Search results for: improved sparrow search algorithm
7624 Performance Evaluation of Task Scheduling Algorithm on LCQ Network
Authors: Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad
Abstract:
The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and distributed computing system. This paper deals with the problem of dynamic scheduling on a special type of multiprocessor architecture known as Linear Crossed Cube (LCQ) network. This proposed multiprocessor is a hybrid network which combines the features of both linear type of architectures as well as cube based architectures. Two standard dynamic scheduling schemes namely Minimum Distance Scheduling (MDS) and Two Round Scheduling (TRS) schemes are implemented on the LCQ network. Parallel tasks are mapped and the imbalance of load is evaluated on different set of processors in LCQ network. The simulations results are evaluated and effort is made by means of through analysis of the results to obtain the best solution for the given network in term of load imbalance left and execution time. The other performance matrices like speedup and efficiency are also evaluated with the given dynamic algorithms.Keywords: dynamic algorithm, load imbalance, mapping, task scheduling
Procedia PDF Downloads 4507623 Improved Throttled Load Balancing Approach for Cloud Environment
Authors: Sushant Singh, Anurag Jain, Seema Sabharwal
Abstract:
Cloud computing is advancing with a rapid speed. Already, it has been adopted by a huge set of users. Easy to use and anywhere access like potential of cloud computing has made it more attractive relative to other technologies. This has resulted in reduction of deployment cost on user side. It has also allowed the big companies to sell their infrastructure to recover the installation cost for the organization. Roots of cloud computing have extended from Grid computing. Along with the inherited characteristics of its predecessor technologies it has also adopted the loopholes present in those technologies. Some of the loopholes are identified and corrected recently, but still some are yet to be rectified. Two major areas where still scope of improvement exists are security and performance. The proposed work is devoted to performance enhancement for the user of the existing cloud system by improving the basic throttled mapping approach between task and resources. The improved procedure has been tested using the cloud analyst simulator. The results are compared with the original and it has been found that proposed work is one step ahead of existing techniques.Keywords: cloud analyst, cloud computing, load balancing, throttled
Procedia PDF Downloads 2497622 A Hybrid Derivative-Free Optimization Method for Pass Schedule Calculation in Cold Rolling Mill
Authors: Mohammadhadi Mirmohammadi, Reza Safian, Hossein Haddad
Abstract:
This paper presents an innovative solution for complex multi-objective optimization problem which is a part of efforts toward maximizing rolling mill throughput and minimizing processing costs in tandem cold rolling. This computational intelligence based optimization has been applied to the rolling schedules of tandem cold rolling mill. This method involves the combination of two derivative-free optimization procedures in the form of nested loops. The first optimization loop is based on Improving Hit and Run method which focus on balance of power, force and reduction distribution in rolling schedules. The second loop is a real-coded genetic algorithm based optimization procedure which optimizes energy consumption and productivity. An experimental result of application to five stand tandem cold rolling mill is presented.Keywords: derivative-free optimization, Improving Hit and Run method, real-coded genetic algorithm, rolling schedules of tandem cold rolling mill
Procedia PDF Downloads 6967621 Remote Sensing through Deep Neural Networks for Satellite Image Classification
Authors: Teja Sai Puligadda
Abstract:
Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss
Procedia PDF Downloads 1597620 Improved Small-Signal Characteristics of Infrared 850 nm Top-Emitting Vertical-Cavity Lasers
Authors: Ahmad Al-Omari, Osama Khreis, Ahmad M. K. Dagamseh, Abdullah Ababneh, Kevin Lear
Abstract:
High-speed infrared vertical-cavity surface-emitting laser diodes (VCSELs) with Cu-plated heat sinks were fabricated and tested. VCSELs with 10 mm aperture diameter and 4 mm of electroplated copper demonstrated a -3dB modulation bandwidth (f-3dB) of 14 GHz and a resonance frequency (fR) of 9.5 GHz at a bias current density (Jbias) of only 4.3 kA/cm2, which corresponds to an improved f-3dB2/Jbias ratio of 44 GHz2/kA/cm2. At higher and lower bias current densities, the f-3dB2/ Jbias ratio decreased to about 30 GHz2/kA/cm2 and 18 GHz2/kA/cm2, respectively. Examination of the analogue modulation response demonstrated that the presented VCSELs displayed a steady f-3dB/ fR ratio of 1.41±10% over the whole range of the bias current (1.3Ith to 6.2Ith). The devices also demonstrated a maximum modulation bandwidth (f-3dB max) of more than 16 GHz at a bias current less than the industrial bias current standard for reliability by 25%.Keywords: current density, high-speed VCSELs, modulation bandwidth, small-signal characteristics, thermal impedance, vertical-cavity surface-emitting lasers
Procedia PDF Downloads 5707619 A Discrete Logit Survival Model with a Smooth Baseline Hazard for Age at First Alcohol Intake among Students at Tertiary Institutions in Thohoyandou, South Africa
Authors: A. Bere, H. G. Sithuba, K. Kyei, C. Sigauke
Abstract:
We employ a discrete logit survival model to investigate the risk factors for early alcohol intake among students at two tertiary institutions in Thohoyandou, South Africa. Data were collected from a sample of 744 students using a self-administered questionnaire. Significant covariates were arrived at through a regularization algorithm implemented using the glmmLasso package. The tuning parameter was determined using a five-fold cross-validation algorithm. The baseline hazard was modelled as a smooth function of time through the use of spline functions. The results show that the hazard of initial alcohol intake peaks at the age of about 16 years and that at any given time, being of a male gender, prior use of other drugs, having drinking peers, having experienced negative life events and physical abuse are associated with a higher risk of alcohol intake debut.Keywords: cross-validation, discrete hazard model, LASSO, smooth baseline hazard
Procedia PDF Downloads 1927618 Optimization of Passive Vibration Damping of Space Structures
Authors: Emad Askar, Eldesoky Elsoaly, Mohamed Kamel, Hisham Kamel
Abstract:
The objective of this article is to improve the passive vibration damping of solar array (SA) used in space structures, by the effective application of numerical optimization. A case study of a SA is used for demonstration. A finite element (FE) model was created and verified by experimental testing. Optimization was then conducted by implementing the FE model with the genetic algorithm, to find the optimal placement of aluminum circular patches, to suppress the first two bending mode shapes. The results were verified using experimental testing. Finally, a parametric study was conducted using the FE model where patch locations, material type, and shape were varied one at a time, and the results were compared with the optimal ones. The results clearly show that through the proper application of FE modeling and numerical optimization, passive vibration damping of space structures has been successfully achieved.Keywords: damping optimization, genetic algorithm optimization, passive vibration damping, solar array vibration damping
Procedia PDF Downloads 4507617 A Fast Convergence Subband BSS Structure
Authors: Salah Al-Din I. Badran, Samad Ahmadi, Ismail Shahin
Abstract:
A blind source separation method is proposed; in this method we use a non-uniform filter bank and a novel normalisation. This method provides a reduced computational complexity and increased convergence speed comparing to the full-band algorithm. Recently, adaptive sub-band scheme has been recommended to solve two problems: reduction of computational complexity and increase the convergence speed of the adaptive algorithm for correlated input signals. In this work the reduction in computational complexity is achieved with the use of adaptive filters of orders less than the full-band adaptive filters, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each sub-band than the input signal at full bandwidth, and can promote better rates of convergence.Keywords: blind source separation, computational complexity, subband, convergence speed, mixture
Procedia PDF Downloads 5557616 Optimal Pressure Control and Burst Detection for Sustainable Water Management
Authors: G. K. Viswanadh, B. Rajasekhar, G. Venkata Ramana
Abstract:
Water distribution networks play a vital role in ensuring a reliable supply of clean water to urban areas. However, they face several challenges, including pressure control, pump speed optimization, and burst event detection. This paper combines insights from two studies to address these critical issues in Water distribution networks, focusing on the specific context of Kapra Municipality, India. The first part of this research concentrates on optimizing pressure control and pump speed in complex Water distribution networks. It utilizes the EPANET- MATLAB Toolkit to integrate EPANET functionalities into the MATLAB environment, offering a comprehensive approach to network analysis. By optimizing Pressure Reduce Valves (PRVs) and variable speed pumps (VSPs), this study achieves remarkable results. In the Benchmark Water Distribution System (WDS), the proposed PRV optimization algorithm reduces average leakage by 20.64%, surpassing the previous achievement of 16.07%. When applied to the South-Central and East zone WDS of Kapra Municipality, it identifies PRV locations that were previously missed by existing algorithms, resulting in average leakage reductions of 22.04% and 10.47%. These reductions translate to significant daily Water savings, enhancing Water supply reliability and reducing energy consumption. The second part of this research addresses the pressing issue of burst event detection and localization within the Water Distribution System. Burst events are a major contributor to Water losses and repair expenses. The study employs wireless sensor technology to monitor pressure and flow rate in real time, enabling the detection of pipeline abnormalities, particularly burst events. The methodology relies on transient analysis of pressure signals, utilizing Cumulative Sum and Wavelet analysis techniques to robustly identify burst occurrences. To enhance precision, burst event localization is achieved through meticulous analysis of time differentials in the arrival of negative pressure waveforms across distinct pressure sensing points, aided by nodal matrix analysis. To evaluate the effectiveness of this methodology, a PVC Water pipeline test bed is employed, demonstrating the algorithm's success in detecting pipeline burst events at flow rates of 2-3 l/s. Remarkably, the algorithm achieves a localization error of merely 3 meters, outperforming previously established algorithms. This research presents a significant advancement in efficient burst event detection and localization within Water pipelines, holding the potential to markedly curtail Water losses and the concomitant financial implications. In conclusion, this combined research addresses critical challenges in Water distribution networks, offering solutions for optimizing pressure control, pump speed, burst event detection, and localization. These findings contribute to the enhancement of Water Distribution System, resulting in improved Water supply reliability, reduced Water losses, and substantial cost savings. The integrated approach presented in this paper holds promise for municipalities and utilities seeking to improve the efficiency and sustainability of their Water distribution networks.Keywords: pressure reduce valve, complex networks, variable speed pump, wavelet transform, burst detection, CUSUM (Cumulative Sum), water pipeline monitoring
Procedia PDF Downloads 877615 Targeting Mineral Resources of the Upper Benue trough, Northeastern Nigeria Using Linear Spectral Unmixing
Authors: Bello Yusuf Idi
Abstract:
The Gongola arm of the Upper Banue Trough, Northeastern Nigeria is predominantly covered by the outcrops of Limestone-bearing rocks in form of Sandstone with intercalation of carbonate clay, shale, basaltic, felsphatic and migmatide rocks at subpixel dimension. In this work, subpixel classification algorithm was used to classify the data acquired from landsat 7 Enhance Thematic Mapper (ETM+) satellite system with the aim of producing fractional distribution image for three most economically important solid minerals of the area: Limestone, Basalt and Migmatide. Linear Spectral Unmixing (LSU) algorithm was used to produce fractional distribution image of abundance of the three mineral resources within a 100Km2 portion of the area. The results show that the minerals occur at different proportion all over the area. The fractional map could therefore serve as a guide to the ongoing reconnaissance for the economic potentiality of the formation.Keywords: linear spectral un-mixing, upper benue trough, gongola arm, geological engineering
Procedia PDF Downloads 3747614 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction
Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga
Abstract:
Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.Keywords: genetic algorithm, neural networks, word prediction, machine learning
Procedia PDF Downloads 1947613 Time-Series Load Data Analysis for User Power Profiling
Authors: Mahdi Daghmhehci Firoozjaei, Minchang Kim, Dima Alhadidi
Abstract:
In this paper, we present a power profiling model for smart grid consumers based on real time load data acquired smart meters. It profiles consumers’ power consumption behaviour using the dynamic time warping (DTW) clustering algorithm. Due to the invariability of signal warping of this algorithm, time-disordered load data can be profiled and consumption features be extracted. Two load types are defined and the related load patterns are extracted for classifying consumption behaviour by DTW. The classification methodology is discussed in detail. To evaluate the performance of the method, we analyze the time-series load data measured by a smart meter in a real case. The results verify the effectiveness of the proposed profiling method with 90.91% true positive rate for load type clustering in the best case.Keywords: power profiling, user privacy, dynamic time warping, smart grid
Procedia PDF Downloads 1487612 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering
Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel
Abstract:
Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.Keywords: classification, data mining, spam filtering, naive bayes, decision tree
Procedia PDF Downloads 4117611 An Improved Atmospheric Correction Method with Diurnal Temperature Cycle Model for MSG-SEVIRI TIR Data under Clear Sky Condition
Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yonggang Qian, Ning Wang
Abstract:
Knowledge of land surface temperature (LST) is of crucial important in energy balance studies and environment modeling. Satellite thermal infrared (TIR) imagery is the primary source for retrieving LST at the regional and global scales. Due to the combination of atmosphere and land surface of received radiance by TIR sensors, atmospheric effect correction has to be performed to remove the atmospheric transmittance and upwelling radiance. Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) provides measurements every 15 minutes in 12 spectral channels covering from visible to infrared spectrum at fixed view angles with 3km pixel size at nadir, offering new and unique capabilities for LST, LSE measurements. However, due to its high temporal resolution, the atmosphere correction could not be performed with radiosonde profiles or reanalysis data since these profiles are not available at all SEVIRI TIR image acquisition times. To solve this problem, a two-part six-parameter semi-empirical diurnal temperature cycle (DTC) model has been applied to the temporal interpolation of ECMWF reanalysis data. Due to the fact that the DTC model is underdetermined with ECMWF data at four synoptic times (UTC times: 00:00, 06:00, 12:00, 18:00) in one day for each location, some approaches are adopted in this study. It is well known that the atmospheric transmittance and upwelling radiance has a relationship with water vapour content (WVC). With the aid of simulated data, the relationship could be determined under each viewing zenith angle for each SEVIRI TIR channel. Thus, the atmospheric transmittance and upwelling radiance are preliminary removed with the aid of instantaneous WVC, which is retrieved from the brightness temperature in the SEVIRI channels 5, 9 and 10, and a group of the brightness temperatures for surface leaving radiance (Tg) are acquired. Subsequently, a group of the six parameters of the DTC model is fitted with these Tg by a Levenberg-Marquardt least squares algorithm (denoted as DTC model 1). Although the retrieval error of WVC and the approximate relationships between WVC and atmospheric parameters would induce some uncertainties, this would not significantly affect the determination of the three parameters, td, ts and β (β is the angular frequency, td is the time where the Tg reaches its maximum, ts is the starting time of attenuation) in DTC model. Furthermore, due to the large fluctuation in temperature and the inaccuracy of the DTC model around sunrise, SEVIRI measurements from two hours before sunrise to two hours after sunrise are excluded. With the knowledge of td , ts, and β, a new DTC model (denoted as DTC model 2) is accurately fitted again with these Tg at UTC times: 05:57, 11:57, 17:57 and 23:57, which is atmospherically corrected with ECMWF data. And then a new group of the six parameters of the DTC model is generated and subsequently, the Tg at any given times are acquired. Finally, this method is applied to SEVIRI data in channel 9 successfully. The result shows that the proposed method could be performed reasonably without assumption and the Tg derived with the improved method is much more consistent with that from radiosonde measurements.Keywords: atmosphere correction, diurnal temperature cycle model, land surface temperature, SEVIRI
Procedia PDF Downloads 2687610 Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values in the Context of the Manufacture of Aircraft Engines
Authors: Sara Rejeb, Catherine Duveau, Tabea Rebafka
Abstract:
To monitor the production process of turbofan aircraft engines, multiple measurements of various geometrical parameters are systematically recorded on manufactured parts. Engine parts are subject to extremely high standards as they can impact the performance of the engine. Therefore, it is essential to analyze these databases to better understand the influence of the different parameters on the engine's performance. Self-organizing maps are unsupervised neural networks which achieve two tasks simultaneously: they visualize high-dimensional data by projection onto a 2-dimensional map and provide clustering of the data. This technique has become very popular for data exploration since it provides easily interpretable results and a meaningful global view of the data. As such, self-organizing maps are usually applied to aircraft engine condition monitoring. As databases in this field are huge and complex, they naturally contain multiple missing entries for various reasons. The classical Kohonen algorithm to compute self-organizing maps is conceived for complete data only. A naive approach to deal with partially observed data consists in deleting items or variables with missing entries. However, this requires a sufficient number of complete individuals to be fairly representative of the population; otherwise, deletion leads to a considerable loss of information. Moreover, deletion can also induce bias in the analysis results. Alternatively, one can first apply a common imputation method to create a complete dataset and then apply the Kohonen algorithm. However, the choice of the imputation method may have a strong impact on the resulting self-organizing map. Our approach is to address simultaneously the two problems of computing a self-organizing map and imputing missing values, as these tasks are not independent. In this work, we propose an extension of self-organizing maps for partially observed data, referred to as missSOM. First, we introduce a criterion to be optimized, that aims at defining simultaneously the best self-organizing map and the best imputations for the missing entries. As such, missSOM is also an imputation method for missing values. To minimize the criterion, we propose an iterative algorithm that alternates the learning of a self-organizing map and the imputation of missing values. Moreover, we develop an accelerated version of the algorithm by entwining the iterations of the Kohonen algorithm with the updates of the imputed values. This method is efficiently implemented in R and will soon be released on CRAN. Compared to the standard Kohonen algorithm, it does not come with any additional cost in terms of computing time. Numerical experiments illustrate that missSOM performs well in terms of both clustering and imputation compared to the state of the art. In particular, it turns out that missSOM is robust to the missingness mechanism, which is in contrast to many imputation methods that are appropriate for only a single mechanism. This is an important property of missSOM as, in practice, the missingness mechanism is often unknown. An application to measurements on one type of part is also provided and shows the practical interest of missSOM.Keywords: imputation method of missing data, partially observed data, robustness to missingness mechanism, self-organizing maps
Procedia PDF Downloads 1517609 Investigation of Supercapacitor Properties of Nanocomposites Obtained from Acid and Base-functionalized Multi-walled Carbon Nanotube (MWCNT) and Polypyrrole (PPy)
Authors: Feridun Demir, Pelin Okdem
Abstract:
Polymers are versatile materials with many unique properties, such as low density, reasonable strength, flexibility, and easy processability. However, the mechanical properties of these materials are insufficient for many engineering applications. Therefore, there is a continuous search for new polymeric materials with improved properties. Polymeric nanocomposites are an advanced class of composite materials that have attracted great attention in both academic and industrial fields. Since nano-reinforcement materials are very small in size, they provide ultra-large interfacial area per volume between the nano-element and the polymer matrix. This allows the nano-reinforcement composites to exhibit enhanced toughness without compromising hardness or optical clarity. PPy and MWCNT/PPy nanocomposites were synthesized by the chemical oxidative polymerization method and the supercapacitor properties of the obtained nanocomposites were investigated. In addition, pure MWCNT was functionalized with acid (H₂SO₄/H₂O₂) and base (NH₄OH/H₂O₂) solutions at a ratio of 3:1 and a-MWCNT/d-PPy, and b-MWCNT/d-PPy nanocomposites were obtained. The homogeneous distribution of MWCNTs in the polypyrrole matrix and shell-core type morphological structures of the nanocomposites was observed with SEM images. It was observed with SEM, FTIR and XRD analyses that the functional groups formed by the functionalization of MWCNTs caused the MWCNTs to come together and partially agglomerate. It was found that the conductivity of the nanocomposites consisting of MWCNT and d-PPy was higher than that of pure d-PPy. CV, GCD and EIS results show that the use of a-MWCNT and b-MWCNTs in nanocomposites with low particle content positively affects the supercapacitor properties of the materials but negatively at high particle content. It was revealed that the functional MWCNT particles combined in nanocomposites with high particle content cause a decrease in the conductivity and distribution of ions in the electrodes and, thus, a decrease in their energy storage capacity.Keywords: polypyrrole, multi-walled carbon nanotube (MWCNT), conducting polymer, chemical oxidative polymerization, nanocomposite, supercapacitor
Procedia PDF Downloads 217608 Improving Self-Administered Medication Adherence for Older Adults: A Systematic Review
Authors: Mathumalar Loganathan, Lina Syazana, Bryony Dean Franklin
Abstract:
Background: The therapeutic benefit of self-administered medication for long-term use is limited by an average 50% non-adherence rate. Patient forgetfulness is a common factor in unintentional non-adherence. With a growing ageing population, strategies to improve self-administration of medication adherence are essential. Our aim was to review systematically the effects of interventions to optimise self-administration of medication. Method: Database searched were MEDLINE, EMBASE, PsynINFO, CINAHL from 1980 to 31 October 2013. Search terms included were ‘self-administration’, ‘self-care’, ‘medication adherence’, and ‘intervention’. Two independent reviewers undertook screening and methodological quality assessment, using the Downs and Black rating scale. Results: The search strategy retrieved 6 studies that met the inclusion and exclusion criteria. Three intervention strategies were identified: self-administration medication programme (SAMP), nursing education and medication packaging (pill calendar). A nursing education programme focused on improving patients’ behavioural self-management of drug prescribing. This was the most studied area and three studies highlighting an improvement in self-administration of medication. Conclusion: Results are mixed and there is no one interventional strategy that has proved to be effective. Nevertheless, self-administration of medication programme seems to show most promise. A multi-faceted approach and clearer policy guideline are likely to be required to improve prescribing for these vulnerable patients. Mixed results were found for SAMP. Medication packaging (pill calendar) was evaluated in one study showing a significant improvement in self-administration of medication. A meta-analysis could not be performed due to heterogeneity in the outcome measures.Keywords: self-administered medication, intervention, prescribing, older patients
Procedia PDF Downloads 3237607 An Indoor Guidance System Combining Near Field Communication and Bluetooth Low Energy Beacon Technologies
Authors: Rung-Shiang Cheng, Wei-Jun Hong, Jheng-Syun Wang, Kawuu W. Lin
Abstract:
Users rely increasingly on Location-Based Services (LBS) and automated navigation/guidance systems nowadays. However, while such services are easily implemented in outdoor environments using Global Positioning System (GPS) technology, a requirement still exists for accurate localization and guidance schemes in indoor settings. Accordingly, the present study presents a methodology based on GPS, Bluetooth Low Energy (BLE) beacons, and Near Field Communication (NFC) technology. Through establishing graphic information and the design of algorithm, this study develops a guidance system for indoor and outdoor on smartphones, with aim to provide users a smart life through this system. The presented system is implemented on a smartphone and evaluated on a student campus environment. The experimental results confirm the ability of the presented app to switch automatically from an outdoor mode to an indoor mode and to guide the user to the requested target destination via the shortest possible route.Keywords: beacon, indoor, BLE, Dijkstra algorithm
Procedia PDF Downloads 3027606 Numerical Optimization of Trapezoidal Microchannel Heat Sinks
Authors: Yue-Tzu Yang, Shu-Ching Liao
Abstract:
This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow and conjugate heat transfer of a trapezoidal microchannel heat sink using water as a cooling fluid in a silicon substrate. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method. We perform numerical computations for a range of 50 ≦ Re ≦ 600, 0.05W ≦ P ≦ 0.8W, 20W/cm2 ≦ ≦ 40W/cm2. The present study demonstrates the numerical optimization of a trapezoidal microchannel heat sink design using the response surface methodology (RSM) and the genetic algorithm method (GA). The results show that the average Nusselt number increases with an increase in the Reynolds number or pumping power, and the thermal resistance decreases as the pumping power increases. The thermal resistance of a trapezoidal microchannel is minimized for a constant heat flux and constant pumping power.Keywords: microchannel heat sinks, conjugate heat transfer, optimization, genetic algorithm method
Procedia PDF Downloads 3197605 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach
Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal
Abstract:
Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol
Procedia PDF Downloads 1087604 Mindfulness and Mental Resilience Training for Pilots: Enhancing Cognitive Performance and Stress Management
Authors: Nargiza Nuralieva
Abstract:
The study delves into assessing the influence of mindfulness and mental resilience training on the cognitive performance and stress management of pilots. Employing a meticulous literature search across databases such as Medline and Google Scholar, the study used specific keywords to target a wide array of studies. Inclusion criteria were stringent, focusing on peer-reviewed studies in English that utilized designs like randomized controlled trials, with a specific interest in interventions related to mindfulness or mental resilience training for pilots and measured outcomes pertaining to cognitive performance and stress management. The initial literature search identified a pool of 123 articles, with subsequent screening resulting in the exclusion of 77 based on title and abstract. The remaining 54 articles underwent a more rigorous full-text screening, leading to the exclusion of 41. Additionally, five studies were selected from the World Health Organization's clinical trials database. A total of 11 articles from meta-analyses were retained for examination, underscoring the study's dedication to a meticulous and robust inclusion process. The interventions varied widely, incorporating mixed approaches, Cognitive behavioral Therapy (CBT)-based, and mindfulness-based techniques. The analysis uncovered positive effects across these interventions. Specifically, mixed interventions demonstrated a Standardized Mean Difference (SMD) of 0.54, CBT-based interventions showed an SMD of 0.29, and mindfulness-based interventions exhibited an SMD of 0.43. Long-term effects at a 6-month follow-up suggested sustained impacts for both mindfulness-based (SMD: 0.63) and CBT-based interventions (SMD: 0.73), albeit with notable heterogeneity.Keywords: mindfulness, mental resilience, pilots, cognitive performance, stress management
Procedia PDF Downloads 557603 Enterpreneurship as a Strategic Tool for Higher Productivity in Nigerian Universities System
Authors: Yahaya Salihu Emeje, Amuchie Austine Anthony
Abstract:
The topic examined the prospects of entrepreneurship as an emerging dynamic and strategic tool in the upliftment of human and non-human resources in the Nigerian university system, with a view of showcasing the abundant positive impact, on the Nigerian University system in particular and Nigerian economy at large. It is end at bringing out the benefits of entrepreneurship in the university system which includes, namely cultivating the culture of enterprise in University system; improvement in the quality and quantity of both human and non-human resources; innovative and creative methods of production; new employment strategies in the University system; improved sources of internal generated revenue; entrepreneurship as the culture of sustainability within and outside the university system. Secondary data was used in analyzing entrepreneurship as a productivity tool in the Nigeria University system. From the findings, the university system could be enriched through innovative ideas and technical revenue and employment generation; sustainable financial and economic base; university autonomy and improved international ranking of Nigerian Universities system; therefore, recommended that entrepreneurship is necessary therapy for reviving the ailing, Nigerian universities system.Keywords: entrepreneurship, strategic, productivity, universities
Procedia PDF Downloads 3947602 Water Quality at a Ventilated Improved Pit Latrine Sludge Entrenchment Site
Authors: Babatunde Femi Bakare
Abstract:
Groundwater quality was evaluated at a site for three years after the site was used for entrenchment of Ventilated Improved Pit (VIP) latrine sludge. Analysis performed on the soil characteristics at the entrenchment site indicated that, the soils at the entrenchment site are predominantly sandy. Depth of the water table at the entrenchment site was found to be approximately five meters. Five monitoring boreholes were dug along the perimeter of the sludge trenches and water samples taken from these monitoring boreholes were analyzed for pH, conductivity, sodium ions, chloride ions, phosphate, nitrate, ammonia, and bacteriological analysis. The results obtained from the analysis conducted were compared with the South African Bureau of Standards for drinking water and it was found that the parameters analyzed falls below the specified range. The data obtained from this study indicate that, given the relatively high sludge loading rates, poor soil quality, and the duration of the groundwater quality monitoring, it is unlikely that contamination of groundwater at the entrenchment site will be a major concern. However, caution is advised in extrapolating these results to other locations.Keywords: boreholes, contamination, entrenchment, groundwater quality, VIP latrines
Procedia PDF Downloads 4107601 Improving Human Hand Localization in Indoor Environment by Using Frequency Domain Analysis
Authors: Wipassorn Vinicchayakul, Pichaya Supanakoon, Sathaporn Promwong
Abstract:
A human’s hand localization is revised by using radar cross section (RCS) measurements with a minimum root mean square (RMS) error matching algorithm on a touchless keypad mock-up model. RCS and frequency transfer function measurements are carried out in an indoor environment on the frequency ranged from 3.0 to 11.0 GHz to cover federal communications commission (FCC) standards. The touchless keypad model is tested in two different distances between the hand and the keypad. The initial distance of 19.50 cm is identical to the heights of transmitting (Tx) and receiving (Rx) antennas, while the second distance is 29.50 cm from the keypad. Moreover, the effects of Rx angles relative to the hand of human factor are considered. The RCS input parameters are compared with power loss parameters at each frequency. From the results, the performance of the RCS input parameters with the second distance, 29.50 cm at 3 GHz is better than the others.Keywords: radar cross section, fingerprint-based localization, minimum root mean square (RMS) error matching algorithm, touchless keypad model
Procedia PDF Downloads 3427600 Pattern Synthesis of Nonuniform Linear Arrays Including Mutual Coupling Effects Based on Gaussian Process Regression and Genetic Algorithm
Authors: Ming Su, Ziqiang Mu
Abstract:
This paper proposes a synthesis method for nonuniform linear antenna arrays that combine Gaussian process regression (GPR) and genetic algorithm (GA). In this method, the GPR model can be used to calculate the array radiation pattern in the presence of mutual coupling effects, and then the GA is used to optimize the excitations and locations of the elements so as to generate the desired radiation pattern. In this paper, taking a 9-element nonuniform linear array as an example and the desired radiation pattern corresponding to a Chebyshev distribution as the optimization objective, optimize the excitations and locations of the elements. Finally, the optimization results are verified by electromagnetic simulation software CST, which shows that the method is effective.Keywords: nonuniform linear antenna arrays, GPR, GA, mutual coupling effects, active element pattern
Procedia PDF Downloads 1097599 Applying Hybrid Graph Drawing and Clustering Methods on Stock Investment Analysis
Authors: Mouataz Zreika, Maria Estela Varua
Abstract:
Stock investment decisions are often made based on current events of the global economy and the analysis of historical data. Conversely, visual representation could assist investors’ gain deeper understanding and better insight on stock market trends more efficiently. The trend analysis is based on long-term data collection. The study adopts a hybrid method that combines the Clustering algorithm and Force-directed algorithm to overcome the scalability problem when visualizing large data. This method exemplifies the potential relationships between each stock, as well as determining the degree of strength and connectivity, which will provide investors another understanding of the stock relationship for reference. Information derived from visualization will also help them make an informed decision. The results of the experiments show that the proposed method is able to produced visualized data aesthetically by providing clearer views for connectivity and edge weights.Keywords: clustering, force-directed, graph drawing, stock investment analysis
Procedia PDF Downloads 3027598 Seismic Response Control of Multi-Span Bridge Using Magnetorheological Dampers
Authors: B. Neethu, Diptesh Das
Abstract:
The present study investigates the performance of a semi-active controller using magneto-rheological dampers (MR) for seismic response reduction of a multi-span bridge. The application of structural control to the structures during earthquake excitation involves numerous challenges such as proper formulation and selection of the control strategy, mathematical modeling of the system, uncertainty in system parameters and noisy measurements. These problems, however, need to be tackled in order to design and develop controllers which will efficiently perform in such complex systems. A control algorithm, which can accommodate un-certainty and imprecision compared to all the other algorithms mentioned so far, due to its inherent robustness and ability to cope with the parameter uncertainties and imprecisions, is the sliding mode algorithm. A sliding mode control algorithm is adopted in the present study due to its inherent stability and distinguished robustness to system parameter variation and external disturbances. In general a semi-active control scheme using an MR damper requires two nested controllers: (i) an overall system controller, which derives the control force required to be applied to the structure and (ii) an MR damper voltage controller which determines the voltage required to be supplied to the damper in order to generate the desired control force. In the present study a sliding mode algorithm is used to determine the desired optimal force. The function of the voltage controller is to command the damper to produce the desired force. The clipped optimal algorithm is used to find the command voltage supplied to the MR damper which is regulated by a semi active control law based on sliding mode algorithm. The main objective of the study is to propose a robust semi active control which can effectively control the responses of the bridge under real earthquake ground motions. Lumped mass model of the bridge is developed and time history analysis is carried out by solving the governing equations of motion in the state space form. The effectiveness of MR dampers is studied by analytical simulations by subjecting the bridge to real earthquake records. In this regard, it may also be noted that the performance of controllers depends, to a great extent, on the characteristics of the input ground motions. Therefore, in order to study the robustness of the controller in the present study, the performance of the controllers have been investigated for fourteen different earthquake ground motion records. The earthquakes are chosen in such a way that all possible characteristic variations can be accommodated. Out of these fourteen earthquakes, seven are near-field and seven are far-field. Also, these earthquakes are divided into different frequency contents, viz, low-frequency, medium-frequency, and high-frequency earthquakes. The responses of the controlled bridge are compared with the responses of the corresponding uncontrolled bridge (i.e., the bridge without any control devices). The results of the numerical study show that the sliding mode based semi-active control strategy can substantially reduce the seismic responses of the bridge showing a stable and robust performance for all the earthquakes.Keywords: bridge, semi active control, sliding mode control, MR damper
Procedia PDF Downloads 1247597 A Local Tensor Clustering Algorithm to Annotate Uncharacterized Genes with Many Biological Networks
Authors: Paul Shize Li, Frank Alber
Abstract:
A fundamental task of clinical genomics is to unravel the functions of genes and their associations with disorders. Although experimental biology has made efforts to discover and elucidate the molecular mechanisms of individual genes in the past decades, still about 40% of human genes have unknown functions, not to mention the diseases they may be related to. For those biologists who are interested in a particular gene with unknown functions, a powerful computational method tailored for inferring the functions and disease relevance of uncharacterized genes is strongly needed. Studies have shown that genes strongly linked to each other in multiple biological networks are more likely to have similar functions. This indicates that the densely connected subgraphs in multiple biological networks are useful in the functional and phenotypic annotation of uncharacterized genes. Therefore, in this work, we have developed an integrative network approach to identify the frequent local clusters, which are defined as those densely connected subgraphs that frequently occur in multiple biological networks and consist of the query gene that has few or no disease or function annotations. This is a local clustering algorithm that models multiple biological networks sharing the same gene set as a three-dimensional matrix, the so-called tensor, and employs the tensor-based optimization method to efficiently find the frequent local clusters. Specifically, massive public gene expression data sets that comprehensively cover dynamic, physiological, and environmental conditions are used to generate hundreds of gene co-expression networks. By integrating these gene co-expression networks, for a given uncharacterized gene that is of biologist’s interest, the proposed method can be applied to identify the frequent local clusters that consist of this uncharacterized gene. Finally, those frequent local clusters are used for function and disease annotation of this uncharacterized gene. This local tensor clustering algorithm outperformed the competing tensor-based algorithm in both module discovery and running time. We also demonstrated the use of the proposed method on real data of hundreds of gene co-expression data and showed that it can comprehensively characterize the query gene. Therefore, this study provides a new tool for annotating the uncharacterized genes and has great potential to assist clinical genomic diagnostics.Keywords: local tensor clustering, query gene, gene co-expression network, gene annotation
Procedia PDF Downloads 1687596 The Search for the Self in Psychotherapy: Findings from Relational Theory and Neuroanatomy
Authors: Harry G. Segal
Abstract:
The idea of the “self” has been essential ever since the early modern period in western culture, especially since the development of psychotherapy, but advances in neuroscience and cognitive theory challenge traditional notions of the self. More specifically, neuroanatomists have found no location of “the self” in the brain; instead, consciousness has been posited to be a rapid combination of perception, memory, anticipation of future events, and judgment. In this paper, a theoretical model is presented to address these neuroanatomical findings and to revise the historical understanding of “selfhood” in the practice of psychotherapy.Keywords: the self, psychotherapy, the self and the brain
Procedia PDF Downloads 1057595 Elephant Herding Optimization for Service Selection in QoS-Aware Web Service Composition
Authors: Samia Sadouki Chibani, Abdelkamel Tari
Abstract:
Web service composition combines available services to provide new functionality. Given the number of available services with similar functionalities and different non functional aspects (QoS), the problem of finding a QoS-optimal web service composition is considered as an optimization problem belonging to NP-hard class. Thus, an optimal solution cannot be found by exact algorithms within a reasonable time. In this paper, a meta-heuristic bio-inspired is presented to address the QoS aware web service composition; it is based on Elephant Herding Optimization (EHO) algorithm, which is inspired by the herding behavior of elephant group. EHO is characterized by a process of dividing and combining the population to sub populations (clan); this process allows the exchange of information between local searches to move toward a global optimum. However, with Applying others evolutionary algorithms the problem of early stagnancy in a local optimum cannot be avoided. Compared with PSO, the results of experimental evaluation show that our proposition significantly outperforms the existing algorithm with better performance of the fitness value and a fast convergence.Keywords: bio-inspired algorithms, elephant herding optimization, QoS optimization, web service composition
Procedia PDF Downloads 327