Search results for: disaster relief networks
1842 Building a Blockchain-based Internet of Things
Authors: Rob van den Dam
Abstract:
Today’s Internet of Things (IoT) comprises more than a billion intelligent devices, connected via wired/wireless communications. The expected proliferation of hundreds of billions more places us at the threshold of a transformation sweeping across the communications industry. Yet, we found that the IoT architecture and solutions that currently work for billions of devices won’t necessarily scale to tomorrow’s hundreds of billions of devices because of high cost, lack of privacy, not future-proof, lack of functional value and broken business models. As the IoT scales exponentially, decentralized networks have the potential to reduce infrastructure and maintenance costs to manufacturers. Decentralization also promises increased robustness by removing single points of failure that could exist in traditional centralized networks. By shifting the power in the network from the center to the edges, devices gain greater autonomy and can become points of transactions and economic value creation for owners and users. To validate the underlying technology vision, IBM jointly developed with Samsung Electronics the autonomous decentralized peer-to- peer proof-of-concept (PoC). The primary objective of this PoC was to establish a foundation on which to demonstrate several capabilities that are fundamental to building a decentralized IoT. Though many commercial systems in the future will exist as hybrid centralized-decentralized models, the PoC demonstrated a fully distributed proof. The PoC (a) validated the future vision for decentralized systems to extensively augment today’s centralized solutions, (b) demonstrated foundational IoT tasks without the use of centralized control, (c) proved that empowered devices can engage autonomously in marketplace transactions. The PoC opens the door for the communications and electronics industry to further explore the challenges and opportunities of potential hybrid models that can address the complexity and variety of requirements posed by the internet that continues to scale. Contents: (a) The new approach for an IoT that will be secure and scalable, (b) The three foundational technologies that are key for the future IoT, (c) The related business models and user experiences, (d) How such an IoT will create an 'Economy of Things', (e) The role of users, devices, and industries in the IoT future, (f) The winners in the IoT economy.Keywords: IoT, internet, wired, wireless
Procedia PDF Downloads 3361841 Corn Production in the Visayas: An Industry Study from 2002-2019
Authors: Julie Ann L. Gadin, Andrearose C. Igano, Carl Joseph S. Ignacio, Christopher C. Bacungan
Abstract:
Corn production has become an important and pervasive industry in the Visayas for many years. Its role as a substitute commodity to rice heightens demand for health-particular consumers. Unfortunately, the corn industry is confronted with several challenges, such as weak institutions. Considering these issues, the paper examined the factors that influence corn production in the three administrative regions in the Visayas, namely, Western Visayas, Central Visayas, and Eastern Visayas. The data used was retrieved from a variety of publicly available data sources such as the Philippine Statistics Authority, the Department of Agriculture, the Philippine Crop Insurance Corporation, and the International Disaster Database. Utilizing a dataset from 2002 to 2019, the indicators were tested using three multiple linear regression (MLR) models. Results showed that the land area harvested (p=0.02), and the value of corn production (p=0.00) are statistically significant variables that influence corn production in the Visayas. Given these findings, it is suggested that the policy of forest conversion and sustainable land management should be effective in enabling farmworkers to obtain land to grow corn crops, especially in rural regions. Furthermore, the Biofuels Act of 2006, the Livestock Industry Restructuring and Rationalization Act, and supported policy, Senate Bill No. 225, or an Act Establishing the Philippine Corn Research Institute and Appropriating Funds, should be enforced inclusively in order to improve the demand for the corn-allied industries which may lead to an increase in the value and volume of corn production in the Visayas.Keywords: corn, industry, production, MLR, Visayas
Procedia PDF Downloads 2111840 Speckle-Based Phase Contrast Micro-Computed Tomography with Neural Network Reconstruction
Authors: Y. Zheng, M. Busi, A. F. Pedersen, M. A. Beltran, C. Gundlach
Abstract:
X-ray phase contrast imaging has shown to yield a better contrast compared to conventional attenuation X-ray imaging, especially for soft tissues in the medical imaging energy range. This can potentially lead to better diagnosis for patients. However, phase contrast imaging has mainly been performed using highly brilliant Synchrotron radiation, as it requires high coherence X-rays. Many research teams have demonstrated that it is also feasible using a laboratory source, bringing it one step closer to clinical use. Nevertheless, the requirement of fine gratings and high precision stepping motors when using a laboratory source prevents it from being widely used. Recently, a random phase object has been proposed as an analyzer. This method requires a much less robust experimental setup. However, previous studies were done using a particular X-ray source (liquid-metal jet micro-focus source) or high precision motors for stepping. We have been working on a much simpler setup with just small modification of a commercial bench-top micro-CT (computed tomography) scanner, by introducing a piece of sandpaper as the phase analyzer in front of the X-ray source. However, it needs a suitable algorithm for speckle tracking and 3D reconstructions. The precision and sensitivity of speckle tracking algorithm determine the resolution of the system, while the 3D reconstruction algorithm will affect the minimum number of projections required, thus limiting the temporal resolution. As phase contrast imaging methods usually require much longer exposure time than traditional absorption based X-ray imaging technologies, a dynamic phase contrast micro-CT with a high temporal resolution is particularly challenging. Different reconstruction methods, including neural network based techniques, will be evaluated in this project to increase the temporal resolution of the phase contrast micro-CT. A Monte Carlo ray tracing simulation (McXtrace) was used to generate a large dataset to train the neural network, in order to address the issue that neural networks require large amount of training data to get high-quality reconstructions.Keywords: micro-ct, neural networks, reconstruction, speckle-based x-ray phase contrast
Procedia PDF Downloads 2571839 The Improvement in Clinical Outcomes with the Histological Presence of Nidus Following Radiofrequency Ablation (RFA) for Osteoid Osteoma (OO)
Authors: Amirul Adlan, Motaz AlAqeel, Scott Evans, Vaiyapuri sumathi, Mark Davies, Rajesh Botchu
Abstract:
Background & Objectives: Osteoid osteoma (OO) is a benign tumor of the bone commonly found in childhood and adolescence, causing bone pain, especially during the night. CT-guided radiofrequency ablation (RFA) is currently the mainstay treatment for OO. There is currently no literature reporting the outcomes of OO following RFA based on the histological presence of a nidus seen on a biopsy taken at the time of RFA. The primary aim of this study was to compare the clinical outcomes of OO between the group of patients with the presence of nidus on biopsy samples from RFA with those without nidus. Secondly, we aimed to examine other factors that may affect the outcomes of OO, reflecting our experience as a tertiary orthopedic oncology center. Methods: We retrospectively reviewed 88 consecutive patients diagnosed with osteoid osteoma treated with RFA between November 2005 and March 2015, consisting of 63 males (72%) and 25 females (28%). Sixty-six patients (75%) had nidus present in their biopsy samples. Patients’ mean age was 17.6 years (4-53). The median duration of follow-up was 12.5 months (6-20.8). Lesions were located in the appendicular skeleton in seventy-nine patients (90%), while nine patients (10%) had an OO in the axial skeleton. Outcomes assessed were based on patients’ pain alleviation (partial, complete, or no pain improvement) and the need for further interventions. Results: Pain improvement in the patient group with nidus in the histology sample was significantly better than in the group without nidus (OR 7.4, CI 1.35-41.4, p=0.021). The patient group with nidus on biopsy demonstrated less likelihood of having a repeat procedure compared to the group without nidus(OR 0.092, CI 0.016-0.542, p=0.008). Our study showed significantly better outcomes in pain improvement in appendicular lesions compared to the axially located lesions (p = 0.005). Patients with spinal lesions tend to have relatively poor pain relief than those with appendicular or pelvic lesions (p=0.007). Conclusions: Patients with nidus on histology had better pain alleviation compared to patients without nidus. The histological presence of nidus significantly reduces the chance of repeat interventions. The pain alleviation of osteoid osteoma following RFA is better in patients with appendicular lesions than spinal or axially located lesions.Keywords: osteoid osteoma, benign tumour, radiofrequency ablation, oncology
Procedia PDF Downloads 1531838 An Approach towards Smart Future: Ict Infrastructure Integrated into Urban Water Networks
Authors: Ahsan Ali, Mayank Ostwal, Nikhil Agarwal
Abstract:
Abstract—According to a World Bank report, millions of people across the globe still do not have access to improved water services. With uninterrupted growth of cities and urban inhabitants, there is a mounting need to safeguard the sustainable expansion of cities. Efficient functioning of the urban components and high living standards of the residents are needed to be ensured. The water and sanitation network of an urban development is one of its most essential parts of its critical infrastructure. The growth in urban population is leading towards increased water demand, and thus, the local water resources are severely strained. 'Smart water' is referred to water and waste water infrastructure that is able to manage the limited resources and the energy used to transport it. It enables the sustainable consumption of water resources through co-ordinate water management system, by integrating Information Communication Technology (ICT) solutions, intended at maximizing the socioeconomic benefits without compromising the environmental values. This paper presents a case study from a medium sized city in North-western Pakistan. Currently, water is getting contaminated due to the proximity between water and sewer pipelines in the study area, leading to public health issues. Due to unsafe grey water infiltration, the scarce ground water is also getting polluted. This research takes into account the design of smart urban water network by integrating ICT (Information and Communication Technology) with urban water network. The proximity between the existing water supply network and sewage network is analyzed and a design of new water supply system is proposed. Real time mapping of the existing urban utility networks will be projected with the help of GIS applications. The issue of grey water infiltration is addressed by providing sustainable solutions with the help of locally available materials, keeping in mind the economic condition of the area. To deal with the current growth of urban population, it is vital to develop new water resources. Hence, distinctive and cost effective procedures to harness rain water would be suggested as a part of the research study experiment.Keywords: GIS, smart water, sustainability, urban water management
Procedia PDF Downloads 2161837 A Semantic E-Learning and E-Assessment System of Learners
Authors: Wiem Ben Khalifa, Dalila Souilem, Mahmoud Neji
Abstract:
The evolutions of Social Web and Semantic Web lead us to ask ourselves about the way of supporting the personalization of learning by means of intelligent filtering of educational resources published in the digital networks. We recommend personalized courses of learning articulated around a first educational course defined upstream. Resuming the context and the stakes in the personalization, we also suggest anchoring the personalization of learning in a community of interest within a group of learners enrolled in the same training. This reflection is supported by the display of an active and semantic system of learning dedicated to the constitution of personalized to measure courses and in the due time.Keywords: Semantic Web, semantic system, ontology, evaluation, e-learning
Procedia PDF Downloads 3341836 Impacts on Marine Ecosystems Using a Multilayer Network Approach
Authors: Nelson F. F. Ebecken, Gilberto C. Pereira, Lucio P. de Andrade
Abstract:
Bays, estuaries and coastal ecosystems are some of the most used and threatened natural systems globally. Its deterioration is due to intense and increasing human activities. This paper aims to monitor the socio-ecological in Brazil, model and simulate it through a multilayer network representing a DPSIR structure (Drivers, Pressures, States-Impacts-Responses) considering the concept of Management based on Ecosystems to support decision-making under the National/State/Municipal Coastal Management policy. This approach considers several interferences and can represent a significant advance in several scientific aspects. The main objective of this paper is the coupling of three different types of complex networks, the first being an ecological network, the second a social network, and the third a network of economic activities, in order to model the marine ecosystem. Multilayer networks comprise two or more "layers", which may represent different types of interactions, different communities, different points in time, and so on. The dependency between layers results from processes that affect the various layers. For example, the dispersion of individuals between two patches affects the network structure of both samples. A multilayer network consists of (i) a set of physical nodes representing entities (e.g., species, people, companies); (ii) a set of layers, which may include multiple layering aspects (e.g., time dependency and multiple types of relationships); (iii) a set of state nodes, each of which corresponds to the manifestation of a given physical node in a layer-specific; and (iv) a set of edges (weighted or not) to connect the state nodes among themselves. The edge set includes the intralayer edges familiar and interlayer ones, which connect state nodes between layers. The applied methodology in an existent case uses the Flow cytometry process and the modeling of ecological relationships (trophic and non-trophic) following fuzzy theory concepts and graph visualization. The identification of subnetworks in the fuzzy graphs is carried out using a specific computational method. This methodology allows considering the influence of different factors and helps their contributions to the decision-making process.Keywords: marine ecosystems, complex systems, multilayer network, ecosystems management
Procedia PDF Downloads 1131835 Design of Bidirectional Wavelength Division Multiplexing Passive Optical Network in Optisystem Environment
Authors: Ashiq Hussain, Mahwash Hussain, Zeenat Parveen
Abstract:
Now a days the demand for broadband service has increased. Due to which the researchers are trying to find a solution to provide a large amount of service. There is a shortage of bandwidth because of the use of downloading video, voice and data. One of the solutions to overcome this shortage of bandwidth is to provide the communication system with passive optical components. We have increased the data rate in this system. From experimental results we have concluded that the quality factor has increased by adding passive optical networks.Keywords: WDM-PON, optical fiber, BER, Q-factor, eye diagram
Procedia PDF Downloads 5091834 Rescue Emergency Drone for Fast Response to Medical Emergencies Due to Traffic Accidents
Authors: Anders S. Kristensen, Dewan Ahsan, Saqib Mehmood, Shakeel Ahmed
Abstract:
Traffic accidents are a result of the convergence of hazards, malfunctioning of vehicles and human negligence that have adverse economic and health impacts and effects. Unfortunately, avoiding them completely is very difficult, but with quick response to rescue and first aid, the mortality rate of inflicted persons can be reduced significantly. Smart and innovative technologies can play a pivotal role to respond faster to traffic crash emergencies comparing conventional means of transportation. For instance, Rescue Emergency Drone (RED) can provide faster and real-time crash site risk assessment to emergency medical services, thereby helping them to quickly and accurately assess a situation, dispatch the right equipment and assist bystanders to treat inflicted person properly. To conduct a research in this regard, the case of a traffic roundabout that is prone to frequent traffic accidents on the outskirts of Esbjerg, a town located on western coast of Denmark is hypothetically considered. Along with manual calculations, Emergency Disaster Management Simulation (EDMSIM) has been used to verify the response time of RED from a fire station of the town to the presumed crash site. The results of the study demonstrate the robustness of RED into emergency services to help save lives.Keywords: automated external defibrillator, medical emergency, response time, unmanned aerial system
Procedia PDF Downloads 2281833 Examining Social Connectivity through Email Network Analysis: Study of Librarians' Emailing Groups in Pakistan
Authors: Muhammad Arif Khan, Haroon Idrees, Imran Aziz, Sidra Mushtaq
Abstract:
Social platforms like online discussion and mailing groups are well aligned with academic as well as professional learning spaces. Professional communities are increasingly moving to online forums for sharing and capturing the intellectual abilities. This study investigated dynamics of social connectivity of yahoo mailing groups of Pakistani Library and Information Science (LIS) professionals using Graph Theory technique. Design/Methodology: Social Network Analysis is the increasingly concerned domain for scientists in identifying whether people grow together through online social interaction or, whether they just reflect connectivity. We have conducted a longitudinal study using Network Graph Theory technique to analyze the large data-set of email communication. The data was collected from three yahoo mailing groups using network analysis software over a period of six months i.e. January to June 2016. Findings of the network analysis were reviewed through focus group discussion with LIS experts and selected respondents of the study. Data were analyzed in Microsoft Excel and network diagrams were visualized using NodeXL and ORA-Net Scene package. Findings: Findings demonstrate that professionals and students exhibit intellectual growth the more they get tied within a network by interacting and participating in communication through online forums. The study reports on dynamics of the large network by visualizing the email correspondence among group members in a network consisting vertices (members) and edges (randomized correspondence). The model pair wise relationship between group members was illustrated to show characteristics, reasons, and strength of ties. Connectivity of nodes illustrated the frequency of communication among group members through examining node coupling, diffusion of networks, and node clustering has been demonstrated in-depth. Network analysis was found to be a useful technique in investigating the dynamics of the large network.Keywords: emailing networks, network graph theory, online social platforms, yahoo mailing groups
Procedia PDF Downloads 2391832 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study
Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa
Abstract:
The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity
Procedia PDF Downloads 4151831 Distributed Key Management With Less Transmitted Messaged In Rekeying Process To Secure Iot Wireless Sensor Networks In Smart-Agro
Authors: Safwan Mawlood Hussien
Abstract:
Internet of Things (IoT) is a promising technology has received considerable attention in different fields such as health, industry, defence, and agro, etc. Due to the limitation capacity of computing, storage, and communication, IoT objects are more vulnerable to attacks. Many solutions have been proposed to solve security issues, such as key management using symmetric-key ciphers. This study provides a scalable group distribution key management based on ECcryptography; with less transmitted messages The method has been validated through simulations in OMNeT++.Keywords: elliptic curves, Diffie–Hellman, discrete logarithm problem, secure key exchange, WSN security, IoT security, smart-agro
Procedia PDF Downloads 1191830 Cluster Based Ant Colony Routing Algorithm for Mobile Ad-Hoc Networks
Authors: Alaa Eddien Abdallah, Bajes Yousef Alskarnah
Abstract:
Ant colony based routing algorithms are known to grantee the packet delivery, but they suffer from the huge overhead of control messages which are needed to discover the route. In this paper we utilize the network nodes positions to group the nodes in connected clusters. We use clusters-heads only on forwarding the route discovery control messages. Our simulations proved that the new algorithm has decreased the overhead dramatically without affecting the delivery rate.Keywords: ad-hoc network, MANET, ant colony routing, position based routing
Procedia PDF Downloads 4251829 The Impact of Diseases and Epidemics in the Field of Medicine and Health in General
Authors: Nedjar Abdelhadi
Abstract:
The pharmaceutical industry is one of the most important structures and foundations for the management and development of the modern world, especially the advanced part of it, meaning that there are some exceptions for third-world countries. The world today has witnessed radical transformations and changes, some of which made it better and some of which affected the path of its growth. At the beginning of my research, there was a detailed presentation overview of the current situation of the world in terms of growth and development, and it proceeded through that overview as the introduction to my research. The first chapter had divided into three sections; each topic was unique to one of the new methods of manufacturing, deducing and developing medicines Several examples of various recently developed medicines were used The second chapter dealt with the defects and shortcomings that pioneers and drug makers at various levels, as well as various regions and major companies, suffer from on the basis that they are international, especially those specialized in the manufacture of medicines related to viruses and chronic diseases, as well as incurable. As for the third chapter, it was devoted to marketing methods, methods of achieving sales, as well as the basics of spreading medicines and preparing the minds of consumers. Through my research, the one concluded that the current world has become completely different from the world we used to know, and it means by saying the field of manufacturing, selling and marketing medicines. It was noted that one of the biggest factors that affected the change in the field of medicine was the corona disaster. At the end of my research, I was left with nothing but to show the importance and necessity of the pharmaceutical industry and its effective role, not only in the development of mankind, but its main role is in the survival of mankind.Keywords: health, diseases, medicine, epidemics
Procedia PDF Downloads 701828 Phytochemical Investigation and Diuretic Activity of the Palestinian Crataegus aronia in Mice Using an Aqueous Extract
Authors: Belal Rahhal, Isra Taha, Insaf Najajreh, Waleed Basha, Hamzeh Alzabadeh, Ahed Zyoud
Abstract:
Phytochemical Investigation and Diuretic Activity of the Palestinian Crataegus aronia in Mice using an Aqueous Extract Division of Physiology, Pharmacology and Toxicology Faculty of Medicine and Health Sciences An- Najah National University Nablus- Palestine Belal Rahhal, Isra Taha, Insaf Najajreh, Waleed Basha, Hamzeh Alzabadeh and Ahed Zyoud Purpose: Throughout history, various natural materials were used as remedies for treatment of various diseases, and recently a vastly growing and renewed interest in herbal medicine is witnessed globally. In Palestinian folk medicine, Crataegus aronia is used as a diuretic and for treatment of hypertension. This study aimed to assess the preliminary phytochemical properties and the diuretic effect of the aqueous extracts of this plant in mice after its intraperitonial administration. Methods: It is an experimental trial applied on mice (n=8, Male, CD-1, weight range: [25-30 gram]), which are divided into two groups (4 in each). The first group administered with the plant extract (500 mg/kg) , and the second with normal saline as negative control group. Then urine output and electrolyte contents were quantified up to 6 hours for the three groups and then compared to the control one. Results: Preliminary phytochemical screening reveals the presence of tannins, alkaloids and flavoniods as major phytoconstituents in aqueous extract. Significant diuresis was noted in those received the aqueous extract of Crataegus aronia (p < 0.05) compared to controls. Moreover, aqueous extract had an acidic pH and a mild increase in the electrolyte excretion (Na, K). Conclusions: Our results revealed that Crataegus aronia aqueous extract has a potential diuretic effect. Further studies are needed to evaluate this diuretic effect in the relief of diseases characterized by volume overload. Keywords: C. aronia, furosemide, diuresis, mice, medicinal plants.Keywords: medicinal plants, diuretic activity, mice, C. aronia, , furosemide, , Phytochemical Investigation
Procedia PDF Downloads 1981827 Comparative Morphometric Analysis of Yelganga-Shivbhadra and Kohilla River Sub-Basins in Aurangabad District Maharashtra India
Authors: Chandrakant Gurav, Md Babar, Ajaykumar Asode
Abstract:
Morphometric analysis is the first stage of any basin analysis. By using these morphometric parameters we give indirect information about the nature and relations of stream with other streams, Geology of the area, groundwater condition and tectonic history of the basin. In the present study, Yelganga, Shivbhadra and Kohilla rivers, tributaries of the Godavari River in Aurangabad district, Maharashtra, India are considered to compare and study their morphometric characters. The linear, areal and relief morphometric aspects of the sub-basins have been assessed and evaluated in GIS environment. For this study, ArcGIS 10.1 software has been used for delineating, digitizing and generating different thematic maps. The Survey of India (SOI) toposheets maps and Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) on resolution 30 m downloaded from United States Geological Survey (USGS) have been used for preparation of map and data generation. Geologically, the study area is covered by Central Deccan Volcanic Province (CDVP). It mainly consists of ‘aa’ type of basaltic lava flows of Late (upper) Cretaceous to Early (lower) Eocene age. The total geographical area of Yelganga, Shivbhadra and Kohilla river sub-basins are 185.5 sq. km., 142.6 sq. km and 122.3 sq. km. respectively The stream ordering method as suggested by the Strahler has been employed for present study and found that all the sub-basins are of 5th order streams. The average bifurcation ratio value of the sub-basins is below 5, indicates that there appears to be no strong structural control on drainage development, homogeneous nature of lithology and drainage network is in well-developed stage of erosion. The drainage density of Yelganga, Shivbhadra and Kohilla Sub-basins is 1.79 km/km2, 1.48 km/km2 and 1.89 km/km2 respectively and stream frequency is 1.94 streams/km2, 1.19 streams/km2 and 1.68 streams/km2 respectively, indicating semi-permeable sub-surface. Based on textural ratio values it indicates that the sub-basins have coarse texture. Shape parameters such as form factor ratio, circularity ratio and elongation ratio values shows that all three sub- basins are elongated in shape.Keywords: GIS, Kohilla, morphometry, Shivbhadra, Yelganga
Procedia PDF Downloads 1561826 IT System in the Food Supply Chain Safety, Application in SMEs Sector
Authors: Mohsen Shirani, Micaela Demichela
Abstract:
Food supply chain is one of the most complex supply chain networks due to its perishable nature and customer oriented products, and food safety is the major concern for this industry. IT system could help to minimize the production and consumption of unsafe food by controlling and monitoring the entire system. However, there have been many issues in adoption of IT system in this industry specifically within SMEs sector. With this regard, this study presents a novel approach to use IT and tractability systems in the food supply chain, using application of RFID and central database.Keywords: food supply chain, IT system, safety, SME
Procedia PDF Downloads 4771825 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization
Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın
Abstract:
There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.Keywords: aircraft, fatigue, joint, life, optimization, prediction.
Procedia PDF Downloads 1751824 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection
Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy
Abstract:
Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks
Procedia PDF Downloads 741823 India, Pakistan and the US in the Afghan Imbroglio: The Way Forward
Authors: Saroj Kumar Rath
Abstract:
When insurgency erupted in Kashmir in 1989, it was quickly backed by Pakistan. Kashmir witnessed terrorism for more than a decade till 2004 when Indian forces decimated militancy. After the US pressure in 1992, terrorist training camps of Pakistan shifted to Afghanistan and al Qaeda and the Taliban had taken over training of Kashmiri militants in Afghanistan after 1997 as part of their global jihad. The Indo-Pak rivalry over Kashmir dispute had taken a new turn in the aftermath of 9/11 developments. Islamabad viewed its Afghan policy through the prism of denying India any advantage in Kabul. Pakistan was successful in refuting Indian presence in Kabul for a decade through the Taliban. After the 9/11 attacks the Inter Services Intelligence (ISI) saw Northern Alliance, supported by the Americans and all of Pakistan’s regional rivals – India, Iran, and Russia – as claiming victory in Kabul. For Pakistan’s military regime, this was a strategic disaster and prompted the ISI to give refuge to the escaping Taliban, while denying full support to Hamid Karzai. The new development in Afghanistan prompted India to establish a foothold it had lost nearly a decade earlier. India established diplomatic contacts with Afghanistan; supported the Karzai government and funded aid programs. Pakistan alleged that Indian agents are training Baloch and Sindhi dissidents in Pakistan through Afghanistan. Kabul had suddenly become the new Kashmir – the new battleground for India-Pakistan rivalry.Keywords: Afghan imbroglio, Kashmir conflict, Indo-Pak rivalry, US policy in South Asia
Procedia PDF Downloads 4331822 The Role of Leisure in Older Adults Transitioning to New Homes
Authors: Kristin Prentice, Carri Hand
Abstract:
As the Canadian population ages and chronic health conditions continue to escalate, older adults will require various types of housing, such as long term care or retirement homes. Moving to a new home may require a change in leisure activities and social networks, which could be challenging to maintain identity and create a sense of home. Leisure has been known to help older adults maintain or increase their quality of life and life satisfaction and may help older adults in moving to new homes. Sense of home and identity within older adults' transitions to new homes are concepts that may also relate to leisure engagement. Literature is scant regarding the role of leisure in older adults moving to new homes and how the sense of home and identity inter-relate. This study aims to explore how leisure may play a role in older adults' transitioning to new homes, including how sense of home and identity inter-relate. An ethnographic approach will be used to understand the culture of older adults transitioning to new homes. This study will involve older adults who have recently relocated to a mid-sized city in Ontario, Canada. The study will focus on the older adult’s interactions with and connections to their home environment through leisure. Data collection will take place via video-conferencing and will include a narrative interview and two other interviews to discuss an activity diary of leisure engagement pre and post move and mental maps to capture spaces where participants engaged in leisure. Participants will be encouraged to share photographs of leisure engagement taken inside and outside their home to help understand the social spaces the participants refer to in their activity diaries and mental maps. Older adults attempt to adjust to their new homes by maintaining their identity, developing a sense of home through creating attachment to place, and maintaining social networks, all of which have been linked to engaging in leisure. This research will provide insight into the role of leisure in this transition process and the extent that the home and community can contribute to aiding their transition to the new home. This research will contribute to existing literature on the inter-relationships of leisure, sense of home, and identity and how they relate to older adults moving to new homes. This research also has potential for influencing policy and practice for meeting the housing needs of older adults.Keywords: leisure, older adults, transition, identity
Procedia PDF Downloads 1201821 Fault Location Detection in Active Distribution System
Authors: R. Rezaeipour, A. R. Mehrabi
Abstract:
Recent increase of the DGs and microgrids in distribution systems, disturbs the tradition structure of the system. Coordination between protection devices in such a system becomes the concern of the network operators. This paper presents a new method for fault location detection in the active distribution networks, independent of the fault type or its resistance. The method uses synchronized voltage and current measurements at the interconnection of DG units and is able to adapt to changes in the topology of the system. The method has been tested on a 38-bus distribution system, with very encouraging results.Keywords: fault location detection, active distribution system, micro grids, network operators
Procedia PDF Downloads 7891820 Recognition of Tifinagh Characters with Missing Parts Using Neural Network
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN
Procedia PDF Downloads 3341819 Embedded Hybrid Intuition: A Deep Learning and Fuzzy Logic Approach to Collective Creation and Computational Assisted Narratives
Authors: Roberto Cabezas H
Abstract:
The current work shows the methodology developed to create narrative lighting spaces for the multimedia performance piece 'cluster: the vanished paradise.' This empirical research is focused on exploring unconventional roles for machines in subjective creative processes, by delving into the semantics of data and machine intelligence algorithms in hybrid technological, creative contexts to expand epistemic domains trough human-machine cooperation. The creative process in scenic and performing arts is guided mostly by intuition; from that idea, we developed an approach to embed collective intuition in computational creative systems, by joining the properties of Generative Adversarial Networks (GAN’s) and Fuzzy Clustering based on a semi-supervised data creation and analysis pipeline. The model makes use of GAN’s to learn from phenomenological data (data generated from experience with lighting scenography) and algorithmic design data (augmented data by procedural design methods), fuzzy logic clustering is then applied to artificially created data from GAN’s to define narrative transitions built on membership index; this process allowed for the creation of simple and complex spaces with expressive capabilities based on position and light intensity as the parameters to guide the narrative. Hybridization comes not only from the human-machine symbiosis but also on the integration of different techniques for the implementation of the aided design system. Machine intelligence tools as proposed in this work are well suited to redefine collaborative creation by learning to express and expand a conglomerate of ideas and a wide range of opinions for the creation of sensory experiences. We found in GAN’s and Fuzzy Logic an ideal tool to develop new computational models based on interaction, learning, emotion and imagination to expand the traditional algorithmic model of computation.Keywords: fuzzy clustering, generative adversarial networks, human-machine cooperation, hybrid collective data, multimedia performance
Procedia PDF Downloads 1421818 An Experimental Study on the Influence of Mineral Admixtures on the Fire Resistance of High-Strength Concrete
Authors: Ki-seok Kwon, Dong-woo Ryu, Heung-Youl Kim
Abstract:
Although high-strength concrete has many advantages over generic concrete at normal temperatures (around 20℃), it undergoes spalling at high temperatures, which constitutes its structurally fatal drawback. In this study, fire resistance tests were conducted for 3 hours in accordance with ASTM E119 on bearing wall specimens which were 3,000mm x 3,000mm x 300mm in dimensions to investigate the influence the type of admixtures would exert on the fire resistance performance of high-strength concrete. Portland cement, blast furnace slag, fly ash and silica fume were used as admixtures, among which 2 or 3 components were combined to make 7 types of mixtures. In 56MPa specimens, the severity of spalling was in order of SF5 > F25 > S65SF5 > S50. Specimen S50 where an admixture consisting of 2 components was added did not undergo spalling. In 70MPa specimens, the severity of spalling was in order of SF5 > F25SF5 > S45SF5 and the result was similar to that observed in 56MPa specimens. Acknowledgements— This study was conducted by the support of the project, “Development of performance-based fire safety design of the building and improvement of fire safety” (18AUDP-B100356-04) which is under the management of Korea Agency for Infrastructure Technology Advancement as part of the urban architecture research project for the Ministry of Land, Infrastructure and Transport, for which we extend our deep thanks.Keywords: high strength concrete, mineral admixture, fire resistance, social disaster
Procedia PDF Downloads 1441817 Effect of Experience on Evacuation of Mice in Emergency Conditions
Authors: Teng Zhang, Shenshi Huang, Gang Xu, Xuelin Zhang, Shouxiang Lu
Abstract:
With the acceleration of urbanization and the increasing of the population in the city, the evacuation of pedestrians suffering from disaster environments such as fire in a room or other limited space becomes a vital issue in modern society. Mice have been used in experimental crowd evacuation in recent years for its good similarities to human in physical structure and stress reaction. In this study, the effect of experience or memory on the collective behavior of mice was explored. To help mice familiarize themselves with the design of the space and the stimulus caused by smoke, we trained them repeatedly for 2 days so that they can escape from the emergency conditions as soon as possible. The escape pattern, trajectories, walking speed, turning angle and mean individual escape time of mice in each training trail were analyzed. We found that mice can build memory quickly after the first trial on the first day. On the second day, the evacuation of mice was maintained in a stable and efficient state. Meanwhile, the group with size of 30 (G30) had a shorter mean individual escape time compared with G12. Furthermore, we tested the experience of evacuation skill of mice after several days. The results showed that the mice can hold the experience or memory over 3 weeks. We proposed the importance of experience of evacuation skill and the research of training methods in experimental evacuation of mice. The results can deepen our understanding of collective behavior of mice and conduce to the establishment of animal models in the study of pedestrian crowd dynamics in emergency conditions.Keywords: experience, evacuation, mice, group size, behavior
Procedia PDF Downloads 2681816 Prioritization of Sub-Watersheds in Semi Arid Region: A Case Study of Shevgaon and Pathardi Tahsils in Maharashtra
Authors: Dadasaheb R. Jawre, Maya G. Unde
Abstract:
Prioritization of sub-watershed plays important role in watershed management. It shows the requirement of watershed to give a treatment for the green growth of the region and conservation of the sub-watersheds. There is a number of factors like topography of the region, climatic characteristics like rainfall and runoff, land-use land-cover, social factors which are related to the development of watershed for agricultural uses and domestic purposes in the region. The present research is throwing a focus on how morphometric parameters in association with GIS analysis will help in identifying the ranking of the sub-watersheds for further development which help of suggested watershed structures. Shevgaon and Pathardi tahsils are drought prone tahsils of Ahmednagar district in Maharashtra. These tahsils come under the semi-arid region. Sub-watershed prioritization is necessary for proper planning and management of natural resources for sustainable development of the study area. Less rainfall and increasing population pressure on the land as well as water resources lead to scarcity of the water in the region. Hence, researcher has selected Shevgaon and Pathardi tahsils for sub-watershed prioritization. There are seven sub-watersheds which selected for the present research paper. In the morphological analysis linear aspects, aerial aspects and relief aspects are considered for the prioritization. The largest sub-watershed is Erdha which is located at Karanji in Pathardi tahsil having an area of 145.06 km2 and smallest sub-watershed is Erandgaon which is located in Shevgaon tahsil having an area of 40.143 km2. For all seven sub-watersheds, seven morphometric parameters were considered for calculating the compound parameter values. Finally, compound parameter values are grouped into three groups such as, high priority (below 4.0), moderate priority (4.0 to 5.0) and low priority (above 5.0) according to the compound value Erandgaon, Chapadgaon and Tarak sub-watersheds comes under high priority group, Erdha and Domeshwar sub-watersheds come under moderate priority group and Chandani and Kasichi sub-watershed come under low priority group. Both the tahsils falls in drought prone area, after getting the watershed structure overall development of the region will take place.Keywords: sub-watersheds, GIS and remote sensing, morphometric analysis, compound parameter value, prioritization
Procedia PDF Downloads 1531815 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach
Authors: Evan Lowhorn, Rocio Alba-Flores
Abstract:
The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.Keywords: classification, computer vision, convolutional neural networks, drone control
Procedia PDF Downloads 2101814 Estimation of the Effectiveness of Tasik Kemajuan and Tasik Inovasi as Flood Detention Pond at UTHM Campus
Authors: Noor Aliza Binti Ahmad, Azra Munirah Mat Daud, Sabariah Musa, Mohamad Azhar MK
Abstract:
Flooding is a common natural disaster in Malaysia triggered by heavy rainfall. Urbanization that increases the construction of paved areas, subsequently raise surface runoff and reduce time of concentration. It increases flood magnitude and so that leads to greater flood problems as what has happened at Universiti Tun Hussein Onn Malaysia (UTHM) area in December 2006 and earlier 2007. Tasik Kemajuan and Tasik Inovasi were constructed as recreation ponds and have also functioned as flood ponds. Unfortunately, the flood problem still occurs persistently. Thus, the effectiveness of Tasik Kemajuan and Tasik Inovasi in reducing the flood problems need to be investigated and the causes of flood events at UTHM Campus need to be evaluated. The results from this study show that the conditions of Tasik Kemajuan and Tasik Inovasi are effective in reducing the flood water levels. It also can be concluded that increasing water level in both lakes in UTHM Campus are significantly influenced by presence of the grass and rubbish. During dry condition, the flow rates with three different days are 59.38m3/s, 60.71m3/s and 59.08m3/s and while for wet condition in two different days are 89.59 m3/s and 86.61m3/s. In conclusion, this system should be improved to prevent future flooding either widened or reduced drainage floor, and also perform maintenance on the plants that live around the lake.Keywords: drainage system, flood detention, lakes, storm water
Procedia PDF Downloads 3231813 Orthogonal Basis Extreme Learning Algorithm and Function Approximation
Abstract:
A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.Keywords: neural network, orthogonal basis extreme learning, function approximation
Procedia PDF Downloads 534