Search results for: water velocities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8916

Search results for: water velocities

7146 Adsorption and Desorption of Emerging Water Contaminants on Activated Carbon Fabrics

Authors: S. Delpeux-Ouldriane, M. Gineys, S. Masson, N. Cohaut, L. Reinert, L. Duclaux, F. Béguin

Abstract:

Nowadays, a wide variety of organic contaminants are present at trace concentrations in wastewater effluents. In order to face these pollution problems, the implementation of the REACH European regulation has defined lists of targeted pollutants to be eliminated selectively in water. It therefore implies the development of innovative and more efficient remediation techniques. In this sense, adsorption processes can be successfully used to achieve the removal of organic compounds in waste water treatment processes, especially at low pollutant concentration. Especially, activated carbons possessing a highly developed porosity demonstrate high adsorption capacities. More specifically, carbon cloths show high adsorption rates, an easily handling, a good mechanical integrity and regeneration potentialities. When loaded with pollutants, these materials can be indeed regenerated using an electrochemical polarization.

Keywords: nanoporous carbons, activated carbon cloths, adsorption, micropollutants, emerging contaminants, regeneration, electrochemistry

Procedia PDF Downloads 404
7145 Integrating Deterministic and Probabilistic Safety Assessment to Decrease Risk & Energy Consumption in a Typical PWR

Authors: Ebrahim Ghanbari, Mohammad Reza Nematollahi

Abstract:

Integrating deterministic and probabilistic safety assessment (IDPSA) is one of the most commonly used issues in the field of safety analysis of power plant accident. It has also been recognized today that the role of human error in creating these accidents is not less than systemic errors, so the human interference and system errors in fault and event sequences are necessary. The integration of these analytical topics will be reflected in the frequency of core damage and also the study of the use of water resources in an accident such as the loss of all electrical power of the plant. In this regard, the SBO accident was simulated for the pressurized water reactor in the deterministic analysis issue, and by analyzing the operator's behavior in controlling the accident, the results of the combination of deterministic and probabilistic assessment were identified. The results showed that the best performance of the plant operator would reduce the risk of an accident by 10%, as well as a decrease of 6.82 liters/second of the water sources of the plant.

Keywords: IDPSA, human error, SBO, risk

Procedia PDF Downloads 132
7144 An Investigation of Current Potato Nitrogen Fertility Programs' Contribution to Ground Water Contamination

Authors: Brian H. Marsh

Abstract:

Nitrogen fertility is an important component for optimum potato yield and quality. Best management practices are necessary in regards to N applications to achieve these goals without applying excess N with may contribute to ground water contamination. Eight potato fields in the Southern San Joaquin Valley were sampled for nitrogen inputs and uptake, tuber and vine dry matter and residual soil nitrate-N. The fields had substantial soil nitrate-N prior to the potato crop. Nitrogen fertilizer was applied prior to planting and in irrigation water as needed based on in-season petiole sampling in accordance with published recommendations. Average total nitrogen uptake was 237 kg ha-1 on 63.5 Mg ha-1 tuber yield and nitrogen use efficiency was very good at 81 percent. Sixty-nine percent of the plant nitrogen was removed in tubers. Soil nitrate-N increased 14 percent from pre-plant to post-harvest averaged across all fields and was generally situated in the upper soil profile. Irrigation timing and amount applied did not move water into the lower profile except for a single location where nitrate also moved into the lower soil profile. Pre-plant soil analysis is important information to be used. Rotation crops having deeper rooting growth would be able to utilize nitrogen that remained in the soil profile.

Keywords: potato, nitrogen fertilization, irrigation management, leaching potential

Procedia PDF Downloads 460
7143 Status of Physical, Chemical and Biological Attributes of Isheri, Ogun River, in Relation to the Surrounding Anthropogenic Activities of Kara Abattoir, South West Nigeria

Authors: N. B. Ikenweiwe, A. A. Alimi, N. A. Bamidele, A. O. Ewumi, J. Dairo, I. A. Akinnubi, S. O. Otubusin

Abstract:

A study on the physical, chemical and biological parameters of the lower course of Ogun River, Isheri-Olofin was carried out between January and December 2014 in order to determine the effects of the anthropogenic activities of the Kara abattoir and domestic waste depositions on the quality of the water. Water samples were taken twice each month at three selected stations A, B and C (based on characteristic features or activity levels) along the water course. Samples were analysed using standard methods for chemical and biological parameters the same day in the laboratory while physical parameters were determined in-situ with water parameters kit. Generally, results of Transparency, Dissolved Oxygen, Nitrates, TDS and Alkalinity fall below the permissible limits of WHO and FEPA standards for drinking and fish production. Results of phosphates, lead and cadmium were also low but still within the permissible limit. Only Temperature and pH were within limit. Low plankton community, (phytoplankton, zooplankton), which ranges from 3, 5 to 40, 23 were as a result of low levels of DO, transparency and phosphate. The presence of coliform bacteria of public health importance like Escherichia coli, Proteus vulgaris, Aeromonas sp., Shigella sp, Enterobacter aerogenes as well as gram negative bacteria Proteus morganii are mainly indicators of faecal pollution. Fish and other resources obtained from this water stand the risk of being contaminated with these organisms and man is at the receiving end. The results of the physical, chemical and some biological parameters of Isheri, Ogun River, according to this study showed that the live forms of aquatic and fisheries resources there are dwelling under stress as a result of deposition of bones, horns, faecal components, slurry of suspended solids, fat and blood into the water. Government should therefore establish good monitoring system against illegal waste depositions and create education programmes that will enlighten the community on the social, ecological and economic values of the river.

Keywords: water parameters, Isheri Ogun river, anthropogenic activities, Kara abattoir

Procedia PDF Downloads 544
7142 Preliminary Studies in the Determination of Deteriorations in Eflatunpınar Hitit Water Monument (Konya, Turkey) by Non-Destructive Tests

Authors: İsmail İnce, Ali Bozdag, Ayla Bozdag, M. Bahadır Tosunlar, M. Ergun Hatır, Mustafa Korkanc

Abstract:

The building stones used in the construction of historical structures are exposed to atmospheric effects directly or indirectly. As a result of this process, building stones are partially or completely degraded. Historical buildings are important symbols of cultural heritage, so it is very significant to transfer to the future generations by protecting and repairing of these historical buildings. The Eflatunpınar Hitit Monument located near the Eflatunpınar cold water spring was constructed by using natural rock blocks during the Hittites Empire period. The monument has been protected without losing its function until today. The purpose of this study is to evaluate the deteriorations in the Eflatunpınar Hitit Monument and to detect the water chemistry of the Eflatunpınar spring located around the Beysehir County in the west of Konya. For this purpose, the petrographic and mechanical properties of the rocks used in this monument were determined, and the deteriorations in the monument were determined with the aid of non-destructive test methods including Schmidt hardness value, relative humidity measurement, thermal imaging. Additionally, the physical (electrical conductivity (EC), pH and temperature) and chemical characteristics (major anions and cations) of the Eflatunpınar cold water spring have been detected.

Keywords: deteriorations, Eflatunpınar Hitit monument, Eflatunpınar spring, Konya, non-destructıve tests

Procedia PDF Downloads 167
7141 A Spiral Dynamic Optimised Hybrid Fuzzy Logic Controller for a Unicycle Mobile Robot on Irregular Terrains

Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Talal H. Alzanki

Abstract:

This paper presents a hybrid fuzzy logic control strategy for a unicycle trajectory following robot on irregular terrains. In literature, researchers have presented the design of path tracking controllers of mobile robots on non-frictional surface. In this work, the robot is simulated to drive on irregular terrains with contrasting frictional profiles of peat and rough gravel. A hybrid fuzzy logic controller is utilised to stabilise and drive the robot precisely with the predefined trajectory and overcome the frictional impact. The controller gains and scaling factors were optimised using spiral dynamics optimisation algorithm to minimise the mean square error of the linear and angular velocities of the unicycle robot. The robot was simulated on various frictional surfaces and terrains and the controller was able to stabilise the robot with a superior performance that is shown via simulation results.

Keywords: fuzzy logic control, mobile robot, trajectory tracking, spiral dynamic algorithm

Procedia PDF Downloads 497
7140 Experimental and Computational Investigations of Baffle Position Effects on ‎the Performance of Oil and Water Separator Tanks

Authors: Haitham A. Hussein, Rozi Abdullah‏‎, Md Azlin Md Said ‎

Abstract:

Gravity separator tanks are used to separate oil from water in treatment units. Achieving the best flow ‎uniformity in a separator tank will improve the maximum removal efficiency of oil globules from water. ‎In this study, the effect on hydraulic performance of different baffle structure positions inside a tank ‎was investigated. Experimental data and 2D computation fluid dynamics were used for analysis. In the ‎numerical model, two-phase flow (drift flux model) was used to validate one-phase flow. For ‎laboratory measurements, the velocity fields were measured using an acoustic Doppler velocimeter. The ‎measurements were compared with the result of the computational model. The results of the ‎experimental and computational simulations indicate that the best location of a baffle structure is ‎achieved when the standard deviation of the velocity profile and the volume of the circulation zone ‎inside the tank are minimized.‎

Keywords: gravity separator tanks, CFD, baffle position, two phase flow, ADV, oil droplet

Procedia PDF Downloads 332
7139 Characterization of Mg/Sc System for X-Ray Spectroscopy in the Water Window Range

Authors: Hina Verma, Karine Le Guen, Mohammed H. Modi, Rajnish Dhawan, Philippe Jonnard

Abstract:

Periodic multilayer mirrors have potential application as optical components in X-ray microscopy, particularly working in the water window region. The water window range, located between the absorption edges of carbon (285 eV) and oxygen (530eV), along with the presence of nitrogen K absorption edge (395 eV), makes it a powerful method for imaging biological samples due to the natural optical contrast between water and carbon. We characterized bilayer, trilayer, quadrilayer, and multilayer systems of Mg/Sc with ZrC thin layers introduced as a barrier layer and capping layer prepared by ion beam sputtering. The introduction of ZrC as a barrier layer is expected to improve the structure of the Mg/Sc system. The ZrC capping layer also prevents the stack from oxidation. The structural analysis of the Mg/Sc systems was carried out by using grazing incidence X-ray reflectivity (GIXRR) to obtain non-destructively a first description of the structural parameters, thickness, roughness, and density of the layers. Resonant soft X-ray reflectivity measurements in the vicinity of Sc L-absorption edge were performed to investigate and quantify the atomic distribution of deposited layers. Near absorption edge, the atomic scattering factor of an element changes sharply depending on its chemical environment inside the structure.

Keywords: buried interfaces, resonant soft X-ray reflectivity, X-ray optics, X-ray reflectivity

Procedia PDF Downloads 180
7138 Treatment of Coal-Water-Oil Slurry Using High Voltage Discharge and Dielectric Barrier Discharge Plasmas

Authors: Song-Chol Pak, Yong-Jun Kim, Hak- Chol Choe, Yong-Son Choe

Abstract:

We converted the coal-water-oil slurry (CWOS) into an alternative fuel (AF) for internal combustion engines by high-voltage discharge (HVD) and dielectric barrier discharge (DBD) plasmas. After its treatments, the CWOS had the average coal size reduced from 12.95 to 8.26㎛, improved dispersibility, fewer deposits, and calorific value enhanced by 35%. The effects of some parameters were analyzed on the conversion of CWOS to AF, and the AF was characterized. The plasma-treated CWOS is similar to other liquid fuels in rheological properties and calorific value. It is therefore concluded that it can be directly employed in internal combustion engines with a little design modification. The suggested method may be an alternative way of converting CWOS to AF without any dispersant or stabilizer.

Keywords: coal-water-oil slurry, high-voltage discharge, dielectric barrier discharge, plasma treatment, alternative fuel

Procedia PDF Downloads 26
7137 Hydro-Climatological, Geological, Hydrogeological and Geochemical Study of the Coastal Aquifer System of Chiba Watershed (Cape Bon Peninsula)

Authors: Khawla Askri, Mohamed Haythem Msaddek, AbdelAziz Sebei

Abstract:

Climate change combined with the increase in anthropogenic activities will affect coastal groundwater systems around the world and, more particularly, the Cap Bon region in the North East of Tunisia. This study aims to study the impact of climate change and human stress on the salinization and quantification of groundwater in the Wadi Chiba watershed. In this regard, a hydro-climatological study and a hydrogeological study were carried out based on the characterization of the aquifer system of the eastern coast at the level of the watershed of Wadi Chiba in order to seek to identify, first of all, the degradation of the state of the aquifer on the quantitative level by the study of the piezometric and its evolution over time. Secondly, we sought to identify the degradation of the state of the aquifer qualitatively by using the geochemical method, in particular the major elements, to assess the mineralization of the aquifer water and understand its hydrogeochemical functioning. The study of the Na + / Cl- and Ca2 + / Mg2 + chemical relationships confirmed the presence of a marine intrusion downstream of the Wadi Chiba watershed northeast of Cap-Bon accompanied by a piezometric depression. For this purpose, we proceeded to: 1) Mapping of both piezometric data and salinity. 2) The interpretation of the mapping results. 3)Identification of the origin of the localized deterioration in the quality of the aquifer water. Finally, the analysis of the results showed that the scarcity of water is already forcing human actions in the Chiba watershed due to the irrigation of agricultural lands and the overexploitation of the water table in the study area.

Keywords: climate change, human activities, water table, Wadi Chiba watershed, piezometric depression, marine intrusion

Procedia PDF Downloads 94
7136 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan

Authors: Asma Shaheen, Javed Iqbal

Abstract:

The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.

Keywords: groundwater, geostatistical, heavy metals, industrial effluent

Procedia PDF Downloads 230
7135 Carboxymethyl Cellulose Coating onto Polypropylene Film Using Cold Atmospheric Plasma Treatment as Food Packaging

Authors: Z. Honarvar, M. Farhoodi, M. R. Khani, S. Shojaee-Aliabadi

Abstract:

Recently, edible films and coating have attracted much attention in food industry due to their environmentally friendly nature and safety in direct contact with food. However edible films have relatively weak mechanical properties and high water vapor permeability. Therefore, the aim of the study was to develop bilayer carboxymethyl cellulose (CMC) coated polypropylene (PP) films to increase mechanical properties and water vapor resistance of each pure CMC or PP films. To modify the surface properties of PE for better attachment of CMC coating layer to PP the atmospheric cold plasma treatment was used. Then the PP surface changes were evaluated by contact angle, AFM, and ATR-FTIR. Furthermore, the physical, mechanical, optical and microstructure characteristics of plasma-treated and untreated films were analyzed. ATR-FTIR results showed that plasma treatment created oxygen-containing groups on PP surface leading to an increase in hydrophilic properties of PP surface. Moreover, a decrease in water contact angle (from 88.92° to 52.15°) and an increase of roughness were observed on PP film surface indicating good adhesion between hydrophilic CMC and hydrophobic PP. Furthermore, plasma pre-treatment improved the tensile strength of CMC coated-PP films from 58.19 to 61.82. Water vapor permeability of plasma treated bilayer film was lower in comparison with untreated film. Therefore, cold plasma treatment has potential to improve attachment of CMC coating to PP layer, leading to enhanced water barrier and mechanical properties of CMC coated polypropylene as food packaging in which also CMC is in contact with food.

Keywords: carboxymethyl cellulose film, cold plasma, Polypropylene, surface properties

Procedia PDF Downloads 284
7134 Environmental Photodegradation of Tralkoxydim Herbicide and Its Formulation in Natural Waters

Authors: María José Patiño-Ropero, Manuel Alcamí, Al Mokhtar Lamsabhi, José Luis Alonso-Prados, Pilar Sandín-España

Abstract:

Tralkoxydim, commercialized under different trade names, among them Splendor® (25% active ingredient), is a cyclohexanedione herbicide used in wheat and barley fields for the post-emergence control of annual winter grass weeds. Due to their physicochemical properties, herbicides belonging to this family are known to be susceptible to reaching natural waters, where different degradation pathways can take place. Photolysis represents one of the main routes of abiotic degradation of these herbicides in water. This transformation pathway can lead to the formation of unknown by-products, which could be more toxic and/or persistent than the active substances themselves. Therefore, there is a growing need to understand the science behind such dissipation routes, which is key to estimating the persistence of these compounds and ensuring the accurate assessment of environmental behavior. However, to our best knowledge, any information regarding the photochemical behavior of tralkoxydim under natural conditions in an aqueous environment has not been available till now in the literature. This work has focused on investigating the photochemical behavior of tralkoxydim herbicide and its commercial formulation (Splendor®) in the ultrapure, river and spring water using simulated solar radiation. Besides, the evolution of detected degradation products formed in the samples has been studied. A reversed-phase HPLC-DAD (high-performance liquid chromatography with diode array detector) method was developed to evaluate the kinetic evolution and to obtain the half-lives. In both cases, the degradation rates of active ingredient tralkoxydim in natural waters were lower than in ultrapure water following the order; river water < spring water < ultrapure water, and with first-order half-life values of 5.1 h, 2.7 h and 1.1 h, respectively. These findings indicate that the photolytical behavior of active ingredients is largely affected by the water composition, and these components can exert an internal filter effect. In addition, tralkoxydim herbicide and its formulation showed the same half-lives for each one of the types of water studied, showing that the presence of adjuvants in the commercial formulation has not any effect on the degradation rates of the active ingredient. HPLC-MS (high-performance liquid chromatography with mass spectrometry) experiments were performed to study the by-products deriving from the photodegradation of tralkoxydim in water. Accordingly, three compounds were tentatively identified. These results provide a better understanding of the tralkoxydim herbicide behavior in natural waters and its fate in the environment.

Keywords: by-products, natural waters, photodegradation, tralkoxydim herbicide

Procedia PDF Downloads 94
7133 Environmental Degradation and Sustainable Measures: A Case Study in Nepal

Authors: Megha Raj Regmi

Abstract:

Water Supply and Sanitation coverage in Nepal is not satisfactory in South Asia. Far less than expected achievements have been realized in sanitation following the SDG for Nepal. There are so many queues of buckets to fetch water in the heart of the capital city Kathmandu. In Kathmandu Valley, daily water demand is 400 million litres, but the supply is only 200 million litres daily. Over- exploitation of ground water and traditional water sources causing the water levels to drop to alarming levels while most of the traditional waterspouts are also drying up. While about 40% of the World's population is deprived of drinking water, the urban populace uses excessive quantities of fresh water to flush the excreta. Water Supply and Basic Sanitation coverage in Nepal is 86% and 92%, respectively, of the total population. This research work basically deals with more than one thousand dry toilets constructed in peri-urban areas. The work has used appropriate technology and studied their performances in the context of Nepal based on complete laboratory analyses and regular monitoring. It has been found that dry toilets have a clear advantage in NPK recovery over traditional water-borne sanitation technology. This paper also deals with the effect of temperature in the decomposition process in dry toilets and also focuses on the different distinct technologies employed in Kathmandu Valley. This paper suggests the modifications needed in the implementation and study of the effect of human urine in composting and application on agriculture and the experience of more than one thousand Dry toilets in Kathmandu Valley. It also deals with the practices of bio-gas generation and community-led total sanitation to cope with the challenges of sanitation and hygiene in Nepal. The paper also describes in depth the different types of biomass energy production methods from the human and cattle manure units, including bio-gas generation from the kitchen wastes produced by a student hostel mixed with toilet waste. The uses of decomposed feces as a soil conditioner have been described along with the challenges and prospects of the uses of urine in agriculture as eco-friendly fertilizer in the context of Nepal. Finally, the paper exhibits a comparative study of all types of dry toilet developments in developed and developing countries like Australia, South Korea, Malaysia, China, India, Ukraine and Nepal. The community groups in our financial assistance have made many models of public toilets with biogas which are very successful in the height of 600 m up to 2000 meters from the mean sea level. In conclusion it makes a plea for the acceptance of these toilets for planners and decision makers with a set of pragmatic recommendations.

Keywords: bio- gas public toilet, dry toilet, low-cost technology, sustainable sanitation, total sanitation

Procedia PDF Downloads 15
7132 The Use of Correlation Difference for the Prediction of Leakage in Pipeline Networks

Authors: Mabel Usunobun Olanipekun, Henry Ogbemudia Omoregbee

Abstract:

Anomalies such as water pipeline and hydraulic or petrochemical pipeline network leakages and bursts have significant implications for economic conditions and the environment. In order to ensure pipeline systems are reliable, they must be efficiently controlled. Wireless Sensor Networks (WSNs) have become a powerful network with critical infrastructure monitoring systems for water, oil and gas pipelines. The loss of water, oil and gas is inevitable and is strongly linked to financial costs and environmental problems, and its avoidance often leads to saving of economic resources. Substantial repair costs and the loss of precious natural resources are part of the financial impact of leaking pipes. Pipeline systems experts have implemented various methodologies in recent decades to identify and locate leakages in water, oil and gas supply networks. These methodologies include, among others, the use of acoustic sensors, measurements, abrupt statistical analysis etc. The issue of leak quantification is to estimate, given some observations about that network, the size and location of one or more leaks in a water pipeline network. In detecting background leakage, however, there is a greater uncertainty in using these methodologies since their output is not so reliable. In this work, we are presenting a scalable concept and simulation where a pressure-driven model (PDM) was used to determine water pipeline leakage in a system network. These pressure data were collected with the use of acoustic sensors located at various node points after a predetermined distance apart. We were able to determine with the use of correlation difference to determine the leakage point locally introduced at a predetermined point between two consecutive nodes, causing a substantial pressure difference between in a pipeline network. After de-noising the signal from the sensors at the nodes, we successfully obtained the exact point where we introduced the local leakage using the correlation difference model we developed.

Keywords: leakage detection, acoustic signals, pipeline network, correlation, wireless sensor networks (WSNs)

Procedia PDF Downloads 115
7131 Mobility and Speciation of Iron in the Alluvial Sheet of Nil River (North-Eastern Algerian)

Authors: S. Benessam, T. H. Debieche, S. Amiour, A. Chine, S. Khelili

Abstract:

Iron is naturally present in groundwater, it comes from the dissolution of the geological formations (clay, schist, mica-schist, gneiss…). Its chemical form and mobility in water are controlled mainly by two physicochemical parameters (Eh and pH). In order to determine its spatiotemporal evolution in groundwater, a two-monthly monitoring of the physicochemical parameters and major elements in the water of the alluvial sheet of Nil river (North-eastern Algerian) was carried out during the period from November 2013 to January 2015. The results show that iron is present in weak concentrations in the upstream part of the alluvial sheet and with raised concentrations, which can exceed the standard of potable drinking water (0.2 mg/L), in the central and downstream parts of the alluvial sheet. This variation of the concentrations is related to the important variation of Eh between the upstream part (200 mV) where the aquiver is unconfined (oxidizing medium) and the central and downstream parts (-100 mV) where the aquifer is confined (reducing medium). Iron in the oxidizing part is presented with the complexes form, where it precipitates or/and adsorbed by the geological formations. On the other hand in the reducing parts, it is released in water. In this study, one will discuss also the mobility and the chemical forms of iron according to the rains and pumping.

Keywords: groundwater, iron, mobility, speciation

Procedia PDF Downloads 336
7130 Reliability Analysis for the Functioning of Complete and Low Capacity MLDB Systems in Piston Plants

Authors: Ramanpreet Kaur, Upasana Sharma

Abstract:

The purpose of this paper is to address the challenges facing the water supply for the Machine Learning Database (MLDB) system at the piston foundry plant. In the MLDB system, one main unit, i.e., robotic, is connected by two sub-units. The functioning of the system depends on the robotic and water supply. Lack of water supply causes system failure. The system operates at full capacity with the help of two sub-units. If one sub-unit fails, the system runs at a low capacity. Reliability modeling is performed using semi-Markov processes and regenerative point techniques. Several system effects such as mean time to system failure, availability at full capacity, availability at reduced capacity, busy period for repair and expected number of visits have been achieved. Benefits have been analyzed. The graphical study is designed for a specific case using programming in C++ and MS Excel.

Keywords: MLDB system, robotic, semi-Markov process, regenerative point technique

Procedia PDF Downloads 105
7129 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling

Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha

Abstract:

The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.

Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat

Procedia PDF Downloads 56
7128 Dynamic Characterization of Shallow Aquifer Groundwater: A Lab-Scale Approach

Authors: Anthony Credoz, Nathalie Nief, Remy Hedacq, Salvador Jordana, Laurent Cazes

Abstract:

Groundwater monitoring is classically performed in a network of piezometers in industrial sites. Groundwater flow parameters, such as direction, sense and velocity, are deduced from indirect measurements between two or more piezometers. Groundwater sampling is generally done on the whole column of water inside each borehole to provide concentration values for each piezometer location. These flow and concentration values give a global ‘static’ image of potential plume of contaminants evolution in the shallow aquifer with huge uncertainties in time and space scales and mass discharge dynamic. TOTAL R&D Subsurface Environmental team is challenging this classical approach with an innovative dynamic way of characterization of shallow aquifer groundwater. The current study aims at optimizing the tools and methodologies for (i) a direct and multilevel measurement of groundwater velocities in each piezometer and, (ii) a calculation of potential flux of dissolved contaminant in the shallow aquifer. Lab-scale experiments have been designed to test commercial and R&D tools in a controlled sandbox. Multiphysics modeling were performed and took into account Darcy equation in porous media and Navier-Stockes equation in the borehole. The first step of the current study focused on groundwater flow at porous media/piezometer interface. Huge uncertainties from direct flow rate measurements in the borehole versus Darcy flow rate in the porous media were characterized during experiments and modeling. The structure and location of the tools in the borehole also impacted the results and uncertainties of velocity measurement. In parallel, direct-push tool was tested and presented more accurate results. The second step of the study focused on mass flux of dissolved contaminant in groundwater. Several active and passive commercial and R&D tools have been tested in sandbox and reactive transport modeling has been performed to validate the experiments at the lab-scale. Some tools will be selected and deployed in field assays to better assess the mass discharge of dissolved contaminants in an industrial site. The long-term subsurface environmental strategy is targeting an in-situ, real-time, remote and cost-effective monitoring of groundwater.

Keywords: dynamic characterization, groundwater flow, lab-scale, mass flux

Procedia PDF Downloads 169
7127 Simulations of Laminar Liquid Flows through Superhydrophobic Micro-Pipes

Authors: Mohamed E. Eleshaky

Abstract:

This paper investigates the dynamic behavior of laminar water flows inside superhydrophobic micro-pipes patterned with square micro-posts features under different operating conditions. It also investigates the effects of air fraction and Reynolds number on the frictional performance of these pipes. Rather than modeling the air-water interfaces of superhydrophobic as a flat inflexible surface, a transient, incompressible, three-dimensional, volume-of-fluid (VOF) methodology has been employed to continuously track the air–water interface shape inside micro-pipes. Also, the entrance effects on the flow field have been taken into consideration. The results revealed the strong dependency of the frictional performance on the air fractions and Reynolds number. The frictional resistance reduction becomes increasingly more significant at large air fractions and low Reynolds numbers. Increasing Reynolds number has an adverse effect on the frictional resistance reduction.

Keywords: drag reduction, laminar flow in micropipes, numerical simulation, superhyrophobic surfaces, microposts

Procedia PDF Downloads 332
7126 Mathematical Modelling and Parametric Study of Water Based Loop Heat Pipe for Ground Application

Authors: Shail N. Shah, K. K. Baraya, A. Madhusudan Achari

Abstract:

Loop Heat Pipe is a passive two-phase heat transfer device which can be used without any external power source to transfer heat from source to sink. The main aim of this paper is to have modelling of water-based LHP at varying heat loads. Through figures, how the fluid flow occurs within the loop has been explained. Energy Balance has been done in each section. IC (Iterative Convergence) scheme to find out the SSOT (Steady State Operating Temperature) has been developed. It is developed using Dev C++. To best of the author’s knowledge, hardly any detail is available in the open literature about how temperature distribution along the loop is to be evaluated. Results for water-based loop heat pipe is obtained and compared with open literature and error is found within 4%. Parametric study has been done to see the effect of different parameters on pressure drop and SSOT at varying heat loads.

Keywords: loop heat pipe, modelling of loop heat pipe, parametric study of loop heat pipe, functioning of loop heat pipe

Procedia PDF Downloads 413
7125 Nanocellulose Incorporated Polyvinyl Alcohol Hydrogel

Authors: Rosli Mohd Yunus, Zianor Azrina Zianon Abdin, Mohammad Dalour Hossen Beg, Ridzuan Ramli

Abstract:

Recently, nanocrystalline cellulose (NCC) has gained considerable interest as a promising biomaterial due to their outstanding properties such as high surface area, high mechanical properties, hydrophilicity, biocompatibility and biodegradability. The NCC also has good stability in water which is compatible for mixing of water based polymer solution or emulsions with NCC. Oil palm empty fruit bunch (EFB) contained different amount of lignocellulosic materials such as lignin, hemicellulose and cellulose. Cellulose is the most significant materials that can be extracted from EFB as nanocrystalline cellulose (NCC). In this work the nanocrystalline cellulose were produced through acid hydrolysis together with ultrasound technique. The morphology of NCC was characterized by TEM, thermal behavior has been studied with DSC, TGA analysis. Structural properties were illustrated X-Ray diffraction as well as FTIR. The hydrogel was produced using polyvinyl alcohol (PVA) with different concentration of NCC. The hydrogel composite was characterized by swelling ratio, crosslinking density, mechanical properties and morphology.

Keywords: nanocellulose, oil palm, hydrogel, water treatment

Procedia PDF Downloads 274
7124 Development of a PJWF Cleaning Method for Wet Electrostatic Precipitators

Authors: Hsueh-Hsing Lu, Thi-Cuc Le, Tung-Sheng Tsai, Chuen-Jinn Tsai

Abstract:

This study designed and tested a novel wet electrostatic precipitators (WEP) system featuring a Pulse-Air-Jet-Assisted Water Flow (PJWF) to shorten water cleaning time, reduce water usage, and maintain high particle removal efficiency. The PJWF injected cleaning water tangentially at the cylinder wall, rapidly enhancing the momentum of the water flow for efficient dust cake removal. Each PJWF cycle uses approximately 4.8 liters of cleaning water in 18 seconds. Comprehensive laboratory tests were conducted using a single-tube WEP prototype within a flow rate range of 3.0 to 6.0 cubic meters per minute(CMM), operating voltages between -35 to -55 kV, and high-frequency power supply. The prototype, consisting of 72 sets of double-spike rigid discharge electrodes, demonstrated that with the PJWF, -35 kV, and 3.0 CMM, the PM2.5 collection efficiency remained as high as the initial value of 88.02±0.92% after loading with Al2O3 particles at 35.75± 2.54 mg/Nm3 for 20-hr continuous operation. In contrast, without the PJWF, the PM2.5 collection efficiency drastically dropped from 87.4% to 53.5%. Theoretical modeling closely matched experimental results, confirming the robustness of the system's design and its scalability for larger industrial applications. Future research will focus on optimizing the PJWF system, exploring its performance with various particulate matter, and ensuring long-term operational stability and reliability under diverse environmental conditions. Recently, this WEP was combined with a preceding CT (cooling tower) and a HWS (honeycomb wet scrubber) and pilot-tested (40 CMM) to remove SO2 and PM2.5 emissions in a sintering plant of an integrated steel making plant. Pilot-test results showed that the removal efficiencies for SO2 and PM2.5 emissions are as high as 99.7 and 99.3 %, respectively, with ultralow emitted concentrations of 0.3 ppm and 0.07 mg/m3, respectively, while the white smoke is also eliminated at the same time. These new technologies are being used in the industry and the application in different fields is expected to be expanded to reduce air pollutant emissions substantially for a better ambient air quality.

Keywords: wet electrostatic precipitator, pulse-air-jet-assisted water flow, particle removal efficiency, air pollution control

Procedia PDF Downloads 27
7123 Comparison of an Upflow Anaerobic Sludge Blanket and an Anaerobic Filter for Treating Wheat Straw Wash Water

Authors: Syazwani Idrus, Charles Banks, Sonia Heaven

Abstract:

The effect of osmotic stress was carried out to determine the ability for biogas production in two types of digesters; anaerobic sludge blanket and anaerobic filters in treating wheat straw washed water. Two anaerobic filters (AF1 and 2) and two UASB reactors (U1 and 2) with working volumes of 1.5 L were employed at mesophilic temperatures (37°C). Digesters AF1 and two were seeded with an inoculum which had previously been fed on with a synthetic wastewater includingSodium Chloride and Potassium Chloride. Digesters U1 and two were seeded with 1 kg wet weight of granular sludge which had previously been treating paper mill effluent. During the first 48 days, all digesters were successfully acclimated with synthetic wastewater (SW) to organic loading rate (OLR) of 6 g COD l^-1 day-1. Specific methane production (SMP) of 0.333 l CH4 g-1 COD). The feed was then changed to wash water from a washing operation to reduce the salt content of wheat straw (wheat straw wash water, WSW) at the same OLR. SMP fell sharply in all reactors to less than 0.1 l CH4 g^-1 COD, with the AF affected more than the UASB. The OLR was reduced to 2.5 g COD l^-1 day^-1 to allow adaptation to WSW, and both the UASB and the AF reactors achieved an SMP of 0.21 l CH4 g^-1 COD added at 82% of COD removal. This study also revealed the accumulation of potassium (K) inside the UASB granules to a concentration of 4.5 mg K g^-1 wet weight of granular sludge. The phenomenon of lower SMP and accumulation of K indicates the effect of osmotic stress when fed on WSW. This finding is consistent with the theory that methanogenic organisms operate a Potassium pump to maintain ionic equilibrium, and as this is an energy-driven process, it will, therefore, reduce the overall methane yield.

Keywords: wheat straw wash water, upflow anaerobic sludge blanket, anaerobic filter, specific methane production, osmotic stress

Procedia PDF Downloads 376
7122 Identification and Characterization of Groundwater Recharge Sites in Kuwait

Authors: Dalal Sadeqi

Abstract:

Groundwater is an important component of Kuwait’s water resources. Although limited in quantity and often poor in quality, the significance of this natural source of water cannot be overemphasized. Recharge of groundwater in Kuwait occurs during periodical storm events, especially in open desert areas. Runoff water dissolves accumulated surficial meteoric salts and subsequently leaches them into the groundwater following a period of evaporative enrichment at or near the soil surface. Geochemical processes governing groundwater recharge vary in time and space. Stable isotope (18O and 2H) and geochemical signatures are commonly used to gain some insight into recharge processes and groundwater salinization mechanisms, particularly in arid and semiarid regions. This article addresses the mechanism used in identifying and characterizing the main water shed areas in Kuwait using stable isotopes in an attempt to determine favorable groundwater recharge sites in the country. Stable isotopes of both rainwater and groundwater were targeted in different hydrogeological settings. Additionally, data and information obtained from subsurface logs in the study area were collected and analyzed to develop a better understanding of the lateral and vertical extent of the groundwater aquifers. Geographic Information System (GIS) and RockWorks 3D modelling software were used to map out the hydrogeomorphology of the study area and the subsurface lithology of the investigated aquifers. The collected data and information, including major ion chemistry, isotopes, subsurface characteristics, and hydrogeomorphology, were integrated in a GIS platform to identify and map out suitable natural recharge areas as part of an integrated water resources management scheme that addresses the challenges of the sustainability of the groundwater reserves in the country.

Keywords: scarcity, integrated, recharge, isotope

Procedia PDF Downloads 117
7121 A Weighted K-Medoids Clustering Algorithm for Effective Stability in Vehicular Ad Hoc Networks

Authors: Rejab Hajlaoui, Tarek Moulahi, Hervé Guyennet

Abstract:

In a highway scenario, the vehicle speed can exceed 120 kmph. Therefore, any vehicle can enter or leave the network within a very short time. This mobility adversely affects the network connectivity and decreases the life time of all established links. To ensure an effective stability in vehicular ad hoc networks with minimum broadcasting storm, we have developed a weighted algorithm based on the k-medoids clustering algorithm (WKCA). Indeed, the number of clusters and the initial cluster heads will not be selected randomly as usual, but considering the available transmission range and the environment size. Then, to ensure optimal assignment of nodes to clusters in both k-medoids phases, the combined weight of any node will be computed according to additional metrics including direction, relative speed and proximity. Empirical results prove that in addition to the convergence speed that characterizes the k-medoids algorithm, our proposed model performs well both AODV-Clustering and OLSR-Clustering protocols under different densities and velocities in term of end-to-end delay, packet delivery ratio, and throughput.

Keywords: communication, clustering algorithm, k-medoids, sensor, vehicular ad hoc network

Procedia PDF Downloads 240
7120 Experimental Investigation of Air-Water Two-Phase Flow Pattern in T-Junction Microchannel

Authors: N. Rassoul-ibrahim, E. Siahmed, L. Tadrist

Abstract:

Water management plays a crucial role in the performance and durability of PEM fuel cells. Whereas the membrane must be hydrated enough, liquid droplets formed by water in excess can block the flow in the gas distribution channels and hinder the fuel cell performance. The main purpose of this work is to increase the understanding of liquid transport and mixing through mini- or micro-channels for various engineering or medical process applications including cool-ing of equipment according to the operations considered. For that purpose and as a first step, a technique was devel-oped to automatically detect and characterize two-phase flow patterns that may appear in such. The investigation, mainly experimental, was conducted on transparent channel with a 1mm x 1mm square cross section and a 0.3mm x 0.3 mm water injection normal to the gas channel. Three main flow patterns were identified liquid slug, bubble flow and annular flow. A flow map has been built accord-ing to the flow rate of both phases. As a sample the follow-ing figures show representative images of the flow struc-tures observed. An analysis and discussion of the flow pattern, in mini-channel, will be provided and compared to the case old micro-channel. . Keywords: Two phase flow, Clean Energy, Minichannels, Fuel Cells. Flow patterns, Maps.

Keywords: two phase flox, T-juncion, Micro and minichannels, clean energy, flow patterns, maps

Procedia PDF Downloads 78
7119 Experimental Analysis on Heat Transfer Enhancement in Double Pipe Heat Exchanger Using Al2O3/Water Nanofluid and Baffled Twisted Tape Inserts

Authors: Ratheesh Radhakrishnan, P. C. Sreekumar, K. Krishnamoorthy

Abstract:

Heat transfer augmentation techniques ultimately results in the reduction of thermal resistance in a conventional heat exchanger by generating higher convective heat transfer coefficient. It also results in reduction of size, increase in heat duty, decrease in approach temperature difference and reduction in pumping power requirements for heat exchangers. Present study deals with compound augmentation technique, which is not widely used. The study deals with the use of Alumina (Al2O3)/water nanofluid and baffled twisted tape inserts in double pipe heat exchanger as compound augmentation technique. Experiments were conducted to evaluate the heat transfer coefficient and friction factor for the flow through the inner tube of heat exchanger in turbulent flow range (8000Keywords: enhancement, heat transfer coefficient, friction factor, twisted tape, nanofluid

Procedia PDF Downloads 352
7118 Assessment of Mountain Hydrological Processes in the Gumera Catchment, Ethiopia

Authors: Tewele Gebretsadkan Haile

Abstract:

Mountain terrains are essential to regional water resources by regulating hydrological processes that use downstream water supplies. Nevertheless, limited observed earth data in complex topography poses challenges for water resources regulation. That's why satellite product is implemented in this study. This study evaluates hydrological processes on mountain catchment of Gumera, Ethiopia using HBV-light model with satellite precipitation products (CHIRPS) for the temporal scale of 1996 to 2010 and area coverage of 1289 km2. The catchment is characterized by cultivation dominant and elevation ranges from 1788 to 3606 m above sea level. Three meteorological stations have been used for downscaling of the satellite data and one stream flow for calibration and validation. The result shows total annual water balance showed that precipitation 1410 mm, simulated 828 mm surface runoff compared to 1042 mm observed stream flow with actual evapotranspiration estimate 586mm and 1495mm potential evapotranspiration. The temperature range is 9°C in winter to 21°C. The catchment contributes 74% as quack runoff to the total runoff and 26% as lower groundwater storage, which sustains stream flow during low periods. The model uncertainty was measured using different metrics such as coefficient of determination, model efficiency, efficiency for log(Q) and flow weighted efficiency 0.76, 0.74, 0.66 and 0.70 respectively. The research result highlights that HBV model captures the mountain hydrology simulation and the result indicates quack runoff due to the traditional agricultural system, slope factor of the topography and adaptation measure for water resource management is recommended.

Keywords: mountain hydrology, CHIRPS, Gumera, HBV model

Procedia PDF Downloads 18
7117 Quantification of the Gumera Catchment's Mountain Hydrological Processes in Ethiopia

Authors: Tewele Gebretsadkan Haile

Abstract:

Mountain terrains are essential to regional water resources by regulating hydrological processes that use downstream water supplies. Nevertheless, limited observed earth data in complex topography poses challenges for water resources regulation. That's why satellite product is implemented in this study. This study evaluates hydrological processes on mountain catchment of Gumera, Ethiopia using HBV-light model with satellite precipitation products (CHIRPS) for the temporal scale of 1996 to 2010 and area coverage of 1289 km2. The catchment is characterized by cultivation dominant and elevation ranges from 1788 to 3606 m above sea level. Three meteorological stations have been used for downscaling of the satellite data and one stream flow for calibration and validation. The result shows total annual water balance showed that precipitation 1410 mm, simulated 828 mm surface runoff compared to 1042 mm observed stream flow with actual evapotranspiration estimate 586mm and 1495mm potential evapotranspiration. The temperature range is 9°C in winter to 21°C. The catchment contributes 74% as quack runoff to the total runoff and 26% as lower groundwater storage, which sustains stream flow during low periods. The model uncertainty was measured using different metrics such as coefficient of determination, model efficiency, efficiency for log(Q) and flow weighted efficiency 0.76, 0.74, 0.66 and 0.70 respectively. The research result highlights that HBV model captures the mountain hydrology simulation and the result indicates quack runoff due to the traditional agricultural system, slope factor of the topography and adaptation measure for water resource management is recommended.

Keywords: mountain hydrology, CHIRPS, HBV model, Gumera

Procedia PDF Downloads 15