Search results for: spectral domain optical coherence tomography
2734 X-Ray Shielding Properties of Bismuth-Borate Glass Doped with Rare-Earth Ions
Authors: Vincent Kheswa
Abstract:
X-rays are ionizing electromagnetic radiation that is used in various industries such as computed tomography scans, dental X-rays, and screening freight trains. However, they pose health risks to humans if they are not shielded properly. In recent years, many researchers around the globe have been searching for nontoxic best possible glass materials for shielding X-rays. In this work, the x-ray shielding properties of 45Na₂O + 10 Bi₂O₃ + (5 - x)TiO₂+ (x) Nb₂O₅ + 40 P₂O₅, were x = 0, 1, 3, 5 mol%, glass materials were studied. The results revealed that the glass sample with the highest TiO2 content has the highest mass and linear attenuation coefficients and lowest half-value thickness, tenth-value thickness and mean-free path in the 20 to 80 keV energy region. The sample with 3 mol% of Nb₂O₅ has the highest mass and linear attenuation coefficients and the lowest half-value thickness, tenth-value thickness, and mean-free path at 15 keV and photon energies between 80 to 300 keV. It was, therefore, concluded that 45Na₂O + 10 Bi₂O₃ + 5 TiO₂ + 40 P₂O₅ glass is best for shielding x-rays of energies between 20 and 80 keV, while 45Na₂O + 10 Bi₂O₃ + 2 TiO₂ + 3 Nb₂O₅ + 40 P₂O₅ is best for shielding 15 keV x-rays and x-rays of energies between 80 keV and 300 keV.Keywords: bismuth-titanium-phosphate glass, x-ray shielding, LAC, MAC, radiation shielding
Procedia PDF Downloads 622733 A LED Warning Vest as Safety Smart Textile and Active Cooperation in a Working Group for Building a Normative Standard
Authors: Werner Grommes
Abstract:
The institute of occupational safety and health works in a working group for building a normative standard for illuminated warning vests and did a lot of experiments and measurements as basic work (cooperation). Intelligent car headlamps are able to suppress conventional warning vests with retro-reflective stripes as a disturbing light. Illuminated warning vests are therefore required for occupational safety. However, they must not pose any danger to the wearer or other persons. Here, the risks of the batteries (lithium types), the maximum brightness (glare) and possible interference radiation from the electronics on the implant carrier must be taken into account. The all-around visibility, as well as the required range, play an important role here. For the study, many luminance measurements of already commercially available LEDs and electroluminescent warning vests, as well as their electromagnetic interference fields and aspects of electrical safety, were measured. The results of this study showed that LED lighting is all far too bright and causes strong glare. The integrated controls with pulse modulation and switching regulators cause electromagnetic interference fields. Rechargeable lithium batteries can explode depending on the temperature range. Electroluminescence brings even more hazards. A test method was developed for the evaluation of visibility at distances of 50, 100, and 150 m, including the interview of test persons. A measuring method was developed for the detection of glare effects at close range with the assignment of the maximum permissible luminance. The electromagnetic interference fields were tested in the time and frequency ranges. A risk and hazard analysis were prepared for the use of lithium batteries. The range of values for luminance and risk analysis for lithium batteries were discussed in the standards working group. These will be integrated into the standard. This paper gives a brief overview of the topics of illuminated warning vests, which takes into account the risks and hazards for the vest wearer or othersKeywords: illuminated warning vest, optical tests and measurements, risks, hazards, optical glare effects, LED, E-light, electric luminescent
Procedia PDF Downloads 1152732 Application of Compressed Sensing Method for Compression of Quantum Data
Authors: M. Kowalski, M. Życzkowski, M. Karol
Abstract:
Current quantum key distribution systems (QKD) offer low bit rate of up to single MHz. Compared to conventional optical fiber links with multiple GHz bitrates, parameters of recent QKD systems are significantly lower. In the article we present the conception of application of the Compressed Sensing method for compression of quantum information. The compression methodology as well as the signal reconstruction method and initial results of improving the throughput of quantum information link are presented.Keywords: quantum key distribution systems, fiber optic system, compressed sensing
Procedia PDF Downloads 6982731 Minimal Incision Cochlear Implantation in Congenital Abnormality: A Case Report
Authors: Munish Saroch, Amit Saini
Abstract:
Introduction: Many children with congenital malformation of inner ear have undergone cochlear implant (CI) surgery. The results for cochlear implant surgery in these children are very encouraging and provide a ray of hope for these patients. Objective: The main objective of this presentation is to prove that even in Mondini’s deformity Minimal incision cochlear implantation improves cosmesis, reduces post-operative infection and earliest switch on of device. Methods: We report a case of two-year-old child suffering from Mondini’s deformity who underwent CI with minimal incision cochlear implantation (MICI). MICI has been developed with the aims of reducing the impact of surgery on the patient without any preoperative shaving of hairs. Results: Patient after surgery with MICI showed better looking postauricular scar, low post-operative morbidity in comparison to conventional wider access approach and hence earliest switch on of device (1st post operative day). Conclusion: We are of opinion that MICI is safe and successful in Mondini’s deformity.Keywords: CI, Cochlear Implant, MICI, Minimal Incision Cochlear Implantation, HL, Hearing Loss, HRCT, High Resolution Computer Tomography, MRI, Magnetic resonance imaging, SCI, Standard cochlear implantation
Procedia PDF Downloads 2202730 Global Direct Search Optimization of a Tuned Liquid Column Damper Subject to Stochastic Load
Authors: Mansour H. Alkmim, Adriano T. Fabro, Marcus V. G. De Morais
Abstract:
In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of an undamped primary system under white noise excitation. Finally, a numerical example considering a simplified wind turbine model is given to illustrate the efficacy of the TLCD. Results from the random vibration analysis are shown for four types of random excitation wind model where the response PSDs obtained showed good vibration attenuation.Keywords: generalized pattern search, parameter optimization, random vibration analysis, vibration suppression
Procedia PDF Downloads 2792729 Investigation of Regional Differences in Strong Ground Motions for the Iranian Plateau
Authors: Farhad Sedaghati, Shahram Pezeshk
Abstract:
Regional variations in strong ground motions for the Iranian Plateau have been investigated by using a simple statistical method called Analysis of Variance (ANOVA). In this respect, a large database consisting of 1157 records occurring within the Iranian Plateau with moment magnitudes of greater than or equal to 5 and Joyner-Boore distances up to 200 km has been considered. Geometric averages of horizontal peak ground accelerations (PGA) as well as 5% damped linear elastic response spectral accelerations (SA) at periods of 0.2, 0.5, 1.0, and 2.0 sec are used as strong motion parameters. The initial database is divided into two different datasets, for Northern Iran (NI) and Central and Southern Iran (CSI). The comparison between strong ground motions of these two regions reveals that there is no evidence for significant differences; therefore, data from these two regions may be combined to estimate the unknown coefficients of attenuation relationships.Keywords: ANOVA, attenuation relationships, Iranian Plateau, PGA, regional variation, SA, strong ground motion
Procedia PDF Downloads 3172728 The Future Control Rooms for Sustainable Power Systems: Current Landscape and Operational Challenges
Authors: Signe Svensson, Remy Rey, Anna-Lisa Osvalder, Henrik Artman, Lars Nordström
Abstract:
The electric power system is undergoing significant changes. Thereby, the operation and control are becoming partly modified, more multifaceted and automated, and thereby supplementary operator skills might be required. This paper discusses developing operational challenges in future power system control rooms, posed by the evolving landscape of sustainable power systems, driven in turn by the shift towards electrification and renewable energy sources. A literature review followed by interviews and a comparison to other related domains with similar characteristics, a descriptive analysis was performed from a human factors perspective. Analysis is meant to identify trends, relationships, and challenges. A power control domain taxonomy includes a temporal domain (planning and real-time operation) and three operational domains within the power system (generation, switching and balancing). Within each operational domain, there are different control actions, either in the planning stage or in the real-time operation, that affect the overall operation of the power system. In addition to the temporal dimension, the control domains are divided in space between a multitude of different actors distributed across many different locations. A control room is a central location where different types of information are monitored and controlled, alarms are responded to, and deviations are handled by the control room operators. The operators’ competencies, teamwork skills, team shift patterns as well as control system designs are all important factors in ensuring efficient and safe electricity grid management. As the power system evolves with sustainable energy technologies, challenges are found. Questions are raised regarding whether the operators’ tacit knowledge, experience and operation skills of today are sufficient to make constructive decisions to solve modified and new control tasks, especially during disturbed operations or abnormalities. Which new skills need to be developed in planning and real-time operation to provide efficient generation and delivery of energy through the system? How should the user interfaces be developed to assist operators in processing the increasing amount of information? Are some skills at risk of being lost when the systems change? How should the physical environment and collaborations between different stakeholders within and outside the control room develop to support operator control? To conclude, the system change will provide many benefits related to electrification and renewable energy sources, but it is important to address the operators’ challenges with increasing complexity. The control tasks will be modified, and additional operator skills are needed to perform efficient and safe operations. Also, the whole human-technology-organization system needs to be considered, including the physical environment, the technical aids and the information systems, the operators’ physical and mental well-being, as well as the social and organizational systems.Keywords: operator, process control, energy system, sustainability, future control room, skill
Procedia PDF Downloads 982727 Personalization of Context Information Retrieval Model via User Search Behaviours for Ranking Document Relevance
Authors: Kehinde Agbele, Longe Olumide, Daniel Ekong, Dele Seluwa, Akintoye Onamade
Abstract:
One major problem of most existing information retrieval systems (IRS) is that they provide even access and retrieval results to individual users specially based on the query terms user issued to the system. When using IRS, users often present search queries made of ad-hoc keywords. It is then up to IRS to obtain a precise representation of user’s information need, and the context of the information. In effect, the volume and range of the Internet documents is growing exponentially and consequently causes difficulties for a user to obtain information that precisely matches the user interest. Diverse combination techniques are used to achieve the specific goal. This is due, firstly, to the fact that users often do not present queries to IRS that optimally represent the information they want, and secondly, the measure of a document's relevance is highly subjective between diverse users. In this paper, we address the problem by investigating the optimization of IRS to individual information needs in order of relevance. The paper addressed the development of algorithms that optimize the ranking of documents retrieved from IRS. This paper addresses this problem with a two-fold approach in order to retrieve domain-specific documents. Firstly, the design of context of information. The context of a query determines retrieved information relevance using personalization and context-awareness. Thus, executing the same query in diverse contexts often leads to diverse result rankings based on the user preferences. Secondly, the relevant context aspects should be incorporated in a way that supports the knowledge domain representing users’ interests. In this paper, the use of evolutionary algorithms is incorporated to improve the effectiveness of IRS. A context-based information retrieval system that learns individual needs from user-provided relevance feedback is developed whose retrieval effectiveness is evaluated using precision and recall metrics. The results demonstrate how to use attributes from user interaction behavior to improve the IR effectiveness.Keywords: context, document relevance, information retrieval, personalization, user search behaviors
Procedia PDF Downloads 4652726 Solitons and Universes with Acceleration Driven by Bulk Particles
Authors: A. C. Amaro de Faria Jr, A. M. Canone
Abstract:
Considering a scenario where our universe is taken as a 3d domain wall embedded in a 5d dimensional Minkowski space-time, we explore the existence of a richer class of solitonic solutions and their consequences for accelerating universes driven by collisions of bulk particle excitations with the walls. In particular it is shown that some of these solutions should play a fundamental role at the beginning of the expansion process. We present some of these solutions in cosmological scenarios that can be applied to models that describe the inflationary period of the Universe.Keywords: solitons, topological defects, branes, kinks, accelerating universes in brane scenarios
Procedia PDF Downloads 1422725 Numerical Simulations for Nitrogen Flow in Piezoelectric Valve
Authors: Pawel Flaszynski, Piotr Doerffer, Jan Holnicki-Szulc, Grzegorz Mikulowski
Abstract:
Results of numerical simulations for transonic flow in a piezoelectric valve are presented. The valve is the main part of an adaptive pneumatic shock absorber. Flow structure in the valve domain and the influence of the flow non-uniformity in the valve on a mass flow rate is investigated. Numerical simulation results are compared with experimental data.Keywords: pneumatic valve, transonic flow, numerical simulations, piezoelectric valve
Procedia PDF Downloads 5162724 Decision Making for Industrial Engineers: From Phenomenon to Value
Authors: Ali Abbas
Abstract:
Industrial Engineering is a broad multidisciplinary field with intersections and applications in numerous areas. In out current environment, the path from a phenomenon to value involves numerous people with expertise in various areas including domain knowledge of a field and the ability to make decisions within an operating environment that lead to value creation. We propose some skills that industrial engineering programs should focus on, and argue that an industrial engineer is a decision maker instead of a problem solver.Keywords: decision analysis, problem-solving, value creation, industrial engineering
Procedia PDF Downloads 3772723 Research and Development of Net-Centric Information Sharing Platform
Authors: Wang Xiaoqing, Fang Youyuan, Zheng Yanxing, Gu Tianyang, Zong Jianjian, Tong Jinrong
Abstract:
Compared with traditional distributed environment, the net-centric environment brings on more demanding challenges for information sharing with the characteristics of ultra-large scale and strong distribution, dynamic, autonomy, heterogeneity, redundancy. This paper realizes an information sharing model and a series of core services, through which provides an open, flexible and scalable information sharing platform.Keywords: net-centric environment, information sharing, metadata registry and catalog, cross-domain data access control
Procedia PDF Downloads 5742722 Changing Emphases in Mental Health Research Methodology: Opportunities for Occupational Therapy
Authors: Jeffrey Chase
Abstract:
Historically the profession of Occupational Therapy was closely tied to the treatment of those suffering from mental illness; more recently, and especially in the U.S., the percentage of OTs identifying as working in the mental health area has declined significantly despite the estimate that by 2020 behavioral health disorders will surpass physical illnesses as the major cause of disability worldwide. In the U.S. less than 10% of OTs identify themselves as working with the mentally ill and/or practicing in mental health settings. Such a decline has implications for both those suffering from mental illness and the profession of Occupational Therapy. One reason cited for the decline of OT in mental health has been the limited research in the discipline addressing mental health practice. Despite significant advances in technology and growth in the field of neuroscience, major institutions and funding sources such as the National Institute of Mental Health (NIMH) have noted that research into the etiology and treatment of mental illness have met with limited success over the past 25 years. One major reason posited by NIMH is that research has been limited by how we classify individuals, that being mostly on what is observable. A new classification system being developed by NIMH, the Research Domain Criteria (RDoc), has the goal to look beyond just descriptors of disorders for common neural, genetic, and physiological characteristics that cut across multiple supposedly separate disorders. The hope is that by classifying individuals along RDoC measures that both reliability and validity will improve resulting in greater advances in the field. As a result of this change NIH and NIMH will prioritize research funding to those projects using the RDoC model. Multiple disciplines across many different setting will be required for RDoC or similar classification systems to be developed. During this shift in research methodology OT has an opportunity to reassert itself into the research and treatment of mental illness, both in developing new ways to more validly classify individuals, and to document the legitimacy of previously ill-defined and validated disorders such as sensory integration.Keywords: global mental health and neuroscience, research opportunities for ot, greater integration of ot in mental health research, research and funding opportunities, research domain criteria (rdoc)
Procedia PDF Downloads 2772721 Crosssampler: A Digital Convolution Cross Synthesis Instrument
Authors: Jimmy Eadie
Abstract:
Convolutional Cross Synthesis (CCS) has emerged as a powerful technique for blending input signals to create hybrid sounds. It has significantly expanded the horizons of digital signal processing, enabling artists to explore audio effects. However, the conventional applications of CCS primarily revolve around reverberation and room simulation rather than being utilized as a creative synthesis method. In this paper, we present the design of a digital instrument called CrossSampler that harnesses a parametric approach to convolution cross-synthesis, which involves using adjustable parameters to control the blending of audio signals through convolution. These parameters allow for customization of the resulting sound, offering greater creative control and flexibility. It enables users to shape the output by manipulating factors such as duration, intensity, and spectral characteristics. This approach facilitates experimentation and exploration in sound design and opens new sonic possibilities.Keywords: convolution, synthesis, sampling, virtual instrument
Procedia PDF Downloads 672720 An Analysis of Mongolian Possessive Markers
Authors: Yaxuan Wang
Abstract:
It has long been a mystery that why the Mongolian possessive suffix, which is constrained by Condition A of binding theory, has the ability to probe a potential antecedent outside of its binding domain. This squib argues that binding theory alone is not sufficient to explain the linguistic facts and proposes an analysis adopting the Agree operation. The current analysis correctly predicts all the possible and impossible structures, with an additional hypothesis that Mongolian possessive suffixes serve as an antecedent for PROs in adjunct. The findings thus provide insights into how Agree operates in Mongolian language.Keywords: syntax, Mongolian, agreement, possessive particles
Procedia PDF Downloads 1032719 On the Possibility of Real Time Characterisation of Ambient Toxicity Using Multi-Wavelength Photoacoustic Instrument
Authors: Tibor Ajtai, Máté Pintér, Noémi Utry, Gergely Kiss-Albert, Andrea Palágyi, László Manczinger, Csaba Vágvölgyi, Gábor Szabó, Zoltán Bozóki
Abstract:
According to the best knowledge of the authors, here we experimentally demonstrate first, a quantified correlation between the real-time measured optical feature of the ambient and the off-line measured toxicity data. Finally, using these correlations we are presenting a novel methodology for real time characterisation of ambient toxicity based on the multi wavelength aerosol phase photoacoustic measurement. Ambient carbonaceous particulate matter is one of the most intensively studied atmospheric constituent in climate science nowadays. Beyond their climatic impact, atmospheric soot also plays an important role as an air pollutant that harms human health. Moreover, according to the latest scientific assessments ambient soot is the second most important anthropogenic emission source, while in health aspect its being one of the most harmful atmospheric constituents as well. Despite of its importance, generally accepted standard methodology for the quantitative determination of ambient toxicology is not available yet. Dominantly, ambient toxicology measurement is based on the posterior analysis of filter accumulated aerosol with limited time resolution. Most of the toxicological studies are based on operational definitions using different measurement protocols therefore the comprehensive analysis of the existing data set is really limited in many cases. The situation is further complicated by the fact that even during its relatively short residence time the physicochemical features of the aerosol can be masked significantly by the actual ambient factors. Therefore, decreasing the time resolution of the existing methodology and developing real-time methodology for air quality monitoring are really actual issues in the air pollution research. During the last decades many experimental studies have verified that there is a relation between the chemical composition and the absorption feature quantified by Absorption Angström Exponent (AAE) of the carbonaceous particulate matter. Although the scientific community are in the common platform that the PhotoAcoustic Spectroscopy (PAS) is the only methodology that can measure the light absorption by aerosol with accurate and reliable way so far, the multi-wavelength PAS which are able to selectively characterise the wavelength dependency of absorption has become only available in the last decade. In this study, the first results of the intensive measurement campaign focusing the physicochemical and toxicological characterisation of ambient particulate matter are presented. Here we demonstrate the complete microphysical characterisation of winter time urban ambient including optical absorption and scattering as well as size distribution using our recently developed state of the art multi-wavelength photoacoustic instrument (4λ-PAS), integrating nephelometer (Aurora 3000) as well as single mobility particle sizer and optical particle counter (SMPS+C). Beyond this on-line characterisation of the ambient, we also demonstrate the results of the eco-, cyto- and genotoxicity measurements of ambient aerosol based on the posterior analysis of filter accumulated aerosol with 6h time resolution. We demonstrate a diurnal variation of toxicities and AAE data deduced directly from the multi-wavelength absorption measurement results.Keywords: photoacoustic spectroscopy, absorption Angström exponent, toxicity, Ames-test
Procedia PDF Downloads 3042718 The Effect of Self and Peer Assessment Activities in Second Language Writing: A Washback Effect Study on the Writing Growth during the Revision Phase in the Writing Process: Learners’ Perspective
Authors: Musbah Abdussayed
Abstract:
The washback effect refers to the influence of assessment on teaching and learning, and this washback effect can either be positive or negative. This study implemented, sequentially, self-assessment (SA) and peer assessment (PA) and examined the washback effect of self and peer assessment (SPA) activities on the writing growth during the revision phase in the writing process. Twenty advanced Arabic as a second language learners from a private school in the USA participated in the study. The participants composed and then revised a short Arabic story as a part of a midterm grade. Qualitative data was collected, analyzed, and synthesized from ten interviews with the learners and from the twenty learners’ post-reflective journals. The findings indicate positive washback effects on the learners’ writing growth. The PA activity enhanced descriptions and meaning, promoted creativity, and improved textual coherence, whereas the SA activity led to detecting editing issues. Furthermore, both SPA activities had washback effects in common, including helping the learners meet the writing genre conventions and developing metacognitive awareness. However, the findings also demonstrate negative washback effects on the learners’ attitudes during the revision phase in the writing process, including bias toward self-evaluation during the SA activity and reluctance to rate peers’ writing performance during the PA activity. The findings suggest that self-and peer assessment activities are essential teaching and learning tools that can be utilized sequentially to help learners tackle multiple writing areas during the revision phase in the writing process.Keywords: self assessment, peer assessment, washback effect, second language writing, writing process
Procedia PDF Downloads 732717 Analysis of Delivery of Quad Play Services
Authors: Rahul Malhotra, Anurag Sharma
Abstract:
Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.Keywords: FTTH, quad play, play service, access networks, data rate
Procedia PDF Downloads 4192716 Minimization of Switching Losses in Cascaded Multilevel Inverters Using Efficient Sequential Switching Hybrid-Modulation Techniques
Authors: P. Satish Kumar, K. Ramakrishna, Ch. Lokeshwar Reddy, G. Sridhar
Abstract:
This paper presents two different sequential switching hybrid-modulation strategies and implemented for cascaded multilevel inverters. Hybrid modulation strategies represent the combinations of Fundamental-Frequency Pulse Width Modulation (FFPWM) and Multilevel Sinusoidal-Modulation (MSPWM) strategies, and are designed for performance of the well-known Alternative Phase Opposition Disposition (APOD), Phase Shifted Carrier (PSC). The main characteristics of these modulations are the reduction of switching losses with good harmonic performance, balanced power loss dissipation among the devices with in a cell, and among the series-connected cells. The feasibility of these modulations is verified through spectral analysis, power loss analysis and simulation.Keywords: cascaded multilevel inverters, hybrid modulation, power loss analysis, pulse width modulation
Procedia PDF Downloads 5372715 Improved Active Constellation Extension for the PAPR Reduction of FBMC-OQAM Signals
Authors: Mounira Laabidi, Rafik Zayani, Ridha Bouallegue, Daniel Roviras
Abstract:
The Filter Bank multicarrier with Offset Quadrature Amplitude Modulation (FBMC-OQAM) has been introduced to overcome the poor spectral characteristics and the waste in both bandwidth and energy caused by the use of the cyclic prefix. However, the FBMC-OQAM signals suffer from the high Peak to Average Power Ratio (PAPR) problem. Due to the overlapping structure of the FBMC-OQAM signals, directly applying the PAPR reduction schemes conceived for the OFDM one turns out to be ineffective. In this paper, we address the problem of PAPR reduction for FBMC-OQAM systems by suggesting a new scheme based on an improved version of Active Constellation Extension scheme (ACE) of OFDM. The proposed scheme, named Rolling Window ACE, takes into consideration the overlapping naturally emanating from the FBMC-OQAM signals.Keywords: ACE, FBMC, OQAM, OFDM, PAPR, rolling-window
Procedia PDF Downloads 5482714 Two-Photon Fluorescence in N-Doped Graphene Quantum Dots
Authors: Chi Man Luk, Ming Kiu Tsang, Chi Fan Chan, Shu Ping Lau
Abstract:
Nitrogen-doped graphene quantum dots (N-GQDs) were fabricated by microwave-assisted hydrothermal technique. The optical properties of the N-GQDs were studied. The luminescence of the N-GQDs can be tuned by varying the excitation wavelength. Furthermore, two-photon luminescence of the N-GQDs excited by near-infrared laser can be obtained. It is shown that N-doping play a key role on two-photon luminescence. The N-GQDs are expected to find application in biological applications including bioimaging and sensing.Keywords: graphene quantum dots, nitrogen doping, photoluminescence, two-photon fluorescence
Procedia PDF Downloads 6352713 Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions
Authors: Mohammad Moeini, Mehrdad Ghyabi, Kiarash Mohtasham Dolatshahi
Abstract:
This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil.Keywords: BNWF method, multi-support excitation, nonlinear site response analysis, seismic soil-pile interaction
Procedia PDF Downloads 3952712 Exploring Teacher Verbal Feedback on Postgraduate Students' Performances in Presentations in English
Authors: Nattawadee Sinpattanawong, Yaowaret Tharawoot
Abstract:
This is an analytic and descriptive classroom-centered research, the purpose of which is to explore teacher verbal feedback on postgraduate students’ performances in presentations in English in an English for Specific Purposes (ESP) postgraduate classroom. The participants are a Thai female teacher, two Thai female postgraduate students, and two foreign male postgraduate students. The current study draws on both classroom observation and interview data. The class focused on the students’ presentations and the teacher’s providing verbal feedback on them was observed nine times with audio recording and taking notes. For the interviews, the teacher was interviewed about linkages between her verbal feedback and each student’s presentation skills in English. For the data analysis, the audio files from the observations were transcribed and analyzed both quantitatively and qualitatively. The quantitative approach addressed the frequencies and percentages of content of the teacher’s verbal feedback for each student’s performances based on eight presentation factors (content, structure, grammar, coherence, vocabulary, speaking skills, involving the audience, and self-presentation). Based on the quantitative data including the interview data, a qualitative analysis of the transcripts was made to describe the occurrences of several content of verbal feedback for each student’s presentation performances. The study’s findings may help teachers to reflect on their providing verbal feedback based on various students’ performances in presentation in English. They also help students who have similar characteristics to the students in the present study when giving a presentation in English improve their presentation performances by applying the teacher’s verbal feedback content.Keywords: teacher verbal feedback, presentation factors, presentation in English, presentation performances
Procedia PDF Downloads 1512711 Benefits of High Power Impulse Magnetron Sputtering (HiPIMS) Method for Preparation of Transparent Indium Gallium Zinc Oxide (IGZO) Thin Films
Authors: Pavel Baroch, Jiri Rezek, Michal Prochazka, Tomas Kozak, Jiri Houska
Abstract:
Transparent semiconducting amorphous IGZO films have attracted great attention due to their excellent electrical properties and possible utilization in thin film transistors or in photovoltaic applications as they show 20-50 times higher mobility than that of amorphous silicon. It is also known that the properties of IGZO films are highly sensitive to process parameters, especially to oxygen partial pressure. In this study we have focused on the comparison of properties of transparent semiconducting amorphous indium gallium zinc oxide (IGZO) thin films prepared by conventional sputtering methods and those prepared by high power impulse magnetron sputtering (HiPIMS) method. Furthermore we tried to optimize electrical and optical properties of the IGZO thin films and to investigate possibility to apply these coatings on thermally sensitive flexible substrates. We employed dc, pulsed dc, mid frequency sine wave and HiPIMS power supplies for magnetron deposition. Magnetrons were equipped with sintered ceramic InGaZnO targets. As oxygen vacancies are considered to be the main source of the carriers in IGZO films, it is expected that with the increase of oxygen partial pressure number of oxygen vacancies decreases which results in the increase of film resistivity. Therefore in all experiments we focused on the effect of oxygen partial pressure, discharge power and pulsed power mode on the electrical, optical and mechanical properties of IGZO thin films and also on the thermal load deposited to the substrate. As expected, we have observed a very fast transition between low- and high-resistivity films depending on oxygen partial pressure when deposition using conventional sputtering methods/power supplies have been utilized. Therefore we established and utilized HiPIMS sputtering system for enlargement of operation window for better control of IGZO thin film properties. It is shown that with this system we are able to effectively eliminate steep transition between low and high resistivity films exhibited by DC mode of sputtering and the electrical resistivity can be effectively controlled in the wide resistivity range of 10-² to 10⁵ Ω.cm. The highest mobility of charge carriers (up to 50 cm2/V.s) was obtained at very low oxygen partial pressures. Utilization of HiPIMS also led to significant decrease in thermal load deposited to the substrate which is beneficial for deposition on the thermally sensitive and flexible polymer substrates. Deposition rate as a function of discharge power and oxygen partial pressure was also systematically investigated and the results from optical, electrical and structure analysis will be discussed in detail. Most important result which we have obtained demonstrates almost linear control of IGZO thin films resistivity with increasing of oxygen partial pressure utilizing HiPIMS mode of sputtering and highly transparent films with low resistivity were prepared already at low pO2. It was also found that utilization of HiPIMS technique resulted in significant improvement of surface smoothness in reactive mode of sputtering (with increasing of oxygen partial pressure).Keywords: charge carrier mobility, HiPIMS, IGZO, resistivity
Procedia PDF Downloads 3002710 Computational Study of Blood Flow Analysis for Coronary Artery Disease
Authors: Radhe Tado, Ashish B. Deoghare, K. M. Pandey
Abstract:
The aim of this study is to estimate the effect of blood flow through the coronary artery in human heart so as to assess the coronary artery disease.Velocity, wall shear stress (WSS), strain rate and wall pressure distribution are some of the important hemodynamic parameters that are non-invasively assessed with computational fluid dynamics (CFD). These parameters are used to identify the mechanical factors responsible for the plaque progression and/or rupture in left coronary arteries (LCA) in coronary arteries.The initial step for CFD simulations was the construction of a geometrical model of the LCA. Patient specific artery model is constructed using computed tomography (CT) scan data with the help of MIMICS Research 19.0. For CFD analysis ANSYS FLUENT-14.5 is used.Hemodynamic parameters were quantified and flow patterns were visualized both in the absence and presence of coronary plaques. The wall pressure continuously decreased towards distal segments and showed pressure drops in stenotic segments. Areas of high WSS and high flow velocities were found adjacent to plaques deposition.Keywords: angiography, computational fluid dynamics (CFD), time-average wall shear stress (TAWSS), wall pressure, wall shear stress (WSS)
Procedia PDF Downloads 1862709 Ammonia Sensing Properties of Nanostructured Hybrid Halide Perovskite Thin Film
Authors: Nidhi Gupta, Omita Nanda, Rakhi Grover, Kanchan Saxena
Abstract:
Hybrid perovskite is new class of material which has gained much attention due to their different crystal structure and interesting optical and electrical properties. Easy fabrication, high absorption coefficient, and photoluminescence properties make them a strong candidate for various applications such as sensors, photovoltaics, photodetectors, etc. In perovskites, ions arrange themselves in a special type of crystal structure with chemical formula ABX3, where A is organic species like CH3NH3+, B is metal ion (e.g., Pb, Sn, etc.) and X is halide (Cl-, Br-, I-). In crystal structure, A is present at corner position, B at center of the crystal lattice and halide ions at the face centers. High stability and sensitivity of nanostructured perovskite make them suitable for chemical sensors. Researchers have studied sensing properties of perovskites for number of analytes such as 2,4,6-trinitrophenol, ethanol and other hazardous chemical compounds. Ammonia being highly toxic agent makes it a reason of concern for the environment. Thus the detection of ammonia is extremely important. Our present investigation deals with organic inorganic hybrid perovskite based ammonia sensor. Various methods like sol-gel, solid state synthesis, thermal vapor deposition etc can be used to synthesize Different hybrid perovskites. In the present work, a novel hybrid perovskite has been synthesized by a single step method. Ethylenediammnedihalide and lead halide were used as precursor. Formation of hybrid perovskite was confirmed by FT-IR and XRD. Morphological characterization of the synthesized material was performed using scanning electron microscopy (SEM). SEM analysis revealed the formation of one dimensional nanowire perovskite with mean diameter of 200 nm. Measurements for sensing properties of halide perovskite for ammonia vapor were carried out. Perovskite thin films showed a color change from yellow to orange on exposure of ammonia vapor. Electro-optical measurements show that sensor based on lead halide perovskite has high sensitivity towards ammonia with effective selectivity and reversibility. Sensor exhibited rapid response time of less than 20 seconds.Keywords: hybrid perovskite, ammonia, sensor, nanostructure, thin film
Procedia PDF Downloads 2772708 Synthesis and Characterization of Cyclic PNC-28 Peptide, Residues 17–26 (ETFSDLWKLL), A Binding Domain of p53
Authors: Deepshikha Verma, V. N. Rajasekharan Pillai
Abstract:
The present study reports the synthesis of cyclic PNC-28 peptides with solid-phase peptide synthesis method. In the first step, we synthesize the linear PNC-28 Peptide and in the second step, we cyclize (N-to-C or head-to-tail cyclization) the linear PNC-28 peptide. The molecular formula of cyclic PNC-28 peptide is C64H88N12O16 and its m/z mass is ≈1233.64. Elemental analysis of cyclic PNC-28 is C, 59.99; H, 6.92; N, 13.12; O, 19.98. The characterization of LC-MS, CD, FT-IR, and 1HNMR has been done to confirm the successful synthesis and cyclization of linear PNC-28 peptides.Keywords: CD, FTIR, 1HNMR, cyclic peptide
Procedia PDF Downloads 1322707 Medical Images Enhancement Using New Dynamic Band Pass Filter
Authors: Abdellatif Baba
Abstract:
In order to facilitate medical images analysis by improving their quality and readability, we present in this paper a new dynamic band pass filter as a general and suitable operator for different types of medical images. Our objective is to enrich the details of any treated medical image to make it sufficiently clear enough to give an understood and simplified meaning even for unspecialized people in the medical domain.Keywords: medical image enhancement, dynamic band pass filter, analysis improvement
Procedia PDF Downloads 2922706 Eu+3 Ion as a Luminescent Probe in ZrO2: Gd+3 Co-Doped Nanophosphor
Authors: S. Manjunatha, M. S. Dharmaprakash
Abstract:
Well-defined 2D Eu+3 co-doped ZrO2: Gd+3 nanoparticles were successfully synthesized by microwave assisted solution combustion technique for luminescent applications. The present investigation reports the rapid and effective method for the synthesis of the Eu+3 co-doped ZrO2:Gd+3 nanoparticles and study of the luminescence behavior of Eu+3 ion in ZrO2:Gd+3 nanostructures. The optical properties of the prepared nanostructures were investigated by using UV-visible spectroscopy and photoluminescence spectra. The phase formation and the morphology of the nanoplatelets were studied by XRD, FESEM and HRTEM. The average grain size was found to be 45-50 nm. The presence of Gd3+ ion increases the crystallinity of the material and hence acts as a good nucleating agent. The ZrO2:Gd3+ co-doped with Eu+3 nanoplatelets gives an emission at 607 nm, a strong red emission under the excitation wavelength of 255 nm.Keywords: nanoparticles, XRD, TEM, photoluminescence
Procedia PDF Downloads 3222705 Optimization Techniques for Microwave Structures
Authors: Malika Ourabia
Abstract:
A new and efficient method is presented for the analysis of arbitrarily shaped discontinuities. The discontinuities is characterized using a hybrid spectral/numerical technique. This structure presents an arbitrary number of ports, each one with different orientation and dimensions. This article presents a hybrid method based on multimode contour integral and mode matching techniques. The process is based on segmentation and dividing the structure into key building blocks. We use the multimode contour integral method to analyze the blocks including irregular shape discontinuities. Finally, the multimode scattering matrix of the whole structure can be found by cascading the blocks. Therefore, the new method is suitable for analysis of a wide range of waveguide problems. Therefore, the present approach can be applied easily to the analysis of any multiport junctions and cascade blocks. The accuracy of the method is validated comparing with results for several complex problems found in the literature. CPU times are also included to show the efficiency of the new method proposed.Keywords: segmentation, s parameters, simulation, optimization
Procedia PDF Downloads 531