Search results for: festival function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5022

Search results for: festival function

3222 Disruption Coordination of Supply Chain with Loss-Averse Retailer Under Buy-Back Contract

Authors: Yuan Tian, Benhe Gao

Abstract:

This paper aims to investigate a two stage supply chain of one leading supplier and one following retailer that experiences two factors perturbation out of supplier's production cost, retailer's marginal cost and retail price in stochastic demand environment. Granted that risk neutral condition has long been discussed, little attention has been given to disruptions under the premise of risk neutral supplier and risk aversion retailer. We establish the optimal order quantity and revealed the profit distribution coefficient in risk-neutral static model, make adjustment under disruption scenario, and then select utility function method for risk aversion model. Using buy-back contract policy, the improvement of parameters can achieve channel coordination where Pareto optimal is realized.

Keywords: supply chain coordination, disruption management, buy-back contract, lose aversion

Procedia PDF Downloads 329
3221 Trabecular Bone Radiograph Characterization Using Fractal, Multifractal Analysis and SVM Classifier

Authors: I. Slim, H. Akkari, A. Ben Abdallah, I. Bhouri, M. Hedi Bedoui

Abstract:

Osteoporosis is a common disease characterized by low bone mass and deterioration of micro-architectural bone tissue, which provokes an increased risk of fracture. This work treats the texture characterization of trabecular bone radiographs. The aim was to analyze according to clinical research a group of 174 subjects: 87 osteoporotic patients (OP) with various bone fracture types and 87 control cases (CC). To characterize osteoporosis, Fractal and MultiFractal (MF) methods were applied to images for features (attributes) extraction. In order to improve the results, a new method of MF spectrum based on the q-stucture function calculation was proposed and a combination of Fractal and MF attributes was used. The Support Vector Machines (SVM) was applied as a classifier to distinguish between OP patients and CC subjects. The features fusion (fractal and MF) allowed a good discrimination between the two groups with an accuracy rate of 96.22%.

Keywords: fractal, micro-architecture analysis, multifractal, osteoporosis, SVM

Procedia PDF Downloads 393
3220 Relativistic Energy Analysis for Some q Deformed Shape Invariant Potentials in D Dimensions Using SUSYQM Approach

Authors: A. Suparmi, C. Cari, M. Yunianto, B. N. Pratiwi

Abstract:

D-dimensional Dirac equations of q-deformed shape invariant potentials were solved using supersymmetric quantum mechanics (SUSY QM) in the case of exact spin symmetry. The D dimensional radial Dirac equation for shape invariant potential reduces to one-dimensional Schrodinger type equation by an appropriate variable and parameter change. The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial D dimensional Dirac equation that have reduced to one dimensional Schrodinger type equation. The SUSY operator was used to generate the D dimensional relativistic radial wave functions, the relativistic energy equation reduced to the non-relativistic energy in the non-relativistic limit.

Keywords: D-dimensional dirac equation, non-central potential, SUSY QM, radial wave function

Procedia PDF Downloads 345
3219 Variable-Fidelity Surrogate Modelling with Kriging

Authors: Selvakumar Ulaganathan, Ivo Couckuyt, Francesco Ferranti, Tom Dhaene, Eric Laermans

Abstract:

Variable-fidelity surrogate modelling offers an efficient way to approximate function data available in multiple degrees of accuracy each with varying computational cost. In this paper, a Kriging-based variable-fidelity surrogate modelling approach is introduced to approximate such deterministic data. Initially, individual Kriging surrogate models, which are enhanced with gradient data of different degrees of accuracy, are constructed. Then these Gradient enhanced Kriging surrogate models are strategically coupled using a recursive CoKriging formulation to provide an accurate surrogate model for the highest fidelity data. While, intuitively, gradient data is useful to enhance the accuracy of surrogate models, the primary motivation behind this work is to investigate if it is also worthwhile incorporating gradient data of varying degrees of accuracy.

Keywords: Kriging, CoKriging, Surrogate modelling, Variable- fidelity modelling, Gradients

Procedia PDF Downloads 558
3218 Estimation and Restoration of Ill-Posed Parameters for Underwater Motion Blurred Images

Authors: M. Vimal Raj, S. Sakthivel Murugan

Abstract:

Underwater images degrade their quality due to atmospheric conditions. One of the major problems in an underwater image is motion blur caused by the imaging device or the movement of the object. In order to rectify that in post-imaging, parameters of the blurred image are to be estimated. So, the point spread function is estimated by the properties, using the spectrum of the image. To improve the estimation accuracy of the parameters, Optimized Polynomial Lagrange Interpolation (OPLI) method is implemented after the angle and length measurement of motion-blurred images. Initially, the data were collected from real-time environments in Chennai and processed. The proposed OPLI method shows better accuracy than the existing classical Cepstral, Hough, and Radon transform estimation methods for underwater images.

Keywords: image restoration, motion blur, parameter estimation, radon transform, underwater

Procedia PDF Downloads 178
3217 Stochastic Variation of the Hubble's Parameter Using Ornstein-Uhlenbeck Process

Authors: Mary Chriselda A

Abstract:

This paper deals with the fact that the Hubble's parameter is not constant and tends to vary stochastically with time. This premise has been proven by converting it to a stochastic differential equation using the Ornstein-Uhlenbeck process. The formulated stochastic differential equation is further solved analytically using the Euler and the Kolmogorov Forward equations, thereby obtaining the probability density function using the Fourier transformation, thereby proving that the Hubble's parameter varies stochastically. This is further corroborated by simulating the observations using Python and R-software for validation of the premise postulated. We can further draw conclusion that the randomness in forces affecting the white noise can eventually affect the Hubble’s Parameter leading to scale invariance and thereby causing stochastic fluctuations in the density and the rate of expansion of the Universe.

Keywords: Chapman Kolmogorov forward differential equations, fourier transformation, hubble's parameter, ornstein-uhlenbeck process , stochastic differential equations

Procedia PDF Downloads 202
3216 The Association between Malaysian Culture and Ornaments

Authors: Swee Guat Yeoh, Yung Ling Tseng

Abstract:

Malaysia is comprised of three major ethnic groups: The Malay, Chinese and Indian as well as a small number of indigenous peoples. With the influences of the multiple races, Malaysia is a multi-cultural country. In the era of globalization, culture has become an important soft power for a race or a country. At the same time, it provides endless inspirational source of ideas for creative business. Although jewelries are decorative objects, they function and exist as the emblems of power, wealth and contract in certain cultural systems. In the meantime, they also record the lifestyle and ideology of everyday life. Therefore, in a creative cultural industry, jewelry with cultural aspects and cultural contents are deemed to be highly important. With the three major ethnic groups in Malaysia as objects, this research aims to find out the relationships between the cultures and decorations of the three major ethnic groups in the aspects of customs, religions and lifestyles.

Keywords: ethnicity, multi-cultural, jewelry, craft technique

Procedia PDF Downloads 463
3215 Defense Strategy: Perang Semesta Strategy as a Reliable National Security System of Indonesia

Authors: Erdianta S, Chastiti M. Wulolo, IDK Kerta Widana

Abstract:

Perang Semesta strategy is a national security system used by Republic of Indonesia. It comes from local wisdom, cultural, and hereditary of Indonesia itself. This system involves all people and all nation resources, and it is early prepared by government and conducted totality, integratedly, directly, and continously to enforce a sovereignty of country, teritorial integrity and the safety of the whole nation from threats. This study uses a qualitative content analysis method by studying, recording, and analyzing government policy. The Perang Semesta strategy divided into main, backup, and supporting components. Every component has its function and responsibility in security perspective. So when an attack comes, all people of Indonesia will voluntary to defend the country. Perang Semesta strategy is a national security system which becomes the most reliable strategy toward geography and demography of Indonesia.

Keywords: Indonesia, Perang Semesta strategy, national security, local wisdom

Procedia PDF Downloads 457
3214 The Burmese Exodus of 1942: Towards Evolving Policy Protocols for a Refugee Archive

Authors: Vinod Balakrishnan, Chrisalice Ela Joseph

Abstract:

The Burmese Exodus of 1942, which left more than 4 lakh as refugees and thousands dead, is one of the worst forced migrations in recorded history. Adding to the woes of the refugees is the lack of credible documentation of their lived experiences, trauma, and stories and their erasure from recorded history. Media reports, national records, and mainstream narratives that have registered the exodus provide sanitized versions which have reduced the refugees to a nameless, faceless mass of travelers and obliterated their lived experiences, trauma, and sufferings. This attitudinal problem compels the need to stem the insensitivity that accompanies institutional memory by making a case for a more humanistically evolved policy that puts in place protocols for the way the humanities would voice the concern for the refugee. A definite step in this direction and a far more relevant project in our times is the need to build a comprehensive refugee archive that can be a repository of the refugee experiences and perspectives. The paper draws on Hannah Arendt’s position on the Jewish refugee crisis, Agamben’s work on statelessness and citizenship, Foucault’s notion of governmentality and biopolitics, Edward Said’s concepts on Exile, Fanon’s work on the dispossessed, Derrida’s work on ‘the foreigner and hospitality’ in order to conceptualize the refugee condition which will form the theoretical framework for the paper. It also refers to the existing scholarship in the field of refugee studies such as Roger Zetter’s work on the ‘refugee label’, Philip Marfleet’s work on ‘refugees and history’, Lisa Malkki’s research on the anthropological discourse of the refugee and refugee studies. The paper is also informed by the work that has been done by the international organizations to address the refugee crisis. The emphasis is on building a strong argument for the establishment of the refugee archive that finds but a passing and a none too convincing reference in refugee studies in order to enable a multi-dimensional understanding of the refugee crisis. Some of the old questions cannot be dismissed as outdated as the continuing travails of the refugees in different parts of the world only remind us that they are still, largely, unanswered. The questions are -What is the nature of a Refugee Archive? How is it different from the existing historical and political archives? What are the implications of the refugee archive? What is its contribution to refugee studies? The paper draws on Diana Taylor’s concept of the archive and the repertoire to theorize the refugee archive as a repository that has the documentary function of the ‘archive’ and the ‘agency’ function of the repertoire. It then reads Ayya’s Accounts- a memoir by Anand Pandian -in the light of Hannah Arendt’s concepts of the ‘refugee as vanguard’ and ‘story telling as political action’- to illustrate how the memoir contributes to the refugee archive that provides the refugee a place and agency in history. The paper argues for a refugee archive that has implications for the formulation of inclusive refugee policies.

Keywords: Ayya’s Accounts, Burmese Exodus, policy protocol, refugee archive

Procedia PDF Downloads 141
3213 A Time-Varying and Non-Stationary Convolution Spectral Mixture Kernel for Gaussian Process

Authors: Kai Chen, Shuguang Cui, Feng Yin

Abstract:

Gaussian process (GP) with spectral mixture (SM) kernel demonstrates flexible non-parametric Bayesian learning ability in modeling unknown function. In this work a novel time-varying and non-stationary convolution spectral mixture (TN-CSM) kernel with a significant enhancing of interpretability by using process convolution is introduced. A way decomposing the SM component into an auto-convolution of base SM component and parameterizing it to be input dependent is outlined. Smoothly, performing a convolution between two base SM component yields a novel structure of non-stationary SM component with much better generalized expression and interpretation. The TN-CSM perfectly allows compatibility with the stationary SM kernel in terms of kernel form and spectral base ignored and confused by previous non-stationary kernels. On synthetic and real-world datatsets, experiments show the time-varying characteristics of hyper-parameters in TN-CSM and compare the learning performance of TN-CSM with popular and representative non-stationary GP.

Keywords: Gaussian process, spectral mixture, non-stationary, convolution

Procedia PDF Downloads 196
3212 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering

Authors: Hamza Nejib, Okba Taouali

Abstract:

This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.

Keywords: online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS

Procedia PDF Downloads 402
3211 Implant Guided Surgery and Immediate Loading

Authors: Omid Tavakol, Mahnaz Gholami

Abstract:

Introduction : In this oral presentation the main goal is discussing immediate loading in dental implants , from treatment planning and surgical guide designing to delivery , follow up and occlusal consideration . Methods and materials : first of all systematic reviews about immediate loading will be considered . besides , a comparison will be made between immediate loading and conventional loading in terms of success rate and complications . After that different methods , prosthetic options and materials best used in immediate loading will be explained. Particularly multi unit abutments and their mechanism of function will be explained .Digital impressions and designing the temporaries is the next topic we are to explicate .Next issue is the differences between single unit , multiple unit and full arch implantation in immediate loading .Following we are going to describe methods for tissue engineering and papilla formation after extraction . Last slides are about a full mouth rehabilitation via immediate loading technique from surgical designing to follow up .At the end we would talk about potential complications , how to prevent from occurrence and what to do if we face up with .

Keywords: guided surgery, digital implantology, immediate loading, digital dentistry

Procedia PDF Downloads 46
3210 Batch-Oriented Setting Time`s Optimisation in an Aerodynamic Feeding System

Authors: Jan Busch, Maurice Schmidt, Peter Nyhuis

Abstract:

The change of conditions for production companies in high-wage countries is characterized by the globalization of competition and the transition of a supplier´s to a buyer´s market. The companies need to face the challenges of reacting flexibly to these changes. Due to the significant and increasing degree of automation, assembly has become the most expensive production process. Regarding the reduction of production cost, assembly consequently offers a considerable rationalizing potential. Therefore, an aerodynamic feeding system has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. In former research activities, this system has been enabled to adjust itself using genetic algorithm. The longer the genetic algorithm is executed the better is the feeding quality. In this paper, the relation between the system´s setting time and the feeding quality is observed and a function which enables the user to achieve the minimum of the total feeding time is presented.

Keywords: aerodynamic feeding system, batch size, optimisation, setting time

Procedia PDF Downloads 258
3209 A Heuristic Approach for the General Flowshop Scheduling Problem to Minimize the Makespan

Authors: Mohsen Ziaee

Abstract:

Almost all existing researches on the flowshop scheduling problems focus on the permutation schedules and there is insufficient study dedicated to the general flowshop scheduling problems in the literature, since the modeling and solving of the general flowshop scheduling problems are more difficult than the permutation ones, especially for the large-size problem instances. This paper considers the general flowshop scheduling problem with the objective function of the makespan (F//Cmax). We first find the optimal solution of the problem by solving a mixed integer linear programming model. An efficient heuristic method is then presented to solve the problem. An ant colony optimization algorithm is also proposed for the problem. In order to evaluate the performance of the methods, computational experiments are designed and performed. Numerical results show that the heuristic algorithm can result in reasonable solutions with low computational effort and even achieve optimal solutions in some cases.

Keywords: scheduling, general flow shop scheduling problem, makespan, heuristic

Procedia PDF Downloads 207
3208 Polymer Dispersed Liquid Crystals Based on Poly Vinyl Alcohol Boric Acid Matrix

Authors: Daniela Ailincai, Bogdan C. Simionescu, Luminita Marin

Abstract:

Polymer dispersed liquid crystals (PDLC) represent an interesting class of materials which combine the ability of polymers to form films and their mechanical strength with the opto-electronic properties of liquid crystals. The proper choice of the two components - the liquid crystal and the polymeric matrix - leads to materials suitable for a large area of applications, from electronics to biomedical devices. The objective of our work was to obtain PDLC films with potential applications in the biomedical field, using poly vinyl alcohol boric acid (PVAB) as a polymeric matrix for the first time. Presenting all the tremendous properties of poly vinyl alcohol (such as: biocompatibility, biodegradability, water solubility, good chemical stability and film forming ability), PVAB brings the advantage of containing the electron deficient boron atom, and due to this, it should promote the liquid crystal anchoring and a narrow liquid crystal droplets polydispersity. Two different PDLC systems have been obtained, by the use of two liquid crystals, a nematic commercial one: 4-cyano-4’-penthylbiphenyl (5CB) and a new smectic liquid crystal, synthesized by us: buthyl-p-[p’-n-octyloxy benzoyloxy] benzoate (BBO). The PDLC composites have been obtained by the encapsulation method, working with four different ratios between the polymeric matrix and the liquid crystal, from 60:40 to 90:10. In all cases, the composites were able to form free standing, flexible films. Polarized light microscopy, scanning electron microscopy, differential scanning calorimetry, RAMAN- spectroscopy and the contact angle measurements have been performed, in order to characterize the new composites. The new smectic liquid crystal has been characterized using 1H-NMR and single crystal X-ray diffraction and its thermotropic behavior has been established using differential scanning calorimetry and polarized light microscopy. The polarized light microscopy evidenced the formation of round birefringent droplets, anchored homeotropic in the first case and planar in the second, with a narrow dimensional polydispersity, especially for the PDLC containing the largest amount of liquid crystal, fact evidenced by SEM, also. The obtained values for the water to air contact angle showed that the composites have a proper hydrophilic-hydrophobic balance, making them potential candidates for bioapplications. More than this, our studies demonstrated that the water to air contact angle varies as a function of PVAB matrix crystalinity degree, which can be controled as a function of time. This fact allowed us to conclude that the use of PVAB as matrix for PDLCs obtaining offers the possibility to modulate their properties for specific applications.

Keywords: 4-cyano-4’-penthylbiphenyl, buthyl-p-[p’-n-octyloxy benzoyloxy] benzoate, contact angle, polymer dispersed liquid crystals, poly vinyl alcohol boric acid

Procedia PDF Downloads 451
3207 Solving Directional Overcurrent Relay Coordination Problem Using Artificial Bees Colony

Authors: M. H. Hussain, I. Musirin, A. F. Abidin, S. R. A. Rahim

Abstract:

This paper presents the implementation of Artificial Bees Colony (ABC) algorithm in solving Directional OverCurrent Relays (DOCRs) coordination problem for near-end faults occurring in fixed network topology. The coordination optimization of DOCRs is formulated as linear programming (LP) problem. The objective function is introduced to minimize the operating time of the associated relay which depends on the time multiplier setting. The proposed technique is to taken as a technique for comparison purpose in order to highlight its superiority. The proposed algorithms have been tested successfully on 8 bus test system. The simulation results demonstrated that the ABC algorithm which has been proved to have good search ability is capable in dealing with constraint optimization problems.

Keywords: artificial bees colony, directional overcurrent relay coordination problem, relay settings, time multiplier setting

Procedia PDF Downloads 331
3206 YBa2Cu3O7-d Nanoparticles Doped by Ferromagnetic Nanoparticles of Y3Fe5O12

Authors: Samir Khene

Abstract:

Present and future industrial uses of high critical temperature superconductors require high critical temperatures TC and strong current densities JC. These two aims constitute the two motivations of the scientific research in this domain. The most significant feature of any superconductor, from the viewpoint of uses, is the maximum electrical transport current density that this superconductor is capable of withstanding without loss of energy. In this work, vortices pinning in conventional and high-TC superconductors will be studied. Our experiments on vortices pinning in single crystals and nanoparticles of YBa2Cu3O7- and La1.85 Sr0.15CuO will be presented. It will be given special attention to the study of the YBa2Cu3O7- nanoparticles doped by ferromagnetic nanoparticles of Y3Fe5O12. The ferromagnetism and superconductivity coexistence in this compound will be demonstrated, and the influence of these ferromagnetic nanoparticles on the variations of the critical current density JC in YBa2Cu3O7- nanoparticles as a function of applied field H and temperature T will be studied.

Keywords: ferromagnetism, superconductivity, coexistence, magnetic material

Procedia PDF Downloads 80
3205 Networked Implementation of Milling Stability Optimization with Bayesian Learning

Authors: Christoph Ramsauer, Jaydeep Karandikar, Tony Schmitz, Friedrich Bleicher

Abstract:

Machining stability is an important limitation to discrete part machining. In this work, a networked implementation of milling stability optimization with Bayesian learning is presented. The milling process was monitored with a wireless sensory tool holder instrumented with an accelerometer at the Vienna University of Technology, Vienna, Austria. The recorded data from a milling test cut is used to classify the cut as stable or unstable based on the frequency analysis. The test cut result is fed to a Bayesian stability learning algorithm at the University of Tennessee, Knoxville, Tennessee, USA. The algorithm calculates the probability of stability as a function of axial depth of cut and spindle speed and recommends the parameters for the next test cut. The iterative process between two transatlantic locations repeats until convergence to a stable optimal process parameter set is achieved.

Keywords: machining stability, machine learning, sensor, optimization

Procedia PDF Downloads 209
3204 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 149
3203 Optimization of Structures with Mixed Integer Non-linear Programming (MINLP)

Authors: Stojan Kravanja, Andrej Ivanič, Tomaž Žula

Abstract:

This contribution focuses on structural optimization in civil engineering using mixed integer non-linear programming (MINLP). MINLP is characterized as a versatile method that can handle both continuous and discrete optimization variables simultaneously. Continuous variables are used to optimize parameters such as dimensions, stresses, masses, or costs, while discrete variables represent binary decisions to determine the presence or absence of structural elements within a structure while also calculating discrete materials and standard sections. The optimization process is divided into three main steps. First, a mechanical superstructure with a variety of different topology-, material- and dimensional alternatives. Next, a MINLP model is formulated to encapsulate the optimization problem. Finally, an optimal solution is searched in the direction of the defined objective function while respecting the structural constraints. The economic or mass objective function of the material and labor costs of a structure is subjected to the constraints known from structural analysis. These constraints include equations for the calculation of internal forces and deflections, as well as equations for the dimensioning of structural components (in accordance with the Eurocode standards). Given the complex, non-convex and highly non-linear nature of optimization problems in civil engineering, the Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm is applied. This algorithm alternately solves subproblems of non-linear programming (NLP) and main problems of mixed-integer linear programming (MILP), in this way gradually refines the solution space up to the optimal solution. The NLP corresponds to the continuous optimization of parameters (with fixed topology, discrete materials and standard dimensions, all determined in the previous MILP), while the MILP involves a global approximation to the superstructure of alternatives, where a new topology, materials, standard dimensions are determined. The optimization of a convex problem is stopped when the MILP solution becomes better than the best NLP solution. Otherwise, it is terminated when the NLP solution can no longer be improved. While the OA/ER algorithm, like all other algorithms, does not guarantee global optimality due to the presence of non-convex functions, various modifications, including convexity tests, are implemented in OA/ER to mitigate these difficulties. The effectiveness of the proposed MINLP approach is demonstrated by its application to various structural optimization tasks, such as mass optimization of steel buildings, cost optimization of timber halls, composite floor systems, etc. Special optimization models have been developed for the optimization of these structures. The MINLP optimizations, facilitated by the user-friendly software package MIPSYN, provide insights into a mass or cost-optimal solutions, optimal structural topologies, optimal material and standard cross-section choices, confirming MINLP as a valuable method for the optimization of structures in civil engineering.

Keywords: MINLP, mixed-integer non-linear programming, optimization, structures

Procedia PDF Downloads 48
3202 Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI

Authors: Hae-Yeoun Lee

Abstract:

Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring,which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance.

Keywords: cardiac MRI, graph searching, left ventricle segmentation, K-means clustering

Procedia PDF Downloads 400
3201 Facial Emotion Recognition with Convolutional Neural Network Based Architecture

Authors: Koray U. Erbas

Abstract:

Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.

Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition

Procedia PDF Downloads 275
3200 An Evidence-Based Laboratory Medicine (EBLM) Test to Help Doctors in the Assessment of the Pancreatic Endocrine Function

Authors: Sergio J. Calleja, Adria Roca, José D. Santotoribio

Abstract:

Pancreatic endocrine diseases include pathologies like insulin resistance (IR), prediabetes, and type 2 diabetes mellitus (DM2). Some of them are highly prevalent in the U.S.—40% of U.S. adults have IR, 38% of U.S. adults have prediabetes, and 12% of U.S. adults have DM2—, as reported by the National Center for Biotechnology Information (NCBI). Building upon this imperative, the objective of the present study was to develop a non-invasive test for the assessment of the patient’s pancreatic endocrine function and to evaluate its accuracy in detecting various pancreatic endocrine diseases, such as IR, prediabetes, and DM2. This approach to a routine blood and urine test is based around serum and urine biomarkers. It is made by the combination of several independent public algorithms, such as the Adult Treatment Panel III (ATP-III), triglycerides and glucose (TyG) index, homeostasis model assessment-insulin resistance (HOMA-IR), HOMA-2, and the quantitative insulin-sensitivity check index (QUICKI). Additionally, it incorporates essential measurements such as the creatinine clearance, estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (ACR), and urinalysis, which are helpful to achieve a full image of the patient’s pancreatic endocrine disease. To evaluate the estimated accuracy of this test, an iterative process was performed by a machine learning (ML) algorithm, with a training set of 9,391 patients. The sensitivity achieved was 97.98% and the specificity was 99.13%. Consequently, the area under the receiver operating characteristic (AUROC) curve, the positive predictive value (PPV), and the negative predictive value (NPV) were 92.48%, 99.12%, and 98.00%, respectively. The algorithm was validated with a randomized controlled trial (RCT) with a target sample size (n) of 314 patients. However, 50 patients were initially excluded from the study, because they had ongoing clinically diagnosed pathologies, symptoms or signs, so the n dropped to 264 patients. Then, 110 patients were excluded because they didn’t show up at the clinical facility for any of the follow-up visits—this is a critical point to improve for the upcoming RCT, since the cost of each patient is very high and for this RCT almost a third of the patients already tested were lost—, so the new n consisted of 154 patients. After that, 2 patients were excluded, because some of their laboratory parameters and/or clinical information were wrong or incorrect. Thus, a final n of 152 patients was achieved. In this validation set, the results obtained were: 100.00% sensitivity, 100.00% specificity, 100.00% AUROC, 100.00% PPV, and 100.00% NPV. These results suggest that this approach to a routine blood and urine test holds promise in providing timely and accurate diagnoses of pancreatic endocrine diseases, particularly among individuals aged 40 and above. Given the current epidemiological state of these type of diseases, these findings underscore the significance of early detection. Furthermore, they advocate for further exploration, prompting the intention to conduct a clinical trial involving 26,000 participants (from March 2025 to December 2026).

Keywords: algorithm, diabetes, laboratory medicine, non-invasive

Procedia PDF Downloads 36
3199 Quantification of Uncertainties Related to the Implementation of Reverse Logistics Process

Authors: Dnaya Soukaina

Abstract:

It’s over six decades that Reverse logistics had appeared as a research area, and it is emerging again and again in the scientific fields. As reverse logistics presents real potential for value recovery and environmental impacts decrease, it’s still necessary to extend this concept more in the industrial and commercial field especially in developing countries. The process of reverse logistics is a progression of steps beginning with the customer and finishing with the organization or even the customer, however the issue is that this cycle must be adjustable to the organization concerned, in addition of legislative, operational, financial and social obstacles. Literature had demonstrated that there are many other uncertainties while the implementation of this process that vary in function of the sector concerned and the kind of activity. Besides, even if literature is developing this topic over the last years, reseraches about uncertainties quantification in reverse logistics process still being few. the paper has the objective to fill this gap, and carry out a study to identify sustainable strategies that can be adapted to different industrial or commercial sectors to facilitate the implementation of reverse logistics.

Keywords: reverse logistics, implementation, unceratinties quantification, mathematical model

Procedia PDF Downloads 23
3198 Renovation of Industrial Zones in Ho Chi Minh City: An Approach from Changing Function of Processing to Urban Warehousing

Authors: Thu Le Thi Bao

Abstract:

Industrial parks have both active roles in promoting economic development and source of appearance of boarding houses and slums in the adjacent area, lacking infrastructure, causing many social evils. The context of the recent pandemic and climate change on a global scale pose issues that need to be resolved for sustainable development. Ho Chi Minh City aims to develop housing for migrant workers to stabilize human resources and, at the same time, solve problems of social evils caused by poor living conditions. The paper focuses on the content of renovating existing industrial parks and worker accommodation in Ho Chi Minh City to propose appropriate models, contributing to the goal of urban embellishment and solutions for industrial parks to adapt to abnormal impact conditions such as pandemics, climate change, crises.

Keywords: industrial park, social housing, accommodation, distribution center

Procedia PDF Downloads 113
3197 A Semiparametric Approach to Estimate the Mode of Continuous Multivariate Data

Authors: Tiee-Jian Wu, Chih-Yuan Hsu

Abstract:

Mode estimation is an important task, because it has applications to data from a wide variety of sources. We propose a semi-parametric approach to estimate the mode of an unknown continuous multivariate density function. Our approach is based on a weighted average of a parametric density estimate using the Box-Cox transform and a non-parametric kernel density estimate. Our semi-parametric mode estimate improves both the parametric- and non-parametric- mode estimates. Specifically, our mode estimate solves the non-consistency problem of parametric mode estimates (at large sample sizes) and reduces the variability of non-parametric mode estimates (at small sample sizes). The performance of our method at practical sample sizes is demonstrated by simulation examples and two real examples from the fields of climatology and image recognition.

Keywords: Box-Cox transform, density estimation, mode seeking, semiparametric method

Procedia PDF Downloads 285
3196 Pantograph-Catenary Contact Force: Features Evaluation for Catenary Diagnostics

Authors: Mehdi Brahimi, Kamal Medjaher, Noureddine Zerhouni, Mohammed Leouatni

Abstract:

The Prognostics and Health Management is a system engineering discipline which provides solutions and models to the implantation of a predictive maintenance. The approach is based on extracting useful information from monitoring data to assess the “health” state of an industrial equipment or an asset. In this paper, we examine multiple extracted features from Pantograph-Catenary contact force in order to select the most relevant ones to achieve a diagnostics function. The feature extraction methodology is based on simulation data generated thanks to a Pantograph-Catenary simulation software called INPAC and measurement data. The feature extraction method is based on both statistical and signal processing analyses. The feature selection method is based on statistical criteria.

Keywords: catenary/pantograph interaction, diagnostics, Prognostics and Health Management (PHM), quality of current collection

Procedia PDF Downloads 290
3195 Optimal Policies in a Two-Level Supply Chain with Defective Product and Price Dependent Demand

Authors: Samira Mohabbatdar, Abbas Ahmadi, Mohsen S. Sajadieh

Abstract:

This paper deals with a two-level supply chain consisted of one manufacturer and one retailer for single-type product. The demand function of the customers depends on price. We consider an integrated production inventory system where the manufacturer processes raw materials in order to deliver finished product with imperfect quality to the retailer. Then retailer inspects the products and after that delivers perfect products to customers. The proposed model is based on the joint total profit of both the manufacturer and the retailer, and it determines the optimal ordering lot-size, number of shipment and selling price of the retailer. A numerical example is provided to analyse and illustrate the behaviour and application of the model. Finally, sensitivity analysis of the key parameters are presented to test feasibility of the model.

Keywords: supply chain, pricing policy, defective quality, joint economic lot sizing

Procedia PDF Downloads 337
3194 Multi-Period Supply Chain Design under Uncertainty

Authors: Amir Azaron

Abstract:

In this research, a stochastic programming approach is developed for designing supply chains with uncertain parameters. Demands and selling prices of products at markets are considered as the uncertain parameters. The proposed mathematical model will be multi-period two-stage stochastic programming, which takes into account the selection of retailer sites, suppliers, production levels, inventory levels, transportation modes to be used for shipping goods, and shipping quantities among the entities of the supply chain network. The objective function is to maximize the chain’s net present value. In order to maximize the chain’s NPV, the sum of first-stage investment costs on retailers, and the expected second-stage processing, inventory-holding and transportation costs should be kept as low as possible over multiple periods. The effects of supply uncertainty where suppliers are unreliable will also be investigated on the efficiency of the supply chain.

Keywords: supply chain management, stochastic programming, multiobjective programming, inventory control

Procedia PDF Downloads 296
3193 Mechanical and Thermal Stresses in A Functionally Graded Cylinders

Authors: Ali Kurşun, Emre Kara, Erhan Çetin, Şafak Aksoy, Ahmet Kesimli

Abstract:

In this study, thermal elastic stress distribution occurred on long hollow cylinders made of functionally graded material (FGM) was analytically defined under thermal, mechanical and thermo mechanical loads. In closed form solutions for elastic stresses and displacements are obtained analytically by using the infinitesimal deformation theory of elasticity. It was assumed that elasticity modulus, thermal expansion coefficient and density of cylinder materials could change in terms of an exponential function as for that Poisson’s ratio was constant. A gradient parameter n is chosen between - 1 and 1. When n equals to zero, the disc becomes isotropic. Circumferential, radial and longitudinal stresses in the FGMs cylinders are depicted in the figures. As a result, the gradient parameters have great effects on the stress systems of FGMs cylinders.

Keywords: functionally graded materials, thermoelasticity, thermomechanical load, hollow cylinder.

Procedia PDF Downloads 459