Search results for: EC (Electrical Conductivity)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2618

Search results for: EC (Electrical Conductivity)

848 Hybrid Dynamic Approach to Optimize the Impact of Shading Design and Control on Electrical Energy Demand

Authors: T. Parhizkar, H. Jafarian, F. Aramoun, Y. Saboohi

Abstract:

Applying motorized shades have substantial effect on reducing energy consumption in building sector. Moreover, the combination of motorized shades with lighting systems and PV panels can lead to considerable reduction in the energy demand of buildings. In this paper, a model is developed to assess and find an optimum combination from shade designs, lighting control systems (dimming and on/off) and implementing PV panels in shades point of view. It is worth mentioning that annual saving for all designs is obtained during hourly simulation of lighting, solar heat flux and electricity generation with the use of PV panel. From 12 designs in general, three designs, two lighting control systems and PV panel option is implemented for a case study. The results illustrate that the optimum combination causes a saving potential of 792kW.hr per year.

Keywords: motorized shades, daylight, cooling load, shade control, hourly simulation

Procedia PDF Downloads 165
847 Energy Savings with the Use of LED Lights at the Wastewater Treatment Plant

Authors: Kishen Prathivadi

Abstract:

The Sewer Authority Mid-Coastside (SAM) is a Joint Powers Authority formed in 1976 and provides secondary wastewater treatment to an average flow of 2.0 million gallons per day. SAM owns and operates a Wastewater Treatment Plant (WWTP) and a sanitary sewage collection system that collects sewage from its three member agencies: the City of Half Moon Bay, the Granada Community Services District and Montara Water and Sanitary District. The Sewer Authority Mid-Coastside (SAM) partnered with Pacific Gas & Electric, and its contractor GEL America, to review and replace all inefficient lighting fixtures and bulbs at the SAM treatment plant and administrative office. The project focused on replacing old and inefficient lighting fixtures and bulbs, reducing annual operating and maintenance costs, and reducing SAM’s carbon footprint. The project resulted in a 55% overall energy reduction, higher light quality and acuity, and a total operational savings of $495,000 over ten years.

Keywords: energy savings, LED, lighting, electrical

Procedia PDF Downloads 131
846 Computer Aided Engineering Optimization of Synchronous Reluctance Motor and Vibro-Acoustic Analysis for Lift Systems

Authors: Ezio Bassi, Francesco Vercesi, Francesco Benzi

Abstract:

The aim of this study is to evaluate the potentiality of synchronous reluctance motors for lift systems by also evaluating the vibroacoustic behaviour of the motor. Two types of synchronous machines are designed, analysed, and compared with an equivalent induction motor, which is the more common solution in such gearbox applications. The machines' performance are further improved with optimization procedures based on multiobjective optimization genetic algorithm (MOGA). The difference between the two synchronous motors consists in the rotor geometry; a symmetric and an asymmetric rotor design were investigated. The evaluation of the vibroacoustic performance has been conducted with a multi-variable model and finite element software taking into account electromagnetic, mechanical, and thermal features of the motor, therefore carrying out a multi-physics analysis of the electrical machine.

Keywords: synchronous reluctance motor, vibro-acoustic, lift systems, genetic algorithm

Procedia PDF Downloads 165
845 QI Wireless Charging a Scope of Magnetic Inductive Coupling

Authors: Sreenesh Shashidharan, Umesh Gaikwad

Abstract:

QI or 'Chee' which is an interface standard for inductive electrical power transfer over distances of up to 4 cm (1.6 inches). The Qi system comprises a power transmission pad and a compatible receiver in a portable device which is placed on top of the power transmission pad, which charges using the principle of electromagnetic induction. An alternating current is passed through the transmitter coil, generating a magnetic field. This, in turn, induces a voltage in the receiver coil; this can be used to power a mobile device or charge a battery. The efficiency of the power transfer depends on the coupling (k) between the inductors and their quality (Q) The coupling is determined by the distance between the inductors (z) and the relative size (D2 /D). The coupling is further determined by the shape of the coils and the angle between them. If the receiver coil is at a certain distance to the transmitter coil, only a fraction of the magnetic flux, which is generated by the transmitter coil, penetrates the receiver coil and contributes to the power transmission. The more flux reaches the receiver, the better the coils are coupled.

Keywords: inductive electric power, electromagnetic induction, magnetic flux, coupling

Procedia PDF Downloads 720
844 Electrical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: electrical disaggregation, DTW, general appliance modeling, event detection

Procedia PDF Downloads 65
843 Geotechnical Distress Evaluation of a Damaged Structure

Authors: Zulfiqar Ali, Umar Saleem, Muhammad Junaid, Rizwan Tahir

Abstract:

Gulzar Mahal is a heritage site located in the city of Bahawalpur, Pakistan. The site is under a process of degradation, as cracks are appearing on the walls, roofs, and floor around the building due to differential settlement. To preserve the integrity of the structure, a geotechnical distress evaluation was carried out to evaluate the causal factors and recommend remediation measures. The research involved the characterization of the problematic soil and analysis of the observed distress with respect to the geotechnical properties. Both conventional lab and field tests were used in conjunction with the unconventional techniques like; Electrical Resistivity Tomography (ERT) and FEA. The temporal, geophysical and geotechnical evaluations have concluded that the foundation soil over the past was subjected to variations in the land use, poor drainage patterns, overloading and fluctuations in groundwater table all contributing to the differential settlements manifesting in the form of the visible shear crack across the length and breadth of the building.

Keywords: differential settlement, distress evaluation, finite element analysis, Gulzar Mahal

Procedia PDF Downloads 116
842 Magnetic Study on Ybₐ₂Cu₃O₇₋δ Nanoparticles Doped by Ferromagnetic Nanoparticles of Y₃Fe₅O₁₂

Authors: Samir Khene

Abstract:

Present and future industrial uses of high critical temperature superconductors require high critical temperatures TC and strong current densities JC. These two aims constitute the two motivations of scientific research in this domain. The most significant feature of any superconductor, from the viewpoint of uses, is the maximum electrical transport current density that this superconductor is capable of withstanding without loss of energy. In this work, vortices pinning in conventional and high-TC superconductors will be studied. Our experiments on vortices pinning in single crystals and nanoparticles of YBₐ₂Cu₃O₇₋δ and La₁.₈₅ Sr₀.₁₅CuO will be presented. It will be given special attention to the study of the YBₐ₂Cu₃O₇₋δ nanoparticles doped by ferromagnetic nanoparticles of Y₃Fe₅O₁₂. The ferromagnetism and superconductivity coexistence in this compound will be demonstrated, and the influence of these ferromagnetic nanoparticles on the variations of the critical current density JC in YBₐ₂Cu₃O7₇₋δ nanoparticles as a function of applied field H and temperature T will be studied.

Keywords: superconductors, high critical temperature, vortices pinning, nanoparticles, ferromagnetism, coexistence

Procedia PDF Downloads 58
841 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment

Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi

Abstract:

Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.

Keywords: electric power consumption, LED color, LED lighting, plant factory

Procedia PDF Downloads 178
840 Transparent and Solution Processable Low Contact Resistance SWCNT/AZONP Bilayer Electrodes for Sol-Gel Metal Oxide Thin Film Transistor

Authors: Su Jeong Lee, Tae Il Lee, Jung Han Kim, Chul-Hong Kim, Gee Sung Chae, Jae-Min Myoung

Abstract:

The contact resistance between source/drain electrodes and semiconductor layer is an important parameter affecting electron transporting performance in the thin film transistor (TFT). In this work, we introduced a transparent and the solution prossable single-walled carbon nanotube (SWCNT)/Al-doped ZnO nano particle (AZO NP) bilayer electrodes showing low contact resistance with indium-oxide (In2O3) sol gel thin film. By inserting low work function AZO NPs into the interface between the SWCNTs and the In2O3 which has a high energy barrier, we could obtain an electrical Ohmic contact between them. Finally, with the SWCNT-AZO NP bilayer electrodes, we successfully fabricated a TFT showing a field effect mobility of 5.38 cm2/V∙s at 250 °C.

Keywords: single-walled carbon nanotube (SWCNT), Al-doped ZnO (AZO) nanoparticle, contact resistance, thin-film transistor (TFT)

Procedia PDF Downloads 519
839 Health Assessment of Power Transformer Using Fuzzy Logic

Authors: Yog Raj Sood, Rajnish Shrivastava, Anchal Wadhwa

Abstract:

Power transformer is one of the electrical equipment that has a central and critical role in the power system. In order to avoid power transformer failure, information system that provides the transformer condition is needed. This paper presents an information system to know the exact situations prevailing within the transformer by declaring its health index. Health index of a transformer is decided by considering several diagnostic tools. The current work deals with UV-Vis, IFT, FP, BDV and Water Content. UV/VIS results have been pre-accessed using separate FL controller for concluding with the Furan contents. It is broadly accepted that the life of a power transformer is the life of the oil/ paper insulating system. The method relies on the use of furan analysis (insulation paper), and other oil analysis results as a means to declare health index. Fuzzy logic system is used to develop the information system. The testing is done on 5 samples of oil of transformers of rating 132/66 KV to obtain the results and results are analyzed using fuzzy logic model.

Keywords: interfacial tension analyzer (ift), flash point (fp), furfuraldehyde (fal), health index

Procedia PDF Downloads 621
838 SCR-Stacking Structure with High Holding Voltage for IO and Power Clamp

Authors: Hyun Young Kim, Chung Kwang Lee, Han Hee Cho, Sang Woon Cho, Yong Seo Koo

Abstract:

In this paper, we proposed a novel SCR (Silicon Controlled Rectifier) - based ESD (Electrostatic Discharge) protection device for I/O and power clamp. The proposed device has a higher holding voltage characteristic than conventional SCR. These characteristics enable to have latch-up immunity under normal operating conditions as well as superior full chip ESD protection. The proposed device was analyzed to figure out electrical characteristics and tolerance robustness in term of individual design parameters (D1, D2, D3). They are investigated by using the Synopsys TCAD simulator. As a result of simulation, holding voltage increased with different design parameters. The holding voltage of the proposed device changes from 3.3V to 7.9V. Also, N-Stack structure ESD device with the high holding voltage is proposed. In the simulation results, 2-stack has holding voltage of 6.8V and 3-stack has holding voltage of 10.5V. The simulation results show that holding voltage of stacking structure can be larger than the operation voltage of high-voltage application.

Keywords: ESD, SCR, holding voltage, stack, power clamp

Procedia PDF Downloads 543
837 Diversity, Biochemical and Genomic Assessment of Selected Benthic Species of Two Tropical Lagoons, Southwest Nigeria

Authors: G. F. Okunade, M. O. Lawal, R. E. Uwadiae, D. Portnoy

Abstract:

The diversity, physico-chemical, biochemical and genomics assessment of Macrofauna species of Ologe and Badagry Lagoons were carried out between August 2016 and July 2018. The concentrations of Fe, Zn, Mn, Cd, Cr, and Pb in water were determined by Atomic Absorption Spectrophotometer (AAS). Particle size distribution was determined with wet-sieving and sedimentation using hydrometer method. Genomics analyses were carried using 25 P. fusca (quadriseriata) and 25 P.fusca from each lagoon due to abundance in both lagoons all through the two years of collection. DNA was isolated from each sample using the Mag-Bind Blood and Tissue DNA HD 96 kit; a method designed to isolate high quality. The biochemical characteristics were analysed in the dominanat species (P.aurita and T. fuscatus) using ELISA kits. Physico-chemical parameters such as pH, total dissolved solids, dissolved oxygen, conductivity and TDS were analysed using APHA standard protocols. The Physico-chemical parameters of the water quality recorded with mean values of 32.46 ± 0.66mg/L and 41.93 ± 0.65 for COD, 27.28 ± 0.97 and 34.82 ± 0.1 mg/L for BOD, 0.04 ± 4.71 mg/L for DO, 6.65 and 6.58 for pH in Ologe and Badagry lagoons with significant variations (p ≤ 0.05) across seasons. The mean and standard deviation of salinity for Ologe and Badagry Lagoons ranged from 0.43 ± 0.30 to 0.27 ± 0.09. A total of 4210 species belonging to a phylum, two classes, four families and a total of 2008 species in Ologe lagoon while a phylum, two classes, 5 families and a total of 2202 species in Badagry lagoon. The percentage composition of the classes at Ologe lagoon had 99% gastropod and 1% bivalve, while Gastropod contributed 98.91% and bivalve 1.09% in Badagry lagoon. Particle size was distributed in 0.002mm to 2.00mm, particle size distribution in Ologe lagoon recorded 0.83% gravels, 97.83% sand, and 1.33% silt particles while Badagry lagoon recorded 7.43% sand, 24.71% silt, and 67.86% clay particles hence, the excessive dredging activities going on in the lagoon. Maximum percentage of sand (100%) was seen in station 6 in Ologe lagoon while the minimum (96%) was found in station 1. P. aurita (Ologe Lagoon) and T. fuscastus (Badagry Lagoon) were the most abundant benthic species in which both contributed 61.05% and 64.35%, respectively. The enzymatic activities of P. aurita observed with mean values of 21.03 mg/dl for AST, 10.33 mg/dl for ALP, 82.16 mg/dl for ALT and 73.06 mg/dl for CHO in Ologe Lagoon While T. fuscatus observed mean values of Badagry Lagoon) recorded mean values 29.76 mg/dl, ALP with 11.69mg/L, ALT with 140.58 mg/dl and CHO with 45.98 mg/dl. There were significant variations (P < 0.05) in AST and CHO levels of activities in the muscles of the species.

Keywords: benthos, biochemical responses, genomics, metals, particle size

Procedia PDF Downloads 118
836 Effective Cooling of Photovoltaic Solar Cells by Inserting Triangular Ribs: A Numerical Study

Authors: S. Saadi, S. Benissaad, S. Poncet, Y. Kabar

Abstract:

In photovoltaic (PV) cells, most of the absorbed solar radiation cannot be converted into electricity. A large amount of solar radiation is converted to heat, which should be dissipated by any cooling techniques. In the present study, the cooling is achieved by inserting triangular ribs in the duct. A comprehensive two-dimensional thermo-fluid model for the effective cooling of PV cells has been developed. It has been first carefully validated against experimental and numerical results available in the literature. A parametric analysis was then carried out about the influence of the number and size of the ribs, wind speed, solar irradiance and inlet fluid velocity on the average solar cell and outlet air temperatures as well as the thermal and electrical efficiencies of the module. Results indicated that the use of triangular ribbed channels is a very effective cooling technique, which significantly reduces the average temperature of the PV cell, especially when increasing the number of ribs.

Keywords: effective cooling, numerical modeling, photovoltaic cell, triangular ribs

Procedia PDF Downloads 166
835 Simulation and Modeling of High Voltage Pulse Transformer

Authors: Zahra Emami, H. Reza Mesgarzade, A. Morad Ghorbami, S. Reza Motahari

Abstract:

This paper presents a method for calculation of parasitic elements consisting of leakage inductance and parasitic capacitance in a high voltage pulse transformer. The parasitic elements of pulse transformers significantly influence the resulting pulse shape of a power modulator system. In order to prevent the effects on the pulse shape before constructing the transformer an electrical model is needed. The technique procedures for computing these elements are based on finite element analysis. The finite element model of pulse transformer is created using software "Ansys Maxwell 3D". Finally, the transformer parasitic elements is calculated and compared with the value obtained from the actual test and pulse modulator is simulated and results is compared with actual test of pulse modulator. The results obtained are very similar with the test values.

Keywords: pulse transformer, simulation, modeling, Maxwell 3D, modulator

Procedia PDF Downloads 446
834 Integrating Deterministic and Probabilistic Safety Assessment to Decrease Risk & Energy Consumption in a Typical PWR

Authors: Ebrahim Ghanbari, Mohammad Reza Nematollahi

Abstract:

Integrating deterministic and probabilistic safety assessment (IDPSA) is one of the most commonly used issues in the field of safety analysis of power plant accident. It has also been recognized today that the role of human error in creating these accidents is not less than systemic errors, so the human interference and system errors in fault and event sequences are necessary. The integration of these analytical topics will be reflected in the frequency of core damage and also the study of the use of water resources in an accident such as the loss of all electrical power of the plant. In this regard, the SBO accident was simulated for the pressurized water reactor in the deterministic analysis issue, and by analyzing the operator's behavior in controlling the accident, the results of the combination of deterministic and probabilistic assessment were identified. The results showed that the best performance of the plant operator would reduce the risk of an accident by 10%, as well as a decrease of 6.82 liters/second of the water sources of the plant.

Keywords: IDPSA, human error, SBO, risk

Procedia PDF Downloads 120
833 Effect of Cutting Tools and Working Conditions on the Machinability of Ti-6Al-4V Using Vegetable Oil-Based Cutting Fluids

Authors: S. Gariani, I. Shyha

Abstract:

Cutting titanium alloys are usually accompanied with low productivity, poor surface quality, short tool life and high machining costs. This is due to the excessive generation of heat at the cutting zone and difficulties in heat dissipation due to relatively low heat conductivity of this metal. The cooling applications in machining processes are crucial as many operations cannot be performed efficiently without cooling. Improving machinability, increasing productivity, enhancing surface integrity and part accuracy are the main advantages of cutting fluids. Conventional fluids such as mineral oil-based, synthetic and semi-synthetic are the most common cutting fluids in the machining industry. Although, these cutting fluids are beneficial in the industries, they pose a great threat to human health and ecosystem. Vegetable oils (VOs) are being investigated as a potential source of environmentally favourable lubricants, due to a combination of biodegradability, good lubricous properties, low toxicity, high flash points, low volatility, high viscosity indices and thermal stability. Fatty acids of vegetable oils are known to provide thick, strong, and durable lubricant films. These strong lubricating films give the vegetable oil base stock a greater capability to absorb pressure and high load carrying capacity. This paper details preliminary experimental results when turning Ti-6Al-4V. The impact of various VO-based cutting fluids, cutting tool materials, working conditions was investigated. The full factorial experimental design was employed involving 24 tests to evaluate the influence of process variables on average surface roughness (Ra), tool wear and chip formation. In general, Ra varied between 0.5 and 1.56 µm and Vasco1000 cutting fluid presented comparable performance with other fluids in terms of surface roughness while uncoated coarse grain WC carbide tool achieved lower flank wear at all cutting speeds. On the other hand, all tools tips were subjected to uniform flank wear during whole cutting trails. Additionally, formed chip thickness ranged between 0.1 and 0.14 mm with a noticeable decrease in chip size when higher cutting speed was used.

Keywords: cutting fluids, turning, Ti-6Al-4V, vegetable oils, working conditions

Procedia PDF Downloads 262
832 Energy-efficient Buildings In Construction Industry Using Fly Ash-based Geopolymer Technology

Authors: Maryam Kiani

Abstract:

The aim of this study was to investigate the influence of nanoparticles additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of nanoparticles flexural strength, water absorption, and micro-structural properties of the cured samples. The results revealed that the inclusion of nanoparticles additive significantly enhanced the mechanical and electrical properties of the geopolymer binder. Micro-structural analysis using scanning electron microscopy (SEM) revealed a more compact and homogeneous structure in the geopolymer samples with nanoparticles. The dispersion of nanoparticles particles within the geopolymer matrix was observed, suggesting improved inter-particle bonding and increased density. Overall, this study demonstrates the positive impact of nanoparticles additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications for the development of construction and infrastructure for energy buildings.

Keywords: fly-ash, geopolymer, energy buildings, nanotechnology

Procedia PDF Downloads 77
831 BLDC Motor Driven for Solar Photo Voltaic Powered Air Cooling System

Authors: D. Shobha Rani, M. Muralidhar

Abstract:

Solar photovoltaic (SPV) power systems can be employed as electrical power sources to meet the daily residential energy needs of rural areas that have no access to grid systems. In view of this, a standalone SPV powered air cooling system is proposed in this paper, which constitutes a dc-dc boost converter, two voltage source inverters (VSI) connected to two brushless dc (BLDC) motors which are coupled to a centrifugal water pump and a fan blower. A simple and efficient Maximum Power Point Tracking (MPPT) technique based on Silver Mean Method (SMM) is utilized in this paper. The air cooling system is developed and simulated using the MATLAB / Simulink environment considering the dynamic and steady state variation in the solar irradiance.

Keywords: boost converter, solar photovoltaic array, voltage source inverter, brushless DC motor, solar irradiance, maximum power point tracking, silver mean method

Procedia PDF Downloads 264
830 CuIn₃Se₅ Colloidal Nanocrystals and Its Ink-Coated Films for Photovoltaics

Authors: M. Ghali, M. Elnimr, G. F. Ali, A. M. Eissa, H. Talaat

Abstract:

CuIn₃Se₅ material is indexed as ordered vacancy compounds having excellent matching properties with CuInGaSe (CIGS) solar absorber layer. For example, the valence band offset of CuIn₃Se₅ with CIGS is nearly 0.3 eV, and the lattice mismatch is less than 1%, besides the absence of discontinuity in their conduction bands. Thus, CuIn₃Se₅ can work as a passivation layer for repelling holes from CIGS/CdS interface and hence to reduce the interface carriers recombination and consequently enhancing the efficiency of CIGS/CdS solar cells. Theoretically, it was reported earlier that an improvement in the efficiency of p-CIGS-based solar cell with a thin ~100 nm of n-CuIn₃Se₅ layer is expected. Recently, a reported experiment demonstrated significant improvement in the efficiency of Molecular Beam Epitaxy (MBE) grown CIGS solar cells from 13.4 to 14.5% via inserting a thin layer of MBE-grown Cu(In,Ga)₃Se₅ layer at the CdS/CIGS interface. It should be mentioned that CuIn₃Se₅ material in either bulk or thin film form, are usually fabricated by high vacuum physical vapor deposition techniques (e.g., three-source co-evaporation, RF sputtering, flash evaporation, and molecular beam epitaxy). In addition, achieving photosensitive films of n-CuIn₃Se₅ material is important for new hybrid organic/inorganic structures, where inorganic photo-absorber layer, with n-type conductivity, can form n–p junction with organic p-type material (e.g., conductive polymers). A detailed study of the physical properties of CuIn₃Se₅ is still necessary for better understanding of device operation and further improvement of solar cells performance. Here, we report on the low-cost synthesis of CuIn₃Se₅ material in nano-scale size, with an average diameter ~10nm, using simple solution-based colloidal chemistry. In contrast to traditionally grown bulk tetragonal CuIn₃Se₅ crystals using high Vacuum-based technology, our colloidal CuIn₃Se₅ nanocrystals show cubic crystal structure with a shape of nanoparticles and band gap ~1.33 eV. Ink-coated thin films prepared from these nanocrystals colloids; display n-type character, 1.26 eV band gap and strong photo-responsive behavior with incident white light. This suggests the potential use of colloidal CuIn₃Se₅ as an active layer in all-solution-processed thin film solar cells.

Keywords: nanocrystals, CuInSe, thin film, optical properties

Procedia PDF Downloads 147
829 Analyzing Electromagnetic and Geometric Characterization of Building Insulation Materials Using the Transient Radar Method (TRM)

Authors: Ali Pourkazemi

Abstract:

The transient radar method (TRM) is one of the non-destructive methods that was introduced by authors a few years ago. The transient radar method can be classified as a wave-based non destructive testing (NDT) method that can be used in a wide frequency range. Nevertheless, it requires a narrow band, ranging from a few GHz to a few THz, depending on the application. As a time-of-flight and real-time method, TRM can measure the electromagnetic properties of the sample under test not only quickly and accurately, but also blindly. This means that it requires no prior knowledge of the sample under test. For multi-layer structures, TRM is not only able to detect changes related to any parameter within the multi-layer structure but can also measure the electromagnetic properties of each layer and its thickness individually. Although the temperature, humidity, and general environmental conditions may affect the sample under test, they do not affect the accuracy of the Blind TRM algorithm. In this paper, the electromagnetic properties as well as the thickness of the individual building insulation materials - as a single-layer structure - are measured experimentally. Finally, the correlation between the reflection coefficients and some other technical parameters such as sound insulation, thermal resistance, thermal conductivity, compressive strength, and density is investigated. The sample to be studied is 30 cm x 50 cm and the thickness of the samples varies from a few millimeters to 6 centimeters. This experiment is performed with both biostatic and differential hardware at 10 GHz. Since it is a narrow-band system, high-speed computation for analysis, free-space application, and real-time sensor, it has a wide range of potential applications, e.g., in the construction industry, rubber industry, piping industry, wind energy industry, automotive industry, biotechnology, food industry, pharmaceuticals, etc. Detection of metallic, plastic pipes wires, etc. through or behind the walls are specific applications for the construction industry.

Keywords: transient radar method, blind electromagnetic geometrical parameter extraction technique, ultrafast nondestructive multilayer dielectric structure characterization, electronic measurement systems, illumination, data acquisition performance, submillimeter depth resolution, time-dependent reflected electromagnetic signal blind analysis method, EM signal blind analysis method, time domain reflectometer, microwave, milimeter wave frequencies

Procedia PDF Downloads 63
828 Assessment of Cellular Metabolites and Impedance for Early Diagnosis of Oral Cancer among Habitual Smokers

Authors: Ripon Sarkar, Kabita Chaterjee, Ananya Barui

Abstract:

Smoking is one of the leading causes of oral cancer. Cigarette smoke affects various cellular parameters and alters molecular metabolism of cells. Epithelial cells losses their cytoskeleton structure, membrane integrity, cellular polarity that subsequently initiates the process of epithelial cells to mesenchymal transition due to long exposure of cigarette smoking. It changes the normal cellular metabolic activity which induces oxidative stress and enhances the reactive oxygen spices (ROS) formation. Excessive ROS and associated oxidative stress are considered to be a driving force in alteration in cellular phenotypes, polarity distribution and mitochondrial metabolism. Noninvasive assessment of such parameters plays essential role in development of routine screening system for early diagnosis of oral cancer. Electrical cell-substrate impedance sensing (ECIS) is one of such method applied for detection of cellular membrane impedance which can be correlated to cell membrane integrity. Present study intends to explore the alteration in cellular impedance along with the expression of cellular polarity molecules and cytoskeleton distributions in oral epithelial cells of habitual smokers and to correlate the outcome to that of clinically diagnosed oral leukoplakia and oral squamous cell carcinoma patients. Total 80 subjects were categorized into four study groups: nonsmoker (NS), cigarette smoker (CS), oral leukoplakia (OLPK) and oral squamous cell carcinoma (OSCC). Cytoskeleton distribution was analyzed by staining of actin filament and generation of ROS was measured using assay kit using standard protocol. Cell impedance was measured through ECIS method at different frequencies. Expression of E-cadherin and protease-activated receptor (PAR) proteins were observed through immune-fluorescence method. Distribution of actin filament is well organized in NS group however; distribution pattern was grossly varied in CS, OLPK and OSCC. Generation of ROS was low in NS which subsequently increased towards OSCC. Expressions of E-cadherin and change in cellular electrical impedance in different study groups indicated the hallmark of cancer progression from NS to OSCC. Expressions of E-cadherin, PAR protein, and cell impedance were decreased from NS to CS and farther OSCC. Generally, the oral epithelial cells exhibit apico-basal polarity however with cancer progression these cells lose their characteristic polarity distribution. In this study expression of polarity molecule and ECIS observation indicates such altered pattern of polarity among smoker group. Overall the present study monitored the alterations in intracellular ROS generation and cell metabolic function, membrane integrity in oral epithelial cells in cigarette smokers. Present study thus has clinical significance, and it may help in developing a noninvasive technique for early diagnosis of oral cancer amongst susceptible individuals.

Keywords: cigarette smoking, early oral cancer detection, electric cell-substrate impedance sensing, noninvasive screening

Procedia PDF Downloads 162
827 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement

Authors: Ferinar Moaidi, Mahdi Moaidi

Abstract:

Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.

Keywords: distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement

Procedia PDF Downloads 137
826 Graphene/h-BN Heterostructure Interconnects

Authors: Nikhil Jain, Yang Xu, Bin Yu

Abstract:

The material behavior of graphene, a single layer of carbon lattice, is extremely sensitive to its dielectric environment. We demonstrate improvement in electronic performance of graphene nanowire interconnects with full encapsulation by lattice-matching, chemically inert, 2D layered insulator hexagonal boron nitride (h- BN). A novel layer-based transfer technique is developed to construct the h-BN/MLG/h-BN heterostructures. The encapsulated graphene wires are characterized and compared with that on SiO2 or h-BN substrate without passivating h-BN layer. Significant improvements in maximum current-carrying density, breakdown threshold, and power density in encapsulated graphene wires are observed. These critical improvements are achieved without compromising the carrier transport characteristics in graphene. Furthermore, graphene wires exhibit electrical behavior less insensitive to ambient conditions, as compared with the non-passivated ones. Overall, h-BN/graphene/h- BN heterostructure presents a robust material platform towards the implementation of high-speed carbon-based interconnects.

Keywords: two-dimensional nanosheet, graphene, hexagonal boron nitride, heterostructure, interconnects

Procedia PDF Downloads 308
825 The Effects of Human Activities on Plant Diversity in Tropical Wetlands of Lake Tana (Ethiopia)

Authors: Abrehet Kahsay Mehari

Abstract:

Aquatic plants provide the physical structure of wetlands and increase their habitat complexity and heterogeneity, and as such, have a profound influence on other biotas. In this study, we investigated how human disturbance activities influenced the species richness and community composition of aquatic plants in the wetlands of Lake Tana, Ethiopia. Twelve wetlands were selected: four lacustrine, four river mouths, and four riverine papyrus swamps. Data on aquatic plants, environmental variables, and human activities were collected during the dry and wet seasons of 2018. A linear mixed effect model and a distance-based Redundancy Analysis (db-RDA) were used to relate aquatic plant species richness and community composition, respectively, to human activities and environmental variables. A total of 113 aquatic plant species, belonging to 38 families, were identified across all wetlands during the dry and wet seasons. Emergent species had the maximum area covered at 73.45 % and attained the highest relative abundance, followed by amphibious and other forms. The mean taxonomic richness of aquatic plants was significantly lower in wetlands with high overall human disturbance scores compared to wetlands with low overall human disturbance scores. Moreover, taxonomic richness showed a negative correlation with livestock grazing, tree plantation, and sand mining. The community composition also varied across wetlands with varying levels of human disturbance and was primarily driven by turnover (i.e., replacement of species) rather than nestedness resultant(i.e., loss of species). Distance-based redundancy analysis revealed that livestock grazing, tree plantation, sand mining, waste dumping, and crop cultivation were significant predictors of variation in aquatic plant communities’ composition in the wetlands. Linear mixed effect models and distance-based redundancy analysis also revealed that water depth, turbidity, conductivity, pH, sediment depth, and temperature were important drivers of variations in aquatic plant species richness and community composition. Papyrus swamps had the highest species richness and supported different plant communities. Conservation efforts should therefore focus on these habitats and measures should be taken to restore the highly disturbed and species poor wetlands near the river mouths.

Keywords: species richness, community composition, aquatic plants, wetlands, Lake Tana, human disturbance activities

Procedia PDF Downloads 109
824 Characterization of Complex Electromagnetic Environment Created by Multiple Sources of Electromagnetic Radiation

Authors: Clement Temaneh-Nyah, Josiah Makiche, Josephine Nujoma

Abstract:

This paper considers the characterisation of a complex electromagnetic environment due to multiple sources of electromagnetic radiation as a five-dimensional surface which can be described by a set of several surface sections including: instant EM field intensity distribution maps at a given frequency and altitude, instantaneous spectrum at a given location in space and the time evolution of the electromagnetic field spectrum at a given point in space. This characterization if done over time can enable the exposure levels of Radio Frequency Radiation at every point in the analysis area to be determined and results interpreted based on comparison of the determined RFR exposure level with the safe guidelines for general public exposure given by recognised body such as the International commission on non-ionising radiation protection (ICNIRP), Institute of Electrical and Electronic Engineers (IEEE), the National Radiation Protection Authority (NRPA).

Keywords: complex electromagnetic environment, electric field strength, mathematical models, multiple sources

Procedia PDF Downloads 358
823 Optimization of Switched Reluctance Motor for Drive System in Automotive Applications

Authors: A. Peniak, J. Makarovič, P. Rafajdus, P. Dúbravka

Abstract:

The purpose of this work is to optimize a Switched Reluctance Motor (SRM) for an automotive application, specifically for a fully electric car. A new optimization approach is proposed. This unique approach transforms automotive customer requirements into an optimization problem, based on sound knowledge of a SRM theory. The approach combines an analytical and a finite element analysis of the motor to quantify static nonlinear and dynamic performance parameters, as phase currents and motor torque maps, an output power and power losses in order to find the optimal motor as close to the reality as possible, within reasonable time. The new approach yields the optimal motor which is competitive with other types of already proposed motors for automotive applications. This distinctive approach can also be used to optimize other types of electrical motors, when parts specifically related to the SRM are adjusted accordingly.

Keywords: automotive, drive system, electric car, finite element method, hybrid car, optimization, switched reluctance motor

Procedia PDF Downloads 506
822 Supply Chain Optimization Based on Advanced Planning and Scheduling Technology in Manufacturing Industry: A Case Study

Authors: Wenqian Shi, Xie He, Ziyin Huang, Zi Yu

Abstract:

The dramatic changes in the global economic situation have produced dramatic changes to companies’ supply chain systems. A variety of opportunities and challenges make the traditional manufacturing industry feel pressured, and the manufacturing industry must seek a new way out as soon as possible. This paper presents a case study of the advanced planning and scheduling technology problem encountered by an electrical and electronics manufacturer. The objective is to seek the minimum cost of production planning and order management. Digitalization is applied to the problem, and the results demonstrate that significant production performances can be achieved in the face of the existing production of each link and order management systems to analyze and optimize. This paper can also provide some practical implications in various manufacturing industries. Finally, future research directions are discussed.

Keywords: advanced planning and scheduling, case study, production planning, supply chain optimization

Procedia PDF Downloads 81
821 Design and Sensitivity Analysis of Photovoltaic/Thermal Solar Collector

Authors: H. M. Farghally, N. M. Ahmed, H. T. El-Madany, D. M. Atia, F. H. Fahmy

Abstract:

Energy is required in almost every aspect of human activities and development of any nation in this world. Increasing fossil fuel price, energy security and climate change have important bearings on sustainable development of any nation. The renewable energy technology is considered one of the drastic approaches taken over the world to reduce the energy problem. The preservation of vegetables by freezing is one of the most important methods of retaining quality in agricultural products over long-term storage periods. Freezing factories show high demand of energy for both heat and electricity; the hybrid Photovoltaic/Thermal (PV/T) systems could be used in order to meet this requirement. This paper presents PV/T system design for freezing factory. Also, the complete mathematical modeling and Matlab Simulink of PV/T collector is introduced. The sensitivity analysis for the manufacturing parameters of PV/T collector is carried out to study their effect on the thermal and electrical efficiency.

Keywords: renewable energy, hybrid PV/T system, sensitivity analysis, ecological sciences

Procedia PDF Downloads 284
820 Optimal Analysis of Grounding System Design for Distribution Substation

Authors: Thong Lantharthong, Nattchote Rugthaicharoencheep, Att Phayomhom

Abstract:

This paper presents the electrical effect of two neighboring distribution substation during the construction phase. The size of auxiliary grounding grid have an effect on entire grounding system. The bigger the size of auxiliary grounding grid, the lower the GPR and maximum touch voltage, with the exception that when the two grids are unconnected, i.e. the bigger the size of auxiliary grounding grid, the higher the maximum step voltage. The results in this paper could be served as design guideline of grounding system, and perhaps remedy of some troublesome grounding grids in power distribution’s system. Modeling and simulation is carried out on the Current Distribution Electromagnetic interference Grounding and Soil structure (CDEGS) program. The simulation results exhibit the design and analysis of power system grounding and perhaps could be set as a standard in grounding system design and modification in distribution substations.

Keywords: grounding system, touch voltage, step voltage, safety criteria

Procedia PDF Downloads 441
819 Modeling the Effects of Leachate-Impacted Groundwater on the Water Quality of a Large Tidal River

Authors: Emery Coppola Jr., Marwan Sadat, Il Kim, Diane Trube, Richard Kurisko

Abstract:

Contamination sites like landfills often pose significant risks to receptors like surface water bodies. Surface water bodies are often a source of recreation, including fishing and swimming, which not only enhances their value but also serves as a direct exposure pathway to humans, increasing their need for protection from water quality degradation. In this paper, a case study presents the potential effects of leachate-impacted groundwater from a large closed sanitary landfill on the surface water quality of the nearby Raritan River, situated in New Jersey. The study, performed over a two year period, included in-depth field evaluation of both the groundwater and surface water systems, and was supplemented by computer modeling. The analysis required delineation of a representative average daily groundwater discharge from the Landfill shoreline into the large, highly tidal Raritan River, with a corresponding estimate of daily mass loading of potential contaminants of concern. The average daily groundwater discharge into the river was estimated from a high-resolution water level study and a 24-hour constant-rate aquifer pumping test. The significant tidal effects induced on groundwater levels during the aquifer pumping test were filtered out using an advanced algorithm, from which aquifer parameter values were estimated using conventional curve match techniques. The estimated hydraulic conductivity values obtained from individual observation wells closely agree with tidally-derived values for the same wells. Numerous models were developed and used to simulate groundwater contaminant transport and surface water quality impacts. MODFLOW with MT3DMS was used to simulate the transport of potential contaminants of concern from the down-gradient edge of the Landfill to the Raritan River shoreline. A surface water dispersion model based upon a bathymetric and flow study of the river was used to simulate the contaminant concentrations over space within the river. The modeling results helped demonstrate that because of natural attenuation, the Landfill does not have a measurable impact on the river, which was confirmed by an extensive surface water quality study.

Keywords: groundwater flow and contaminant transport modeling, groundwater/surface water interaction, landfill leachate, surface water quality modeling

Procedia PDF Downloads 250