymorphism, lipoprotein (a), obesity, rs10455872

Procedia PDF Downloads 82