Search results for: recirculation ratio
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4635

Search results for: recirculation ratio

2865 Upon One Smoothing Problem in Project Management

Authors: Dimitri Golenko-Ginzburg

Abstract:

A CPM network project with deterministic activity durations, in which activities require homogenous resources with fixed capacities, is considered. The problem is to determine the optimal schedule of starting times for all network activities within their maximal allowable limits (in order not to exceed the network's critical time) to minimize the maximum required resources for the project at any point in time. In case when a non-critical activity may start only at discrete moments with the pregiven time span, the problem becomes NP-complete and an optimal solution may be obtained via a look-over algorithm. For the case when a look-over requires much computational time an approximate algorithm is suggested. The algorithm's performance ratio, i.e., the relative accuracy error, is determined. Experimentation has been undertaken to verify the suggested algorithm.

Keywords: resource smoothing problem, CPM network, lookover algorithm, lexicographical order, approximate algorithm, accuracy estimate

Procedia PDF Downloads 303
2864 Multifunctional Janus Microbots for Intracellular Delivery of Therapeutic Agents

Authors: Shilpee Jain, Sachin Latiyan, Kaushik Suneet

Abstract:

Unlike traditional robots, medical microbots are not only smaller in size, but they also possess various unique properties, for example, biocompatibility, stability in the biological fluids, navigation opposite to the bloodstream, wireless control over locomotion, etc. The idea behind their usage in the medical field was to build a minimally invasive method for addressing the post-operative complications, including longer recovery time, infection eruption and pain. Herein, the present study demonstrates the fabrication of dual nature magneto-conducting Fe3O4 magnetic nanoparticles (MNPs) and SU8 derived carbon-based Janus microbots for the efficient intracellular delivery of biomolecules. The low aspect ratio with feature size 2-5 μm microbots were fabricated by using a photolithography technique. These microbots were pyrolyzed at 900°C, which converts SU8 into amorphous carbon. The pyrolyzed microbots have dual properties, i.e., the half part is magneto-conducting and another half is only conducting for sufficing the therapeutic payloads efficiently with the application of external electric/magnetic field stimulations. For the efficient intracellular delivery of the microbots, the size and aspect ratio plays a significant role. However, on a smaller scale, the proper control over movement is difficult to achieve. The dual nature of Janus microbots allowed to control its maneuverability in the complex fluids using external electric as well as the magnetic field. Interestingly, Janus microbots move faster with the application of an external electric field (44 µm/s) as compared to the magnetic field (18 µm/s) application. Furthermore, these Janus microbots exhibit auto-fluorescence behavior that will help to track their pathway during navigation. Typically, the use of MNPs in the microdevices enhances the tendency to agglomerate. However, the incorporation of Fe₃O₄ MNPs in the pyrolyzed carbon reduces the chances of agglomeration of the microbots. The biocompatibility of the medical microbots, which is the essential property of any biosystems, was determined in vitro using HeLa cells. The microbots were found to compatible with HeLa cells. Additionally, the intracellular uptake of microbots was higher in the presence of an external electric field as compared to without electric field stimulation. In summary, the cytocompatible Janus microbots were fabricated successfully. They are stable in the biological fluids, wireless controllable navigation with the help of a few Guess external magnetic fields, their movement can be tracked because of autofluorescence behavior, they are less susceptible to agglomeration and higher cellular uptake could be achieved with the application of the external electric field. Thus, these carriers could offer a versatile platform to suffice the therapeutic payloads under wireless actuation.

Keywords: amorphous carbon, electric/magnetic stimulations, Janus microbots, magnetic nanoparticles, minimally invasive procedures

Procedia PDF Downloads 127
2863 A Drop of Water for the Thirsty Ground: Implementing Drip-Irrigation System as an Alternative to the Existing System to Promote Sustainable Livelihoods in the Archipelagic Dryland East Nusa Tenggara, Indonesia

Authors: F. L. Benu, I. W. Mudita, R. L. Natonis

Abstract:

East Nusa Tenggara, together with part of East Java, West Nusa Tenggara, and Maluku, has been included as part of global drylands defined according to the ratio of annual precipitation (P) and annual potential evaporation (PET) and major vegetation types of grassland and savannah ecosystems. These tropical drylands are unique because, whereas drylands in other countries are mostly continental, here they are archipelagic. These archipelagic drylands are also unique in terms of being included because of more on their major vegetation types than of their P/PET ratio. Slash-and-burn cultivation and free roaming animal husbandry are two major livelihoods being widely practiced, along with alternative seasonal livelihood such as traditional fishing. Such livelihoods are vulnerable in various respects, especially because of drought, which becomes more unpredictable in the face of climate changes. To cope with such vulnerability, semi-intensive farming using drip irrigation is implemented as an appropriate technology with the goal of promoting a more sustainable alternative to the existing livelihoods. The implementation was started in 2016 with a pilot system at the university field laboratory in Kupang in which various designs of installation were tested. The modified system consisting of an uplifted water reservoir and solar-powered pump was tested in Papela, the District of Rote-Ndao, in 2017 to convince fishermen who had been involved in illegal fishing in Australia-Indonesia transboundary waters, to adopt small-scale farming as a more sustainable alternative to their existing livelihoods. The system was again tested in a larger coverage in Oesena, the District of Kupang, in 2018 to convince slash-and-burn cultivators to adopt an environmentally friendlier cultivation system. From the implementation of the modified system in both sites, the participating fishermen in Papela were able to manage the system under tight water supply to grow chili pepper, tomatoes, and watermelon and the slash-and-burn cultivators in Oesena to grow chili pepper in a more efficient water use than water use in a conventional irrigation system. The gross margin obtained from growing chili pepper, tomatoes, and watermelon in Papela and from growing chili pepper in Oesena showed that small-scale farming using drip irrigation system was a promising alternative to local people in generating cash income to support their livelihoods. However, before promoting this appropriate technology as a more sustainable alternative to the existing livelihoods elsewhere in the region, better understanding on social-related contexts of the implementation is needed.

Keywords: archipelagic drylands, drip irrigation system, East Nusa Tenggara, sustainable livelihoods

Procedia PDF Downloads 117
2862 Mechanical Testing of Composite Materials for Monocoque Design in Formula Student Car

Authors: Erik Vassøy Olsen, Hirpa G. Lemu

Abstract:

Inspired by the Formula-1 competition, IMechE (Institute of Mechanical Engineers) and Formula SAE (Society of Mechanical Engineers) organize annual competitions for University and College students worldwide to compete with a single-seat race car they have designed and built. The design of the chassis or the frame is a key component of the competition because the weight and stiffness properties are directly related with the performance of the car and the safety of the driver. In addition, a reduced weight of the chassis has a direct influence on the design of other components in the car. Among others, it improves the power to weight ratio and the aerodynamic performance. As the power output of the engine or the battery installed in the car is limited to 80 kW, increasing the power to weight ratio demands reduction of the weight of the chassis, which represents the major part of the weight of the car. In order to reduce the weight of the car, ION Racing team from the University of Stavanger, Norway, opted for a monocoque design. To ensure fulfilment of the above-mentioned requirements of the chassis, the monocoque design should provide sufficient torsional stiffness and absorb the impact energy in case of a possible collision. The study reported in this article is based on the requirements for Formula Student competition. As part of this study, diverse mechanical tests were conducted to determine the mechanical properties and performances of the monocoque design. Upon a comprehensive theoretical study of the mechanical properties of sandwich composite materials and the requirements of monocoque design in the competition rules, diverse tests were conducted including 3-point bending test, perimeter shear test and test for absorbed energy. The test panels were homemade and prepared with an equivalent size of the side impact zone of the monocoque, i.e. 275 mm x 500 mm so that the obtained results from the tests can be representative. Different layups of the test panels with identical core material and the same number of layers of carbon fibre were tested and compared. Influence of the core material thickness was also studied. Furthermore, analytical calculations and numerical analysis were conducted to check compliance to the stated rules for Structural Equivalency with steel grade SAE/AISI 1010. The test results were also compared with calculated results with respect to bending and torsional stiffness, energy absorption, buckling, etc. The obtained results demonstrate that the material composition and strength of the composite material selected for the monocoque design has equivalent structural properties as a welded frame and thus comply with the competition requirements. The developed analytical calculation algorithms and relations will be useful for future monocoque designs with different lay-ups and compositions.

Keywords: composite material, Formula student, ION racing, monocoque design, structural equivalence

Procedia PDF Downloads 504
2861 Characterization of Enhanced Thermostable Polyhydroxyalkanoates

Authors: Ahmad Idi

Abstract:

The biosynthesis and properties of polyhydroxyalkanoate (PHA) are determined by the bacterial strain and the culture condition. Hence this study elucidates the structure and properties of PHA produced by a newly isolated strain of photosynthetic bacterium, Rhodobacter sphaeroides ADZ101 grown under the optimized culture condition. The properties of the accumulated PHA were determined via FTIR, NMR, TGA, and GCMS analyses. The results showed that acetate and ammonia chloride had the highest PHA accumulation with a ratio of 32.5 mM at neutral pH. The structural analyses showed that the polymer comprises both short and medium-chain length monomers ranging from C5, C13, C14, and C18, as well as the presence of novel PHA monomers. The thermal analysis revealed that the maximum temperature of decomposition occurred at 395°C and 454°C, indicating two major decomposition reactions. Thus this bacterial strain, optimized culture condition, and the abundance of novel monomers enhanced the thermostability of the accumulated PHA.

Keywords: bioplastic polyhydroxyalkanoates Rhodobacter sphaeroides ADZ101 thermostable PHA

Procedia PDF Downloads 147
2860 Compositional and Morphological Characteristics of Three Common Dates (Phoenix dactylifera L.) Grown in Algeria

Authors: H. Amellal, Y. Noui, A. Djouab, S. Benamara

Abstract:

Mech-Degla, Degla-Beida, and Frezza are the date (Phoenix dactylifera L.) common varieties with a more or less good availability and feeble trade value. Some morphologic and physicochemical factors were determined. Results show that the whole date weight is significantly different (P= 95%) concerning Mech-Degla and Degla-Beida which are more commercialised than Frezza whereas the pulp/kernel ratio for this last is highest (above 7) since it represents almost the double of that found for the two other varieties. The water content for all fruits is below 15g/100g (wet basis) what confers a dried consistence for common date. Some other morphologic and chemical proprieties of the whole pulps and their two constitutive parts (brown or pigmented and white) are also investigated. The predominance of phenolics in Mech-Degla (4.01g/100g, w.b) and Frezza (4.96 g/100g, w.b) pulps brown part is the main result revealed in this study.

Keywords: common dates, phenolics, sugars, tissues

Procedia PDF Downloads 417
2859 Generalized Model Estimating Strength of Bauxite Residue-Lime Mix

Authors: Sujeet Kumar, Arun Prasad

Abstract:

The present work investigates the effect of multiple parameters on the unconfined compressive strength of the bauxite residue-lime mix. A number of unconfined compressive strength tests considering various curing time, lime content, dry density and moisture content were carried out. The results show that an empirical correlation may be successfully developed using volumetric lime content, porosity, moisture content, curing time unconfined compressive strength for the range of the bauxite residue-lime mix studied. The proposed empirical correlations efficiently predict the strength of bauxite residue-lime mix, and it can be used as a generalized empirical equation to estimate unconfined compressive strength.

Keywords: bauxite residue, curing time, porosity/volumetric lime ratio, unconfined compressive strength

Procedia PDF Downloads 237
2858 Lightweight High-Pressure Ratio Centrifugal Compressor for Vehicles-Investigation of Pipe Diffuser Designs by Means of CFD

Authors: Eleni Ioannou, Pascal Nucara, Keith Pullen

Abstract:

The subject of this paper is the investigation of the best efficiency design of a compressor diffuser applied in new lightweight, ultra efficient micro-gas turbine engines for vehicles. The Computational Fluid Dynamics (CFD) results are obtained utilizing steady state simulations for a wedge and an ”oval” type pipe diffuser in an effort to identify the beneficial effects of the pipe diffuser design. The basic flow features are presented with particular focus on the optimization of the pipe diffuser leading to higher efficiencies for the compressor stage. The optimised pipe diffuser is designed to exploit the 3D freedom enabled by Selective Laser Melting, hence purposely involves an investigation of geometric characteristics that do not follow the traditional diffuser concept.

Keywords: CFD, centrifugal compressor, micro-gas turbine, pipe diffuser, SLM, wedge diffuser

Procedia PDF Downloads 408
2857 Empirical Mode Decomposition Based Denoising by Customized Thresholding

Authors: Wahiba Mohguen, Raïs El’hadi Bekka

Abstract:

This paper presents a denoising method called EMD-Custom that was based on Empirical Mode Decomposition (EMD) and the modified Customized Thresholding Function (Custom) algorithms. EMD was applied to decompose adaptively a noisy signal into intrinsic mode functions (IMFs). Then, all the noisy IMFs got threshold by applying the presented thresholding function to suppress noise and to improve the signal to noise ratio (SNR). The method was tested on simulated data and real ECG signal, and the results were compared to the EMD-Based signal denoising methods using the soft and hard thresholding. The results showed the superior performance of the proposed EMD-Custom denoising over the traditional approach. The performances were evaluated in terms of SNR in dB, and Mean Square Error (MSE).

Keywords: customized thresholding, ECG signal, EMD, hard thresholding, soft-thresholding

Procedia PDF Downloads 302
2856 COSMO-RS Prediction for Choline Chloride/Urea Based Deep Eutectic Solvent: Chemical Structure and Application as Agent for Natural Gas Dehydration

Authors: Tayeb Aissaoui, Inas M. AlNashef

Abstract:

In recent years, green solvents named deep eutectic solvents (DESs) have been found to possess significant properties and to be applicable in several technologies. Choline chloride (ChCl) mixed with urea at a ratio of 1:2 and 80 °C was the first discovered DES. In this article, chemical structure and combination mechanism of ChCl: urea based DES were investigated. Moreover, the implementation of this DES in water removal from natural gas was reported. Dehydration of natural gas by ChCl:urea shows significant absorption efficiency compared to triethylene glycol. All above operations were retrieved from COSMOthermX software. This article confirms the potential application of DESs in gas industry.

Keywords: COSMO-RS, deep eutectic solvents, dehydration, natural gas, structure, organic salt

Procedia PDF Downloads 294
2855 Development of a Very High Sensitivity Magnetic Field Sensor Based on Planar Hall Effect

Authors: Arnab Roy, P. S. Anil Kumar

Abstract:

Hall bar magnetic field sensors based on planar hall effect were fabricated from permalloy (Ni¬80Fe20) thin films grown by pulsed laser ablation. As large as 400% planar Hall voltage change was observed for a magnetic field sweep within ±4 Oe, a value comparable with present day TMR sensors at room temperature. A very large planar Hall sensitivity of 1200 Ω/T was measured close to switching fields, which was not obtained so far apart from 2DEG Hall sensors. In summary, a highly sensitive low magnetic field sensor has been constructed which has the added advantage of simple architecture, good signal to noise ratio and robustness.

Keywords: planar hall effect, permalloy, NiFe, pulsed laser ablation, low magnetic field sensor, high sensitivity magnetic field sensor

Procedia PDF Downloads 516
2854 Influence of Dopant of Tin (Sn) on the Optoelectronic and Structural Properties of Cadmium Sulfide (CdS) Pallets

Authors: Himanshu Pavagadhi, Maunik Jani, S. M. Vyas, Jaymin Ray, Vimal Patel, Piyush Patel, Jignesh P. Raval

Abstract:

The preparation of pure and Sn-doped cadmium sulfide (CdS) pellets was carried out using a compression technique with a pelletizer. The energy dispersive X-ray (EDX) analysis is used to confirm the purity and stoichiometric ratio of Cd, S, and Sn in the prepared pellets. The surface morphology of the pellets was examined using a scanning electron microscope. Both XRD and Raman scattering spectrum analysis confirmed the doping effect in the CdS pellets. The X-ray diffraction (XRD) analysis confirmed the hexagonal structure and revealed that the grain size decreases with increasing Sn dopant concentration in the parent CdS pellet. The optical properties of the pellets were evaluated by measuring diffuse reflectance using a UV-vis spectrophotometer. The analysis indicated that as the Sn concentration increases in the parent CdS pellet, the optical band gap decreases. This implies that the optical properties of the CdS material are also affected by the Sn dopant.

Keywords: CdS, Sn dopant, UV-Spetrophotometer, XRD

Procedia PDF Downloads 33
2853 Effects of Prescribed Surface Perturbation on NACA 0012 at Low Reynolds Number

Authors: Diego F. Camacho, Cristian J. Mejia, Carlos Duque-Daza

Abstract:

The recent widespread use of Unmanned Aerial Vehicles (UAVs) has fueled a renewed interest in efficiency and performance of airfoils, particularly for applications at low and moderate Reynolds numbers, typical of this kind of vehicles. Most of previous efforts in the aeronautical industry, regarding aerodynamic efficiency, had been focused on high Reynolds numbers applications, typical of commercial airliners and large size aircrafts. However, in order to increase the levels of efficiency and to boost the performance of these UAV, it is necessary to explore new alternatives in terms of airfoil design and application of drag reduction techniques. The objective of the present work is to carry out the analysis and comparison of performance levels between a standard NACA0012 profile against another one featuring a wall protuberance or surface perturbation. A computational model, based on the finite volume method, is employed to evaluate the effect of the presence of geometrical distortions on the wall. The performance evaluation is achieved in terms of variations of drag and lift coefficients for the given profile. In particular, the aerodynamic performance of the new design, i.e. the airfoil with a surface perturbation, is examined under conditions of incompressible and subsonic flow in transient state. The perturbation considered is a shaped protrusion prescribed as a small surface deformation on the top wall of the aerodynamic profile. The ultimate goal by including such a controlled smooth artificial roughness was to alter the turbulent boundary layer. It is shown in the present work that such a modification has a dramatic impact on the aerodynamic characteristics of the airfoil, and if properly adjusted, in a positive way. The computational model was implemented using the unstructured, FVM-based open source C++ platform OpenFOAM. A number of numerical experiments were carried out at Reynolds number 5x104, based on the length of the chord and the free-stream velocity, and angles of attack 6° and 12°. A Large Eddy Simulation (LES) approach was used, together with the dynamic Smagorinsky approach as subgrid scale (SGS) model, in order to account for the effect of the small turbulent scales. The impact of the surface perturbation on the performance of the airfoil is judged in terms of changes in the drag and lift coefficients, as well as in terms of alterations of the main characteristics of the turbulent boundary layer on the upper wall. A dramatic change in the whole performance can be appreciated, including an arguably large level of lift-to-drag coefficient ratio increase for all angles and a size reduction of laminar separation bubble (LSB) for a twelve-angle-of-attack.

Keywords: CFD, LES, Lift-to-drag ratio, LSB, NACA 0012 airfoil

Procedia PDF Downloads 389
2852 Effect of Plastic Fines on Liquefaction Resistance of Sandy Soil Using Resonant Column Test

Authors: S. A. Naeini, M. Ghorbani Tochaee

Abstract:

The aim of this study is to assess the influence of plastic fines content on sand-clay mixtures on maximum shear modulus and liquefaction resistance using a series of resonant column tests. A high plasticity clay called bentonite was added to 161 Firoozkooh sand at the percentages of 10, 15, 20, 25, 30 and 35 by dry weight. The resonant column tests were performed on the remolded specimens at constant confining pressure of 100 KPa and then the values of Gmax and liquefaction resistance were investigated. The maximum shear modulus and cyclic resistance ratio (CRR) are examined in terms of fines content. Based on the results, the maximum shear modulus and liquefaction resistance tend to decrease within the increment of fine contents.

Keywords: Gmax, liquefaction, plastic fines, resonant column, sand-clay mixtures, bentonite

Procedia PDF Downloads 149
2851 Development of a New Polymeric Material with Controlled Surface Micro-Morphology Aimed for Biosensors Applications

Authors: Elham Farahmand, Fatimah Ibrahim, Samira Hosseini, Ivan Djordjevic, Leo. H. Koole

Abstract:

Compositions of different molar ratios of polymethylmethacrylate-co-methacrylic acid (PMMA-co-MAA) were synthesized via free- radical polymerization. Polymer coated surfaces have been produced on silicon wafers. Coated samples were analyzed by atomic force microscopy (AFM). The results have shown that the roughness of the surfaces have increased by increasing the molar ratio of monomer methacrylic acid (MAA). This study reveals that the gradual increase in surface roughness is due to the fact that carboxylic functional groups have been generated by MAA segments. Such surfaces can be desirable platforms for fabrication of the biosensors for detection of the viruses and diseases.

Keywords: polymethylmethacrylate-co-methacrylic acid (PMMA-co-MAA), polymeric material, atomic force microscopy, roughness, carboxylic functional groups

Procedia PDF Downloads 596
2850 The Role of Behavioral Syndromes in Human-Cattle Interactions: A Physiological Approach

Authors: Fruzsina Luca Kézér, Viktor Jurkovich, Ottó Szenci, János Tőzsér, Levente Kovács

Abstract:

Positive interaction between people and animals could have a favorable effect on the welfare and production by reducing stress levels. However, to the repeated contact with humans (e.g. farm staff, veterinarians or herdsmen), animals may respond with escape behavior or avoidance, which both have negative effects on the ease of handling, welfare and may lead to the expression of aggressive behaviors. Rough or aversive handling can impair health and the function of the cardiac autonomic activity due to fear and stress, which also can be determined by certain parameters of heart rate variability (HRV). Although the essential relationships between fear from humans and basal tone of the autonomic nervous system were described by the authors previously, several questions remained unclear in terms of the associations between different coping strategies (behavioral syndromes) of the animals and physiological responsiveness to humans. The main goal of this study was to find out whether human behavior and emotions to the animals have an impact on cardiac function and behavior of animals with different coping styles in response situations. Therefore, in the present study, special (fear, approaching, restraint, novel arena, novel object) tests were performed on healthy, 2-year old heifers (n = 104) differing in coping styles [reactive (passive) vs. proactive (active) coping]. Animals were categorized as reactive or proactive based on the following tests: 1) aggressive behavior at the feeding bunk, 2) avoidance from an approaching person, 3) immobility, and 4) daily activity (number of posture changes). Heart rate, the high frequency (HF) component of HRV as a measure of vagal activity and the ratio between the low frequency (LF) and HF components (LF/HF ratio) as a parameter of sympathetic nervous system activity were calculated for all individual during lying posture (baseline) and for response situations in novel object, novel arena, and unfamiliar person tests (both for 5 min), respectively. The differences between baseline and response were compared between groups. Higher sympathetic (higher heart rates and LF/HF ratios) and lower parasympathetic activity (lower HF) was found for proactive animals in response situations than for reactive (passive) animals either during the novel object, the novel arena and the unfamiliar person test. It suggests that animals with different behavioral traits differ in their immediate autonomic adaptation to novelty and people. Based on our preliminary results, it seems, that the analysis of HRV can help to understand the physiological manifestation of responsiveness to novelty and human presence in dairy cattle with different behavioral syndromes.

Keywords: behavioral syndromes, human-cattle interaction, novel arena test, physiological responsiveness, proactive coping, reactive coping

Procedia PDF Downloads 356
2849 Stress Distribution in Axisymmetric Indentation of an Elastic Layer-Substrate Body

Authors: Kotaro Miura, Makoto Sakamoto, Yuji Tanabe

Abstract:

We focus on internal stress and displacement of an elastic axisymmetric contact problem for indentation of a layer-substrate body. An elastic layer is assumed to be perfectly bonded to an elastic semi-infinite substrate. The elastic layer is smoothly indented with a flat-ended cylindrical indenter. The analytical and exact solutions were obtained by solving an infinite system of simultaneous equations using the method to express a normal contact stress at the upper surface of the elastic layer as an appropriate series. This paper presented the numerical results of internal stress and displacement distributions for hard-coating system with constant values of Poisson’s ratio and the thickness of elastic layer.

Keywords: indentation, contact problem, stress distribution, coating materials, layer-substrate body

Procedia PDF Downloads 158
2848 Investigation of Permeate Flux Through Direct Contact Membrane Distillation Module by Inserting S-Ribs Carbon-Fiber Promoters with Ascending and Descending Hydraulic Diameters

Authors: Chii-Dong Ho, Jian-Har Chen

Abstract:

The decline in permeate flux across membrane modules is attributed to the increase in temperature polarization resistance in flat-plate direct contact membrane distillation (DCMD) modules for pure water productivity. Researchers have discovered that this effect can be diminished by embedding turbulence promoters, which augment turbulence intensity at the cost of increased power consumption, thereby improving vapor permeate flux. The device performance of DCMD modules for permeate flux was further enhanced by shrinking the hydraulic diameters of inserted S-ribs carbon-fiber promoters as well as considering the energy consumption increment. The mass-balance formulation, based on the resistance-in-series model by energy conservation in one-dimensional governing equations, was developed theoretically and conducted experimentally on a flat-plate polytetrafluoroethylene/polypropylene (PTFE/PP) membrane module to predict permeate flux and temperature distributions. The ratio of permeate flux enhancement to energy consumption increment, as referred to an assessment of an economic viewpoint and technical feasibilities, was calculated to determine the suitable design parameters for DCMD operations with the insertion of S-ribs carbon-fiber turbulence promoters. An economic analysis was also performed, weighing both permeate flux improvement and energy consumption increment on modules with promoter-filled channels by different array configurations and various hydraulic diameters of turbulence promoters. Results showed that the ratio of permeate flux improvement to energy consumption increment in descending hydraulic-diameter modules is higher than in uniform hydraulic-diameter modules. The fabrication details of the DCMD module filaments implementing the S-ribs carbon-fiber filaments and the schematic configuration of the flat-plate DCMD experimental setup with presenting acrylic plates as external walls were demonstrated in the present study. The S-ribs carbon fibers perform as turbulence promoters incorporated into the artificial hot saline feed stream, which was prepared by adding inorganic salts (NaCl) to distilled water. Theoretical predictions and experimental results exhibited a great accomplishment to considerably achieve permeate flux enhancement in such as new design of the DCMD module with inserting S-ribs carbon-fiber promoters. Additionally, the Nusselt number for the water vapor transferring membrane module with inserted S-ribs carbon-fiber promoters was generalized into a simplified expression to predict the heat transfer coefficient and permeate flux as well.

Keywords: permeate flux, Nusselt number, DCMD module, temperature polarization, hydraulic diameters

Procedia PDF Downloads 14
2847 Optimization of Ultrasound-Assisted Extraction of Oil from Spent Coffee Grounds Using a Central Composite Rotatable Design

Authors: Malek Miladi, Miguel Vegara, Maria Perez-Infantes, Khaled Mohamed Ramadan, Antonio Ruiz-Canales, Damaris Nunez-Gomez

Abstract:

Coffee is the second consumed commodity worldwide, yet it also generates colossal waste. Proper management of coffee waste is proposed by converting them into products with higher added value to achieve sustainability of the economic and ecological footprint and protect the environment. Based on this, a study looking at the recovery of coffee waste is becoming more relevant in recent decades. Spent coffee grounds (SCG's) resulted from brewing coffee represents the major waste produced among all coffee industry. The fact that SCGs has no economic value be abundant in nature and industry, do not compete with agriculture and especially its high oil content (between 7-15% from its total dry matter weight depending on the coffee varieties, Arabica or Robusta), encourages its use as a sustainable feedstock for bio-oil production. The bio-oil extraction is a crucial step towards biodiesel production by the transesterification process. However, conventional methods used for oil extraction are not recommended due to their high consumption of energy, time, and generation of toxic volatile organic solvents. Thus, finding a sustainable, economical, and efficient extraction technique is crucial to scale up the process and to ensure more environment-friendly production. Under this perspective, the aim of this work was the statistical study to know an efficient strategy for oil extraction by n-hexane using indirect sonication. The coffee waste mixed Arabica and Robusta, which was used in this work. The temperature effect, sonication time, and solvent-to-solid ratio on the oil yield were statistically investigated as dependent variables by Central Composite Rotatable Design (CCRD) 23. The results were analyzed using STATISTICA 7 StatSoft software. The CCRD showed the significance of all the variables tested (P < 0.05) on the process output. The validation of the model by analysis of variance (ANOVA) showed good adjustment for the results obtained for a 95% confidence interval, and also, the predicted values graph vs. experimental values confirmed the satisfactory correlation between the model results. Besides, the identification of the optimum experimental conditions was based on the study of the surface response graphs (2-D and 3-D) and the critical statistical values. Based on the CCDR results, 29 ºC, 56.6 min, and solvent-to-solid ratio 16 were the better experimental conditions defined statistically for coffee waste oil extraction using n-hexane as solvent. In these conditions, the oil yield was >9% in all cases. The results confirmed the efficiency of using an ultrasound bath in extracting oil as a more economical, green, and efficient way when compared to the Soxhlet method.

Keywords: coffee waste, optimization, oil yield, statistical planning

Procedia PDF Downloads 120
2846 Effects of Roughness Elements on Heat Transfer During Natural Convection

Authors: M. Yousaf, S. Usman

Abstract:

The present study focused on the investigation of the effects of roughness elements on heat transfer during natural convection in a rectangular cavity using a numerical technique. Roughness elements were introduced on the bottom hot wall with a normalized amplitude (A*/H) of 0.1. Thermal and hydrodynamic behavior was studied using a computational method based on Lattice Boltzmann method (LBM). Numerical studies were performed for a laminar natural convection in the range of Rayleigh number (Ra) from 103 to 106 for a rectangular cavity of aspect ratio (L/H) 2 with a fluid of Prandtl number (Pr) 1.0. The presence of the sinusoidal roughness elements caused a minimum to the maximum decrease in the heat transfer as 7% to 17% respectively compared to the smooth enclosure. The results are presented for mean Nusselt number (Nu), isotherms, and streamlines.

Keywords: natural convection, Rayleigh number, surface roughness, Nusselt number, Lattice Boltzmann method

Procedia PDF Downloads 542
2845 Nano and Micro Silica Cooperating Effect on Ferrocement Mortar

Authors: Aziz Ibrahim Abdulla, Omar Mohanad Mahdi

Abstract:

The objective of this paper is to explore the effect of incorporating Nano-Silica with Silica-fume in ferrocement mortar to enhancing mechanical properties of it. One type of Nano silica with average diameter size 23nm and silica fume have been used with two percentage (1%, 2% Nano silica and 5%, 10% silica fume per weight of cement) and w/c with / without superplasticizer was been calculated by flow test method. Also three sand: cement ratios have been used (1.5, 2.0 and 2.5) with max. Aggregate size 0.6mm in this study for reference and other mixtures. Results reveal adding Nano silica with silica fume to ferrocement mortar enhances its physical and mechanical properties such as compressive strength and flexural strength. The SEM pictures and density with absorption ratio demonstrate that Nano silica with silica fume contributes to enhancement of mortar through yielding denser, more compact and uniform mixtures.

Keywords: nano silica, ferrocement mortar, compresion strength, flexural strength

Procedia PDF Downloads 384
2844 Effect of Formulated Insect Enriched Sprouted Soybean /Millet Based Food on Gut Health Markers in Albino Wistar Rats

Authors: Gadanya, A.M., Ponfa, S., Jibril, M.M., Abubakar, S. M.

Abstract:

Background: Edible insects such as grasshopper are important sources of food for humans, and have been consumed as traditional foods by many indigenous communities especially in Africa, Asia, and Latin America. These communities have developed their skills and techniques in harvesting, preparing, consuming, and preserving edible insects, widely contributing to the role played by the use of insects in human nutrition. Aim/ objective: This study was aimed at determining the effect of insect enriched sprouted soyabean /millet based food on some gut health markers in albino rats. Methods. Four different formulations of Complementary foods (i.e Complementary Food B (CFB): sprouted millet (SM), Complementary Food C (CFC): sprouted soyabean (SSB), Complementary Food D (CFD): sprouted soybean and millet (SSBM) in a ratio of (50:50) and Complementary Food E (CFE): insect (grasshopper) enriched sprouted soybean and millet (SSBMI) in a ratio of (50:25:25)) were prepared. Proximate composition and short chain fatty acid contents were determined. Thirty albino rats were divided into5 groups of six rats each. Group 1(CDA) were fed with basal diet and served as a control group, while groups 2,3,4 and 5 were fed with the corresponding complimentary foods CFB, CFC, CFD and CFE respectively daily for four weeks. Concentrations of fecal protein, serum total carotenoids and nitric oxide were determined. DNA extraction for molecular isolation and characterization were carried out followed by PCR, the use of mega 11 software and NCBI blast for construction of the phylogenetic tree and organism identification respectively. Results: Significant increase (P<0.05) in percentage ash, fat, protein and moisture contents, as well as short chain fatty acid (acetate, butyrate and propionate) concentrations were recorded in the insect enriched sprouted composite food (CFE) when compared with the CFA, CFB, CFC and CFD composite food. Faecal protein, carotenoid and nitric oxide concentrations were significantly lower (P>0.05) in group 5 in comparison to groups 1to 4. Ruminococcus bromii and Bacteroidetes were molecularly isolated and characterized by 16s rRNA from the sprouted millet/sprouted soybean and the insect enriched sprouted soybean/sprouted millet based food respectively. The presence of these bacterial strains in the feaces of the treated rats is an indication that the gut of the treated rats is colonized by good gut bacteria, hence, an improved gut health. Conclusion: Insect enriched sprouted soya bean/sprouted millet based complementary diet showed a high composition of ash, fat, protein and fiber. Thus, could increase the availability of short chain fatty acids whose role to the host organism cannot be overemphasized. It was also found to have decrease the level of faecal protein, carotenoid and nitric oxide in the serum which is an indication of an improvement in the immune system function.

Keywords: gut-health, insect, millet, soybean, sprouted

Procedia PDF Downloads 69
2843 Evaluation Performance of Transport Vehicle on Different Surfaces

Authors: Hussein Abbas Jebur, Yasir Abd Ulrazzaq

Abstract:

This study was carried out at the farm of El-Gemmaiza Agriculture Research Station, El-Garbia Governorate Egypt, to determine the performance characteristics of an agricultural transport. The performance of this transportation was compared between three surfaces (asphalt, dusty and field). The study was concentrated on the rate of drawbar pull, slip ratio, tractive efficiency and specific energy per unit area. The comparison was made under three different surfaces (asphalt, dusty and field), different traveling speeds from (3.38 to 6.55 km/h) and variable weights (0 and 300 kg). The results showed that the highest value of the tractive efficiency 60.20% was obtained at traveling speed 4.00 km/h with weight on the rear wheel on the asphalt surface. The highest value of specific energy 1.93 kW.h/ton during use of ballast on rear tractor wheels at traveling speed 3.38 km/h on the field surface.

Keywords: tractor, energy, transportation, weight, power

Procedia PDF Downloads 288
2842 Behavior of a Vertical Pile under the Effect of an Inclined Load

Authors: Fathi Mohamed Abdrabbo, Khaled Elsayed Gaaver, Musab Musa Eldooma

Abstract:

This paper presents an attempt made to investigate the behavior of a single vertical steel hollow pile embedded in sand subjected to compressive inclined load at various inclination angles α through FEM package MIDAS GTS/NX 2019. The effect of the inclination angle and slenderness ratio on the performance of the pile was investigated. Inclined load caring capacity and pile stiffness, as well as lateral deformation profiles along with the pile, were presented. The global, vertical, and horizontal load displacements, as well as the deformation profiles along with the pile and the pile stiffness, are significantly affected by α. Whereas P-Y curves of the pile are independent of α., also the slenderness ratios are markedly affecting the behavior of the pile. In addition, there was a noticeable effect of the horizontal component on the vertical behavior of the pile, whereas there was no influence of the presence of vertical load on the horizontal behavior of the pile.

Keywords: deep foundations, piles, inclined load, pile deformations

Procedia PDF Downloads 178
2841 Variation of the Dynamic Characteristics of a Spindle with the Change of Bearing Preload

Authors: Shinji Oouchi, Hajime Nomura, Kung-Da Wu, Jui-Pin Hung

Abstract:

This paper presents the variation of the dynamic characteristics of a spindle with the change of bearing preload. The correlations between the variation of bearing preload and fundamental modal parameters were first examined by conducting vibration tests on physical spindle units. Experimental measurements show that the dynamic compliance and damping ratio associated with the dominating modes were affected to vary with variation of the bearing preload. When the bearing preload was slightly deviated from a standard value, the modal frequency and damping ability also vary to different extent, which further enable the spindle to perform with different compliance. For the spindle used in this study, a standard preload value set on bearings would enable the spindle to behave a higher stiffness as compared with others with a preload variation. This characteristic can be served as a reference to examine the variation of bearing preload of spindle in assemblage or operation.

Keywords: dynamic compliance, bearing preload, modal damping, standard preload

Procedia PDF Downloads 467
2840 Synthesis and Characterisations of Cordierite Bonded Porous SiC Ceramics by Sol Infiltration Technique

Authors: Sanchita Baitalik, Nijhuma Kayal, Omprakash Chakrabarti

Abstract:

Recently SiC ceramics have been a focus of interest in the field of porous materials due to their unique combination of properties and hence they are considered as an ideal candidate for catalyst supports, thermal insulators, high-temperature structural materials, hot gas particulate separation systems etc. in different industrial processes. Several processing methods are followed for fabrication of porous SiC at low temperatures but all these methods are associated with several disadvantages. Therefore processing of porous SiC ceramics at low temperatures is still challenging. Concerning that of incorporation of secondary bond phase additives by an infiltration technique should result in a homogenous distribution of bond phase in the final ceramics. Present work is aimed to synthesis cordierite (2MgO.2Al2O3.5SiO2) bonded porous SiC ceramics following incorporation of sol-gel bond phase precursor into powder compacts of SiC and heat treating the infiltrated body at 1400 °C. In this paper the primary aim was to study the effect of infiltration of a precursor sol of cordierite into a porous SiC powder compact prepared with pore former of different particle sizes on the porosity, pore size, microstructure and the mechanical properties of the porous SiC ceramics. Cordierite sol was prepared by mixing a solution of magnesium nitrate hexahydrate and aluminium nitrate nonahydrate in 2:4 molar ratio in ethanol another solution containing tetra-ethyl orthosilicate and ethanol in 1:3 molar ratio followed by stirring for several hours. Powders of SiC (α-SiC; d50 =22.5 μm) and 10 wt. % polymer microbead of two sizes 8 and 50µm as the pore former were mixed in a suitable liquid medium, dried and pressed in the form of bars (50×20×16 mm3) at 23 MPa pressure. The well-dried bars were heat treated at 1100° C for 4 h with a hold at 750 °C for 2 h to remove the pore former. Bars were evacuated for 2 hr upto 0.3 mm Hg pressure into a vacuum chamber and infiltrated with cordierite precursor sol. The infiltrated samples were dried and the infiltration process was repeated until the weight gain became constant. Finally the infiltrated samples were sintered at 1400 °C to prepare cordierite bonded porous SiC ceramics. Porous ceramics prepared with 8 and 50 µm sized microbead exhibited lower oxidation degrees of respectively 7.8 and 4.8 % than the sample (23 %) prepared with no microbead. Depending on the size of pore former, the porosity of the final ceramic varied in the range of 36 to 40 vol. % with a variation of flexural strength from 33.7 to 24.6 MPa. XRD analysis showed major crystalline phases of the ceramics as SiC, SiO2 and cordierite. Two forms of cordierite, α-(hexagonal) and µ-(cubic), were detected by the XRD analysis. The SiC particles were observed to be bonded both by cristobalite with fish scale morphology and cordierite with rod shape morphology and thereby formed a porous network. The material and mechanical properties of cordierite bonded porous SiC ceramics are good in agreement to carry out further studies like thermal shock, corrosion resistance etc.

Keywords: cordierite, infiltration technique, porous ceramics, sol-gel

Procedia PDF Downloads 274
2839 Quantum Mechanics as a Branch of Black Hole Cosmology

Authors: U. V. S. Seshavatharam, S. Lakshminarayana

Abstract:

In a unified approach observed cosmic red shift can be re-interpreted as an index of cosmological galactic atomic light emission phenomenon. By increasing the applications of Hubble volume in cosmology as well as in quantum physics, concepts of ‘Black Hole Cosmology’ can be well-confirmed. Clearly speaking ‘quantum mechanics’ can be shown to be a branch of ‘black hole cosmology’. In Big Bang Model, confirmation of all the observations directly depend on the large scale galactic distances that are beyond human reach and raise ambiguity in all respects. The subject of modern black hole physics is absolutely theoretical. Advantage of Black hole cosmology lies in confirming its validity through the ground based atomic and nuclear experimental results.

Keywords: Hubble volume, black hole cosmology, CMBR energy density, Planck’s constant, fine structure ratio, cosmic time, nuclear charge radius, unification

Procedia PDF Downloads 566
2838 Production of Hard Nickel Particle Reinforced Ti6Al4V Matrix Composites by Hot Pressing

Authors: Ridvan Yamanoglu

Abstract:

In the current study, titanium based composites reinforced by hard nickel alloy particles were produced. Powder metallurgical hot pressing technique was used for the fabrication of composite materials. The composites containing different ratio of hard nickel particles were sintered at 900 oC for 15 and 30 minutes under 50 MPa pressure. All titanium based composites were obtained under a vacuum atmosphere of 10-4 mbar to prevent of oxidation of titanium due to its high reactivity to oxygen. The microstructural characterization of the composite samples was carried out by optical and scanning electron microscopy. The mechanical properties of the samples were determined by means of hardness and wear tests. The results showed that when the nickel particle content increased the mechanical properties of the composites enhanced. The results are discussed in detail and optimum nickel particle content were determined.

Keywords: titanium, composite, nickel, hot pressing

Procedia PDF Downloads 174
2837 Tailorability of Poly(Aspartic Acid)/BSA Complex by Self-Assembling in Aqueous Solutions

Authors: Loredana E. Nita, Aurica P. Chiriac, Elena Stoleru, Alina Diaconu, Tudorachi Nita

Abstract:

Self-assembly processes are an attractive method to form new and complex structures between macromolecular compounds to be used for specific applications. In this context, intramolecular and intermolecular bonds play a key role during self-assembling processes in preparation of carrier systems of bioactive substances. Polyelectrolyte complexes (PECs) are formed through electrostatic interactions, and though they are significantly below of the covalent linkages in their strength, these complexes are sufficiently stable owing to the association processes. The relative ease way of PECs formation makes from them a versatile tool for preparation of various materials, with properties that can be tuned by adjusting several parameters, such as the chemical composition and structure of polyelectrolytes, pH and ionic strength of solutions, temperature and post-treatment procedures. For example, protein-polyelectrolyte complexes (PPCs) are playing an important role in various chemical and biological processes, such as protein separation, enzyme stabilization and polymer drug delivery systems. The present investigation is focused on evaluation of the PPC formation between a synthetic polypeptide (poly(aspartic acid) – PAS) and a natural protein (bovine serum albumin - BSA). The PPC obtained from PAS and BSA in different ratio was investigated by corroboration of various techniques of characterization as: spectroscopy, microscopy, thermo-gravimetric analysis, DLS and zeta potential determination, measurements which were performed in static and/or dynamic conditions. The static contact angle of the sample films was also determined in order to evaluate the changes brought upon surface free energy of the prepared PPCs in interdependence with the complexes composition. The evolution of hydrodynamic diameter and zeta potential of the PPC, recorded in situ, confirm changes of both co-partners conformation, a 1/1 ratio between protein and polyelectrolyte being benefit for the preparation of a stable PPC. Also, the study evidenced the dependence of PPC formation on the temperature of preparation. Thus, at low temperatures the PPC is formed with compact structure, small dimension and hydrodynamic diameter, close to those of BSA. The behavior at thermal treatment of the prepared PPCs is in agreement with the composition of the complexes. From the contact angle determination results the increase of the PPC films cohesion, which is higher than that of BSA films. Also, a higher hydrophobicity corresponds to the new PPC films denoting a good adhesion of the red blood cells onto the surface of PSA/BSA interpenetrated systems. The SEM investigation evidenced as well the specific internal structure of PPC concretized in phases with different size and shape in interdependence with the interpolymer mixture composition.

Keywords: polyelectrolyte – protein complex, bovine serum albumin, poly(aspartic acid), self-assembly

Procedia PDF Downloads 247
2836 Population Size Estimation Based on the GPD

Authors: O. Anan, D. Böhning, A. Maruotti

Abstract:

The purpose of the study is to estimate the elusive target population size under a truncated count model that accounts for heterogeneity. The purposed estimator is based on the generalized Poisson distribution (GPD), which extends the Poisson distribution by adding a dispersion parameter. Thus, it becomes an useful model for capture-recapture data where concurrent events are not homogeneous. In addition, it can account for over-dispersion and under-dispersion. The ratios of neighboring frequency counts are used as a tool for investigating the validity of whether generalized Poisson or Poisson distribution. Since capture-recapture approaches do not provide the zero counts, the estimated parameters can be achieved by modifying the EM-algorithm technique for the zero-truncated generalized Poisson distribution. The properties and the comparative performance of proposed estimator were investigated through simulation studies. Furthermore, some empirical examples are represented insights on the behavior of the estimators.

Keywords: capture, recapture methods, ratio plot, heterogeneous population, zero-truncated count

Procedia PDF Downloads 436