Search results for: smart hybrid powerpack (SHP)
1199 Aerodynamic Analysis and Design of Banners for Remote-Controlled Aircraft
Authors: Peyman Honarmandi, Mazen Alhirsh
Abstract:
Banner towing is a major form of advertisement. It consists of a banner showing a logo or a selection of words or letters being towed by an aircraft. Traditionally bush planes have been used to tow banners given their high thrust capabilities; however, with the development of remote-controlled (RC) aircraft, they could be a good replacement as RC planes mitigate the risk of human life and can be easier to operate. This paper studies the best banner design to be towed by an RC aircraft. This is done by conducting wind tunnel testing on an array of banners with different materials and designs. A pull gauge is used to record the drag force during testing, which is then used to calculate the coefficient of drag, Cd. The testing results show that the best banner design would be a hybrid design with a solid and mesh material. The design with the lowest Cd of 0.082 was a half ripstop nylon half polyester mesh design. On the other hand, the design with the highest Cd of 0.305 involved incorporating a tail chute to decrease fluttering.Keywords: aerodynamics of banner, banner design, banner towing, drag coefficients of banner, RC aircraft banner
Procedia PDF Downloads 2421198 Comparison of Different Machine Learning Models for Time-Series Based Load Forecasting of Electric Vehicle Charging Stations
Authors: H. J. Joshi, Satyajeet Patil, Parth Dandavate, Mihir Kulkarni, Harshita Agrawal
Abstract:
As the world looks towards a sustainable future, electric vehicles have become increasingly popular. Millions worldwide are looking to switch to Electric cars over the previously favored combustion engine-powered cars. This demand has seen an increase in Electric Vehicle Charging Stations. The big challenge is that the randomness of electrical energy makes it tough for these charging stations to provide an adequate amount of energy over a specific amount of time. Thus, it has become increasingly crucial to model these patterns and forecast the energy needs of power stations. This paper aims to analyze how different machine learning models perform on Electric Vehicle charging time-series data. The data set consists of authentic Electric Vehicle Data from the Netherlands. It has an overview of ten thousand transactions from public stations operated by EVnetNL.Keywords: forecasting, smart grid, electric vehicle load forecasting, machine learning, time series forecasting
Procedia PDF Downloads 1061197 Upon Poly(2-Hydroxyethyl Methacrylate-Co-3, 9-Divinyl-2, 4, 8, 10-Tetraoxaspiro (5.5) Undecane) as Polymer Matrix Ensuring Intramolecular Strategies for Further Coupling Applications
Authors: Aurica P. Chiriac, Vera Balan, Mihai Asandulesa, Elena Butnaru, Nita Tudorachi, Elena Stoleru, Loredana E. Nita, Iordana Neamtu, Alina Diaconu, Liliana Mititelu-Tartau
Abstract:
The interest for studying ‘smart’ materials is entirely justified and in this context were realized investigations on poly(2-hydroxyethylmethacrylate-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane), which is a macromolecular compound with sensibility at pH and temperature, gel formation capacity, binding properties, amphilicity, good oxidative and thermal stability. Physico-chemical characteristics in terms of the molecular weight, temperature-sensitive abilities and thermal stability, as well rheological, dielectric and spectroscopic properties were evaluated in correlation with further coupling capabilities. Differential scanning calorimetry investigation indicated Tg at 36.6 °C and a melting point at Tm=72.8°C, for the studied copolymer, and up to 200oC two exothermic processes (at 99.7°C and 148.8°C) were registered with losing weight of about 4 %, respective 19.27%, which indicate just processes of thermal decomposition (and not phenomena of thermal transition) owing to scission of the functional groups and breakage of the macromolecular chains. At the same time, the rheological studies (rotational tests) confirmed the non-Newtonian shear-thinning fluid behavior of the copolymer solution. The dielectric properties of the copolymer have been evaluated in order to investigate the relaxation processes and two relaxation processes under Tg value were registered and attributed to localized motions of polar groups from side chain macromolecules, or parts of them, without disturbing the main chains. According to literature and confirmed as well by our investigations, β-relaxation is assigned with the rotation of the ester side group and the γ-relaxation corresponds to the rotation of hydroxy- methyl side groups. The fluorescence spectroscopy confirmed the copolymer structure, the spiroacetal moiety getting an axial conformation, more stable, with lower energy, able for specific interactions with molecules from environment, phenomena underlined by different shapes of the emission spectra of the copolymer. Also, the copolymer was used as template for indomethacin incorporation as model drug, and the biocompatible character of the complex was confirmed. The release behavior of the bioactive compound was dependent by the copolymer matrix composition, the increasing of 3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane comonomer amount attenuating the drug release. At the same time, the in vivo studies did not show significant differences of leucocyte formula elements, GOT, GPT and LDH levels, nor immune parameters (OC, PC, and BC) between control mice group and groups treated just with copolymer samples, with or without drug, data attesting the biocompatibility of the polymer samples. The investigation of the physico-chemical characteristics of poly(2-hydrxyethyl methacrylate-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane) in terms of temperature-sensitive abilities, rheological and dielectrical properties, are bringing useful information for further specific use of this polymeric compound.Keywords: bioapplications, dielectric and spectroscopic properties, dual sensitivity at pH and temperature, smart materials
Procedia PDF Downloads 2821196 RASPE: Risk Advisory Smart System for Pipeline Projects in Egypt
Authors: Nael Y. Zabel, Maged E. Georgy, Moheeb E. Ibrahim
Abstract:
A knowledge-based expert system with the acronym RASPE is developed as an application tool to help decision makers in construction companies make informed decisions about managing risks in pipeline construction projects. Choosing to use expert systems from all available artificial intelligence techniques is due to the fact that an expert system is more suited to representing a domain’s knowledge and the reasoning behind domain-specific decisions. The knowledge-based expert system can capture the knowledge in the form of conditional rules which represent various project scenarios and potential risk mitigation/response actions. The built knowledge in RASPE is utilized through the underlying inference engine that allows the firing of rules relevant to a project scenario into consideration. This paper provides an overview of the knowledge acquisition process and goes about describing the knowledge structure which is divided up into four major modules. The paper shows one module in full detail for illustration purposes and concludes with insightful remarks.Keywords: expert system, knowledge management, pipeline projects, risk mismanagement
Procedia PDF Downloads 3101195 A Modified NSGA-II Algorithm for Solving Multi-Objective Flexible Job Shop Scheduling Problem
Authors: Aydin Teymourifar, Gurkan Ozturk, Ozan Bahadir
Abstract:
NSGA-II is one of the most well-known and most widely used evolutionary algorithms. In addition to its new versions, such as NSGA-III, there are several modified types of this algorithm in the literature. In this paper, a hybrid NSGA-II algorithm has been suggested for solving the multi-objective flexible job shop scheduling problem. For a better search, new neighborhood-based crossover and mutation operators are defined. To create new generations, the neighbors of the selected individuals by the tournament selection are constructed. Also, at the end of each iteration, before sorting, neighbors of a certain number of good solutions are derived, except for solutions protected by elitism. The neighbors are generated using a constraint-based neural network that uses various constructs. The non-dominated sorting and crowding distance operators are same as the classic NSGA-II. A comparison based on some multi-objective benchmarks from the literature shows the efficiency of the algorithm.Keywords: flexible job shop scheduling problem, multi-objective optimization, NSGA-II algorithm, neighborhood structures
Procedia PDF Downloads 2291194 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems
Authors: Sultan Noman Qasem
Abstract:
This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFNN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.Keywords: radial basis function network, hybrid learning, multi-objective optimization, genetic algorithm
Procedia PDF Downloads 5631193 Dissecting Big Trajectory Data to Analyse Road Network Travel Efficiency
Authors: Rania Alshikhe, Vinita Jindal
Abstract:
Digital innovation has played a crucial role in managing smart transportation. For this, big trajectory data collected from traveling vehicles, such as taxis through installed global positioning system (GPS)-enabled devices can be utilized. It offers an unprecedented opportunity to trace the movements of vehicles in fine spatiotemporal granularity. This paper aims to explore big trajectory data to measure the travel efficiency of road networks using the proposed statistical travel efficiency measure (STEM) across an entire city. Further, it identifies the cause of low travel efficiency by proposed least square approximation network-based causality exploration (LANCE). Finally, the resulting data analysis reveals the causes of low travel efficiency, along with the road segments that need to be optimized to improve the traffic conditions and thus minimize the average travel time from given point A to point B in the road network. Obtained results show that our proposed approach outperforms the baseline algorithms for measuring the travel efficiency of the road network.Keywords: GPS trajectory, road network, taxi trips, digital map, big data, STEM, LANCE
Procedia PDF Downloads 1571192 Selling Electric Vehicles: Experiences from Car Salesmen in Sweden
Authors: Jens Hagman, Jenny Janhager Stier, Ellen Olausson, Anne Y. Faxer, Ana Magazinius
Abstract:
Sweden has the second highest electric vehicle (plug-in hybrid and battery electric vehicle) sales per capita in Europe but in relation to sales of internal combustion engine electric vehicles sales are still minuscular (< 4%). Much research effort has been placed on various technical and user focused barriers and enablers for adoption of electric vehicles. Less effort has been placed on investigating the retail (dealership-customer) sales process of vehicles in general and electric vehicles in particular. Arguably, no one ought to be better informed about needs and desires of potential electric vehicle buyers than car salesmen, originating from their daily encounters with customers at the dealership. The aim of this paper is to explore the conditions of selling electric vehicle from a car salesmen’s perspective. This includes identifying barriers and enablers for electric vehicle sales originating from internal (dealership and brand) and external (customer, government) sources. In this interview study five car brands (manufacturers) that sell both electric and internal combustion engine vehicles have been investigated. A total of 15 semi-structured interviews have been conducted (three per brand, in rural and urban settings and at different dealerships). Initial analysis reveals several barriers and enablers, experienced by car salesmen, which influence electric vehicle sales. Examples of as reported by car salesmen identified barriers are: -Electric vehicles earn car salesmen less commission on average compared to internal combustion engine vehicles. -It takes more time to sell and deliver an electric vehicle than an internal combustion engine vehicle. -Current leasing contracts entails relatively low second-hand value estimations for electric vehicles and thus a high leasing fee, which negatively affects the attractiveness of electric vehicles for private consumers in particular. -High purchasing price discourages many consumers from considering electric vehicles. -The education and knowledge level of electric vehicles differs between car salesmen, which could affect their self-confidence in meeting well prepared and question prone electric vehicle buyers. Examples of identified enablers are: -Company car tax regulation promotes sales of electric vehicles; in particular, plug-in hybrid electric vehicles are sold extensively to companies (up to 95 % of sales). -Low operating cost of electric vehicles such as fuel and service is an advantage when understood by consumers. -The drive performance of electric vehicles (quick, silent and fun to drive) is attractive to consumers. -Environmental aspects are considered important for certain consumer groups. -Fast technological improvements, such as increased range are opening up a wider market for electric vehicles. -For one of the brands; attractive private lease campaigns have proved effective to promote sales. This paper gives insights of an important but often overlooked aspect for the diffusion of electric vehicles (and durable products in general); the interaction between car salesmen and customers at the critical acquiring moment. Extracted through interviews with multiple car salesmen. The results illuminate untapped potential for sellers (salesmen, dealerships and brands) to mitigating sales barriers and strengthening sales enablers and thus becoming a more important actor in the electric vehicle diffusion process.Keywords: customer barriers, electric vehicle promotion, sales of electric vehicles, interviews with car salesmen
Procedia PDF Downloads 2291191 Achieving Supply Chain Competitiveness through Successful Buyer-Supplier Relationships
Authors: Kamran Rashid, Tashfeen M. Azhar, Asad-ur-Rahman Wahla
Abstract:
Current research aims to understand the role of successful buyer-supplier relationship in achieving supply chain competitiveness in a developing country perspective. Five hypotheses are developed to test structural model. Survey data is collected from the manufacturing sector of Pakistan. Analysis is conducted using Partial Least Squares (PLS) Structural Equation Modeling (SEM) through Smart PLS version 2.0 M3. Results demonstrate positive impact of effective supplier selection, buyer-supplier engagement, and information sharing capability on success of buyer supplier relationship. This successful buyer supplier relationship drives the supply chain firm financial and market performance. Additional analyses with large sample sizes are required in other developing countries to cross validate the results. Current study provides empirical evidence of the role of successful buyer supplier relationship in achieving supply chain competitiveness.Keywords: supply chain management, successful buyer-supplier relationship, supply chain competitiveness, developing country
Procedia PDF Downloads 6601190 Secure E-Voting Using Blockchain Technology
Authors: Barkha Ramteke, Sonali Ridhorkar
Abstract:
An election is an important event in all countries. Traditional voting has several drawbacks, including the expense of time and effort required for tallying and counting results, the cost of papers, arrangements, and everything else required to complete a voting process. Many countries are now considering online e-voting systems, but the traditional e-voting systems suffer a lack of trust. It is not known if a vote is counted correctly, tampered or not. A lack of transparency means that the voter has no assurance that his or her vote will be counted as they voted in elections. Electronic voting systems are increasingly using blockchain technology as an underlying storage mechanism to make the voting process more transparent and assure data immutability as blockchain technology grows in popularity. The transparent feature, on the other hand, may reveal critical information about applicants because all system users have the same entitlement to their data. Furthermore, because of blockchain's pseudo-anonymity, voters' privacy will be revealed, and third parties involved in the voting process, such as registration institutions, will be able to tamper with data. To overcome these difficulties, we apply Ethereum smart contracts into blockchain-based voting systems.Keywords: blockchain, AMV chain, electronic voting, decentralized
Procedia PDF Downloads 1371189 Predicting Machine-Down of Woodworking Industrial Machines
Authors: Matteo Calabrese, Martin Cimmino, Dimos Kapetis, Martina Manfrin, Donato Concilio, Giuseppe Toscano, Giovanni Ciandrini, Giancarlo Paccapeli, Gianluca Giarratana, Marco Siciliano, Andrea Forlani, Alberto Carrotta
Abstract:
In this paper we describe a machine learning methodology for Predictive Maintenance (PdM) applied on woodworking industrial machines. PdM is a prominent strategy consisting of all the operational techniques and actions required to ensure machine availability and to prevent a machine-down failure. One of the challenges with PdM approach is to design and develop of an embedded smart system to enable the health status of the machine. The proposed approach allows screening simultaneously multiple connected machines, thus providing real-time monitoring that can be adopted with maintenance management. This is achieved by applying temporal feature engineering techniques and training an ensemble of classification algorithms to predict Remaining Useful Lifetime of woodworking machines. The effectiveness of the methodology is demonstrated by testing an independent sample of additional woodworking machines without presenting machine down event.Keywords: predictive maintenance, machine learning, connected machines, artificial intelligence
Procedia PDF Downloads 2261188 Multi Antenna Systems for 5G Mobile Phones
Authors: Muhammad N. Khan, Syed O. Gillani, Mohsin Jamil, Tarbia Iftikhar
Abstract:
With the increasing demand of bandwidth and data rate, there is a dire need to implement antenna systems in mobile phones which are able to fulfill user requirements. A monopole antenna system with multi-antennas configurations is proposed considering the feasibility and user demand. The multi-antenna structure is referred to as multi-input multi-output (MIMO) antenna system. The multi-antenna system comprises of 4 antennas operating below 6 GHz frequency bands for 4G/LTE and 4 antenna for 5G applications at 28 GHz and the dimension of board is 120 × 70 × 0.8mm3. The suggested designs is feasible with a structure of low-profile planar-antenna and is adaptable to smart cell phones and handheld devices. To the best of our knowledge, this is the first design compared to the literature by having integrated antenna system for two standards, i.e., 4G and 5G. All MIMO antenna systems are simulated on commercially available software, which is high frequency structures simulator (HFSS).Keywords: high frequency structures simulator (HFSS), mutli-input multi-output (MIMO), monopole antenna, slot antenna
Procedia PDF Downloads 2501187 The Continuous Facility Location Problem and Transportation Mode Selection in the Supply Chain under Sustainability
Authors: Abdulaziz Alageel, Martino Luis, Shuya Zhong
Abstract:
The main focus of this research study is on the challenges faced in decision-making in a supply chain network regarding the facility location while considering carbon emissions. The study aims (i) to locate facilities (i.e., distribution centeres) in a continuous space considering limitations of capacity and the costs associated with opening and (ii) to reduce the cost of carbon emissions by selecting the mode of transportation. The problem is formulated as mixed-integer linear programming. This study hybridised a greedy randomised adaptive search (GRASP) and variable neighborhood search (VNS) to deal with the problem. Well-known datasets from the literature (Brimberg et al. 2001) are used and adapted in order to assess the performance of the proposed method. The proposed hybrid method produces encouraging results based on computational analysis. The study also highlights some research avenues for future recommendations.Keywords: supply chain, facility location, weber problem, sustainability
Procedia PDF Downloads 1001186 Power Reduction of Hall-Effect Sensor by Pulse Width Modulation of Spinning-Current
Authors: Hyungil Chae
Abstract:
This work presents a method to reduce spinning current of a Hall-effect sensor for low-power magnetic sensor applications. Spinning current of a Hall-effect sensor changes the direction of bias current periodically and can separate signals from DC-offset. The bias current is proportional to the sensor sensitivity but also increases the power consumption. To achieve both high sensitivity and low power consumption, the bias current can be pulse-width modulated. When the bias current duration Tb is reduced by a factor of N compared to the spinning current period of Tₛ/2, the total power consumption can be saved by N times. N can be large as long as the Hall-effect sensor settles down within Tb. The proposed scheme is implemented and simulated in a 0.18um CMOS process, and the power saving factor is 9.6 when N is 10. Acknowledgements: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (20160001360022003, Development of Hall Semi-conductor for Smart Car and Device).Keywords: chopper stabilization, Hall-effect sensor, pulse width modulation, spinning current
Procedia PDF Downloads 4841185 Hybrid Data-Driven Drilling Rate of Penetration Optimization Scheme Guided by Geological Formation and Historical Data
Authors: Ammar Alali, Mahmoud Abughaban, William Contreras Otalvora
Abstract:
Optimizing the drilling process for cost and efficiency requires the optimization of the rate of penetration (ROP). ROP is the measurement of the speed at which the wellbore is created, in units of feet per hour. It is the primary indicator of measuring drilling efficiency. Maximization of the ROP can indicate fast and cost-efficient drilling operations; however, high ROPs may induce unintended events, which may lead to nonproductive time (NPT) and higher net costs. The proposed ROP optimization solution is a hybrid, data-driven system that aims to improve the drilling process, maximize the ROP, and minimize NPT. The system consists of two phases: (1) utilizing existing geological and drilling data to train the model prior, and (2) real-time adjustments of the controllable dynamic drilling parameters [weight on bit (WOB), rotary speed (RPM), and pump flow rate (GPM)] that direct influence on the ROP. During the first phase of the system, geological and historical drilling data are aggregated. After, the top-rated wells, as a function of high instance ROP, are distinguished. Those wells are filtered based on NPT incidents, and a cross-plot is generated for the controllable dynamic drilling parameters per ROP value. Subsequently, the parameter values (WOB, GPM, RPM) are calculated as a conditioned mean based on physical distance, following Inverse Distance Weighting (IDW) interpolation methodology. The first phase is concluded by producing a model of drilling best practices from the offset wells, prioritizing the optimum ROP value. This phase is performed before the commencing of drilling. Starting with the model produced in phase one, the second phase runs an automated drill-off test, delivering live adjustments in real-time. Those adjustments are made by directing the driller to deviate two of the controllable parameters (WOB and RPM) by a small percentage (0-5%), following the Constrained Random Search (CRS) methodology. These minor incremental variations will reveal new drilling conditions, not explored before through offset wells. The data is then consolidated into a heat-map, as a function of ROP. A more optimum ROP performance is identified through the heat-map and amended in the model. The validation process involved the selection of a planned well in an onshore oil field with hundreds of offset wells. The first phase model was built by utilizing the data points from the top-performing historical wells (20 wells). The model allows drillers to enhance decision-making by leveraging existing data and blending it with live data in real-time. An empirical relationship between controllable dynamic parameters and ROP was derived using Artificial Neural Networks (ANN). The adjustments resulted in improved ROP efficiency by over 20%, translating to at least 10% saving in drilling costs. The novelty of the proposed system lays is its ability to integrate historical data, calibrate based geological formations, and run real-time global optimization through CRS. Those factors position the system to work for any newly drilled well in a developing field event.Keywords: drilling optimization, geological formations, machine learning, rate of penetration
Procedia PDF Downloads 1311184 Securing Internet of Things Devices in Healthcare industry: An Investigation into Efficient and Effective Authorization Procedures
Authors: Maruf Farhan, Abdul Salih, Sikandar Ali Tahir
Abstract:
Protecting patient information's confidentiality is paramount considering the widespread use of Internet of Things (IoT) gadgets in medical settings. This study's subjects are decentralized identifiers (DIDs) and verifiable credentials (VCs) in conjunction with an OAuth-based authorization framework, as they are the key to protecting IoT healthcare devices. DIDs enable autonomous authentication and trust formation between IoT devices and other entities. To authorize users and enforce access controls based on verified claims, VCs offer a secure and adaptable solution. Through the proposed method, medical facilities can improve the privacy and security of their IoT devices while streamlining access control administration. A Smart pill dispenser in a hospital setting is used to illustrate the advantages of this method. The findings demonstrate the value of DIDs, VCs, and OAuth-based delegation in protecting the IoT devices. Improved processes for authorizing and controlling access to IoT devices are possible thanks to the research findings, which also help ensure patient confidentiality in the healthcare sector.Keywords: Iot, DID, authorization, verifiable credentials
Procedia PDF Downloads 761183 Big Data-Driven Smart Policing: Big Data-Based Patrol Car Dispatching in Abu Dhabi, UAE
Authors: Oualid Walid Ben Ali
Abstract:
Big Data has become one of the buzzwords today. The recent explosion of digital data has led the organization, either private or public, to a new era towards a more efficient decision making. At some point, business decided to use that concept in order to learn what make their clients tick with phrases like ‘sales funnel’ analysis, ‘actionable insights’, and ‘positive business impact’. So, it stands to reason that Big Data was viewed through green (read: money) colored lenses. Somewhere along the line, however someone realized that collecting and processing data doesn’t have to be for business purpose only, but also could be used for other purposes to assist law enforcement or to improve policing or in road safety. This paper presents briefly, how Big Data have been used in the fields of policing order to improve the decision making process in the daily operation of the police. As example, we present a big-data driven system which is sued to accurately dispatch the patrol cars in a geographic environment. The system is also used to allocate, in real-time, the nearest patrol car to the location of an incident. This system has been implemented and applied in the Emirate of Abu Dhabi in the UAE.Keywords: big data, big data analytics, patrol car allocation, dispatching, GIS, intelligent, Abu Dhabi, police, UAE
Procedia PDF Downloads 4901182 Total Quality Management and Competitive Advantage in Companies
Authors: Malki Fatima Zahra Nadia, Kellal Cheiimaa, Brahimi Houria
Abstract:
Total Quality Management (TQM) is one of the most important modern management systems in marketing, that help organizations to survive and remain competitive in the dynamic market with frequent changes. It assists them in gaining a competitive advantage, growth, and excellence compared to their competitors. To understand the impact of TQM on competitive advantage in economic companies, a study was conducted in Ooredoo Telecommunications Company. A questionnaire was designed and distributed to OOredoo' 75 employees in each of the departments of leadership, quality assurance, quality control, research and development, production, customer service, Similarly, resulting in the retrieval of 72 questionnaires. To analyze the descriptive results of the study, the SPSS software version 25 was used. Additionally, Structural Equation Modeling (SEM) with the help of Smart Pls4 software was utilized to test the study's hypotheses. The study concluded that there is an impact between total quality management and competitive advantage in Ooredoo company to different degrees. On this basis, the study recommended the need to implement the total quality management system at the level of all organizations and in various fields.Keywords: total quality management, ISO system, competitive advantage, competitive strategies
Procedia PDF Downloads 731181 Empirical Investigation of Antecedents of Perceived Recovery Service Quality: Evidence from Retail Banking in United Arab Emirates
Authors: Vimi Jham
Abstract:
The banking sector has undergone tremendous change in all forms of service it provides to its customers. The efforts of the banks is to avoid customer defection and lead to customer satisfaction. The purpose of the study was to examine the linkages among the constructs such as customer perceived service quality, perceived service recovery quality and customer satisfaction in the banking industry. The moderating effect of negative brand perception due to service failure on recovery satisfaction were investigated. Random sampling methods are used to draw the sample from the population. Data was collected from 262 banking customers and were analyzed with the help of structural equation modelling approach using Smart PLS to understand the relationship among variables being studied. The results of the study contribute to the research by proving that customer service recovery satisfaction is dependent on customer perceived service quality and the moderating effect of negative brand perception due to service failure was insignificant.Keywords: service recovery satisfaction, perceived service recovery quality, perceived service quality, structural equation modelling
Procedia PDF Downloads 2841180 Chemical Reaction Algorithm for Expectation Maximization Clustering
Authors: Li Ni, Pen ManMan, Li KenLi
Abstract:
Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.Keywords: chemical reaction optimization, expection maimization, initia, objective function clustering
Procedia PDF Downloads 7131179 Maximizing Coverage with Mobile Crime Cameras in a Stochastic Spatiotemporal Bipartite Network
Authors: (Ted) Edward Holmberg, Mahdi Abdelguerfi, Elias Ioup
Abstract:
This research details a coverage measure for evaluating the effectiveness of observer node placements in a spatial bipartite network. This coverage measure can be used to optimize the configuration of stationary or mobile spatially oriented observer nodes, or a hybrid of the two, over time in order to fully utilize their capabilities. To demonstrate the practical application of this approach, we construct a SpatioTemporal Bipartite Network (STBN) using real-time crime center (RTCC) camera nodes and NOPD calls for service (CFS) event nodes from New Orleans, La (NOLA). We use the coverage measure to identify optimal placements for moving mobile RTCC camera vans to improve coverage of vulnerable areas based on temporal patterns.Keywords: coverage measure, mobile node dynamics, Monte Carlo simulation, observer nodes, observable nodes, spatiotemporal bipartite knowledge graph, temporal spatial analysis
Procedia PDF Downloads 1131178 Test and Evaluation of Patient Tracking Platform in an Earthquake Simulation
Authors: Nahid Tavakoli, Mohammad H. Yarmohammadian, Ali Samimi
Abstract:
In earthquake situation, medical response communities such as field and referral hospitals are challenged with injured victims’ identification and tracking. In our project, it was developed a patient tracking platform (PTP) where first responders triage the patients with an electronic tag which report the location and some information of each patient during his/her movement. This platform includes: 1) near field communication (NFC) tags (ISO 14443), 2) smart mobile phones (Android-base version 4.2.2), 3) Base station laptops (Windows), 4) server software, 5) Android software to use by first responders, 5) disaster command software, and 6) system architecture. Our model has been completed through literature review, Delphi technique, focus group, design the platform, and implement in an earthquake exercise. This paper presents consideration for content, function, and technologies that must apply for patient tracking in medical emergencies situations. It is demonstrated the robustness of the patient tracking platform (PTP) in tracking 6 patients in a simulated earthquake situation in the yard of the relief and rescue department of Isfahan’s Red Crescent.Keywords: test and evaluation, patient tracking platform, earthquake, simulation
Procedia PDF Downloads 1391177 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context
Authors: Nicole Merkle, Stefan Zander
Abstract:
Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.Keywords: ambient intelligence, machine learning, semantic web, software agents
Procedia PDF Downloads 2811176 Characterization of Bio-Inspired Thermoelastoplastic Composites Filled with Modified Cellulose Fibers
Authors: S. Cichosz, A. Masek
Abstract:
A new cellulose hybrid modification approach, which is undoubtedly a scientific novelty, is introduced. The study reports the properties of cellulose (Arbocel UFC100 – Ultra Fine Cellulose) and characterizes cellulose filled polymer composites based on an ethylene-norbornene copolymer (TOPAS Elastomer E-140). Moreover, the approach of physicochemical two-stage cellulose treatment is introduced: solvent exchange (to ethanol or hexane) and further chemical modification with maleic anhydride (MA). Furthermore, the impact of the drying process on cellulose properties was investigated. Suitable measurements were carried out to characterize cellulose fibers: spectroscopic investigation (Fourier Transform Infrared Spektrofotometer-FTIR, Near InfraRed spectroscopy-NIR), thermal analysis (Differential scanning calorimetry, Thermal gravimetric analysis ) and Karl Fischer titration. It should be emphasized that for all UFC100 treatments carried out, a decrease in moisture content was evidenced. FT-IR reveals a drop in absorption band intensity at 3334 cm-1, the peak is associated with both –OH moieties and water. Similar results were obtained with Karl Fischer titration. Based on the results obtained, it may be claimed that the employment of ethanol contributes greatly to the lowering of cellulose water absorption ability (decrease of moisture content to approximately 1.65%). Additionally, regarding polymer composite properties, crucial data has been obtained from the mechanical and thermal analysis. The highest material performance was noted in the case of the composite sample that contained cellulose modified with MA after a solvent exchange with ethanol. This specimen exhibited sufficient tensile strength, which is almost the same as that of the neat polymer matrix – in the region of 40 MPa. Moreover, both the Payne effect and filler efficiency factor, calculated based on dynamic mechanical analysis (DMA), reveal the possibility of the filler having a reinforcing nature. What is also interesting is that, according to the Payne effect results, fibers dried before the further chemical modification are assumed to allow more regular filler structure development in the polymer matrix (Payne effect maximum at 1.60 MPa), compared with those not dried (Payne effect in the range 0.84-1.26 MPa). Furthermore, taking into consideration the data gathered from DSC and TGA, higher thermal stability is obtained in case of the materials filled with fibers that were dried before the carried out treatments (degradation activation energy in the region of 195 kJ/mol) in comparison with the polymer composite samples filled with unmodified cellulose (degradation activation energy of approximately 180 kJ/mol). To author’s best knowledge this work results in the introduction of a novel, new filler hybrid treatment approach. Moreover, valuable data regarding the properties of composites filled with cellulose fibers of various moisture contents have been provided. It should be emphasized that plant fiber-based polymer bio-materials described in this research might contribute significantly to polymer waste minimization because they are more readily degraded.Keywords: cellulose fibers, solvent exchange, moisture content, ethylene-norbornene copolymer
Procedia PDF Downloads 1151175 NUX: A Lightweight Block Cipher for Security at Wireless Sensor Node Level
Authors: Gaurav Bansod, Swapnil Sutar, Abhijit Patil, Jagdish Patil
Abstract:
This paper proposes an ultra-lightweight cipher NUX. NUX is a generalized Feistel network. It supports 128/80 bit key length and block length of 64 bit. For 128 bit key length, NUX needs only 1022 GEs which is less as compared to all existing cipher design. NUX design results into less footprint area and minimal memory size. This paper presents security analysis of NUX cipher design which shows cipher’s resistance against basic attacks like Linear and Differential Cryptanalysis. Advanced attacks like Biclique attack is also mounted on NUX cipher design. Two different F function in NUX cipher design results in high diffusion mechanism which generates large number of active S-boxes in minimum number of rounds. NUX cipher has total 31 rounds. NUX design will be best-suited design for critical application like smart grid, IoT, wireless sensor network, where memory size, footprint area and the power dissipation are the major constraints.Keywords: lightweight cryptography, Feistel cipher, block cipher, IoT, encryption, embedded security, ubiquitous computing
Procedia PDF Downloads 3721174 Development, Characterization and Properties of Novel Quaternary Rubber Nanocomposites
Authors: Kumar Sankaran, Santanu Chattopadhyay, Golok Behari Nando, Sujith Nair, Sreejesh Arayambath, Unnikrishnan Govindan
Abstract:
Rubber nanocomposites based on Bromobutyl rubber (BIIR), Polyepichlorohydrin rubber (CO), Carbon black (CB) and organically modified montmorillonite clay (NC) were prepared via melt compounding technique. The developed quaternary nanocomposites were characterized analytically and their properties were compared against the standard BIIR compound. BIIR-CO nanocomposites showed improved physico-mechanical properties as compared to that of the standard BIIR compound. Hybrid microstructure (NC-CB) development, clay exfoliation and better filler dispersion in the quaternary nanocomposite significantly contributed to the overall enhancement of properties. Introduction of CO in the system increased the specific gravity and hardness of the compound as compared to that of the standard compound. XRD analysis, AFM imaging and HR-TEM measurements confirmed exfoliation and a good level of dispersion of the NC in the composites. Permeability of developed BIIR-CO nanocomposites decreases significantly as compared to that of the standard BIIR compound.Keywords: rubber nanocomposites, morphology, permeability, BIIR
Procedia PDF Downloads 4361173 Micro-Hydrokinetic for Remote Rural Electrification
Authors: S. P. Koko, K. Kusakana, H. J. Vermaak
Abstract:
Standalone micro-hydrokinetic river (MHR) system is one of the promising technologies to be used for remote rural electrification. It simply requires the flow of water instead of elevation or head, leading to expensive civil works. This paper demonstrates an economic benefit offered by a standalone MHR system when compared to the commonly used standalone systems such as solar, wind and diesel generator (DG) at the selected study site in Kwazulu Natal. Wind speed and solar radiation data of the selected rural site have been taken from national aeronautics and space administration (NASA) surface meteorology database. The hybrid optimization model for electric renewable (HOMER) software was used to determine the most feasible solution when using MHR, solar, wind or DG system to supply 5 rural houses. MHR system proved to be the best cost-effective option to consider at the study site due to its low cost of energy (COE) and low net present cost (NPC).Keywords: economic analysis, micro-hydrokinetic, rural-electrification, cost of energy (COE), net present cost (NPC)
Procedia PDF Downloads 4321172 Optical and Electrochromic Properties of All-Solid-State Electrochromic Device Consisting of Amorphous WO₃ and Ni(OH)₂
Authors: Ta-Huang Sun, Ming-Hao Hsieh, Min-Chuan Wang, Der-Jun Jan
Abstract:
Electrochromism refers to the persistent and reversible change of optical properties by an applied voltage pulse. There are many transition metal oxides exhibiting electrochromism, e.g. oxides of W, Ni, Ir, V, Ti, Co and Mo. Organic materials especially some conducting polymers such as poly(aniline), poly(3, 4-propylene- dioxythiophene) also received much attention for electrochromic (EC) applications. Electrochromic materials attract considerable interest because of their potential applications, such as information displays, smart windows, variable reflectance mirrors, and variable-emittance thermal radiators. In this study, the EC characteristics are investigated on an all-solid-state EC device composed of a-WO₃ and Ni(OH)₂ with a Ta₂O₅ protective layer which is prepared by magnetron sputtering. It is found that the transmittance modulation increases with decreasing the film thickness of Ta₂O₅. On the other hand, the transmittance modulation is 57% as the Ni(OH)₂/ITO is prepared by the linear-sweep potential cycling of the sputter-deposited Ta₂O₅/NiO/ITO in a 0.5 M LiClO₄+H₂O electrolyte. However, when Ni(OH)₂/ITO is prepared by a 0.01 M HCl electrolyte, the transmittance modulation of EC device can be improved to 61%.Keywords: electrochromic device, tungsten oxide, nickel, Ta₂O₅
Procedia PDF Downloads 2911171 In-Situ Reactive Growth of Silver Nanoparticles on Cotton Textile for Antiviral and Electromagnetic Shielding Applications
Authors: Hamed Mohammadi Mofarah, Mutalifu Abulikemu, Ghassan E. Jabbour
Abstract:
Personal protective equipment (PPE) is finding increasing interest in incorporating silver nanoparticles (NPs) for various applications including microbial disinfection and shielding against electromagnetic waves. In this venue, we present an in situ reactive coating approach where silver nanoparticles are self-assembled on the surface of cotton yarn. The impacts of a variety of experimental parameters on the average size of the synthesized silver NPs were investigated. These include vacuum conditions, the concentration of the silver salt solution and reducer, temperature, and curing time. Silver NPs with an average size ranging from 10 to 50 nanometers were self-assembled as a result of careful regulation of such reaction conditions. The disinfection efficacy against the COVID surrogate virus of the functional textile reached a rate of 99.99%. On the other hand, the silver NPs decorated textile demonstrated an electromagnetic shielding ranging from 31 dB to 45 dB were achieved for the frequency range 8.2-12.4 GHz.Keywords: antiviral, COVID, electromagnetic shielding, in-situ reactive coating, SARS CoV 2, silver nanoparticles, smart textile
Procedia PDF Downloads 991170 Development of a Smart Liquid Level Controller
Authors: Adamu Mudi, Ibrahim Wahab Fawole, Abubakar Abba Kolo
Abstract:
In this research paper, we present a microcontroller-based liquid level controller that identifies the various levels of a liquid, carries out certain actions, and is capable of communicating with the human being and other devices through the GSM network. This project is useful in ensuring that a liquid is not wasted. It also contributes to the internet of things paradigm, which is the future of the internet. The method used in this work includes designing the circuit and simulating it. The circuit is then implemented on a solderless breadboard, after which it is implemented on a strip board. A C++ computer program is developed and uploaded into the microcontroller. This program instructs the microcontroller on how to carry out its actions. In other to determine levels of the liquid, an ultrasonic wave is sent to the surface of the liquid similar to radar or the method for detecting the level of sea bed. Message is sent to the phone of the user similar to the way computers send messages to phones of GSM users. It is concluded that the routine of observing the levels of a liquid in a tank, refilling the tank when the liquid level is too low can be entirely handled by a programmable device without wastage of the liquid or bothering a human being with such tasks.Keywords: Arduino Uno, HC-SR04 ultrasonic sensor, internet of things, IoT, SIM900 GSM module
Procedia PDF Downloads 130