Search results for: synthetic peptides
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1222

Search results for: synthetic peptides

1072 A Comparison between Reagents Extracted from Tree Leaves for Spectrophotometric Determination of Hafnium(IV)

Authors: A. Boveiri Monji, H. Yousefnia, S. Zolghadri, B. Salimi

Abstract:

The main goal of this paper was to make use of green reagents as a substitute of perilous synthetic reagents and organic solvents for spectrophotometric determination of hafnium(IV). The extracts taken from six different kinds of tree leaves including Acer negundo, Ficus carica, Cerasus avium, Chimonanthus, Salix babylonica and Pinus brutia, were applied as green reagents for the experiments. In 6-M hydrochloric acid, hafnium reacted with the reagent to form a yellow product and showed maximum absorbance at 421 nm. Among tree leaves, Chimonanthus showed satisfactory results with a molar absorptivity value of 0.61 × 104 l mol-1 cm-1 and the method was linear in the 0.3-9 µg mL -1 concentration range. The detection limit value was 0.064 µg mL-1. The proposed method was simple, low cost, clean, and selective.

Keywords: hafnium, spectrophotometric determination, synthetic reagents, tree leaves

Procedia PDF Downloads 188
1071 Paper-Based Detection Using Synthetic Gene Circuits

Authors: Vanessa Funk, Steven Blum, Stephanie Cole, Jorge Maciel, Matthew Lux

Abstract:

Paper-based synthetic gene circuits offer a new paradigm for programmable, fieldable biodetection. We demonstrate that by freeze-drying gene circuits with in vitro expression machinery, we can use complimentary RNA sequences to trigger colorimetric changes upon rehydration. We have successfully utilized both green fluorescent protein and luciferase-based reporters for easy visualization purposes in solution. Through several efforts, we are aiming to use this new platform technology to address a variety of needs in portable detection by demonstrating several more expression and reporter systems for detection functions on paper. In addition to RNA-based biodetection, we are exploring the use of various mechanisms that cells use to respond to environmental conditions to move towards all-hazards detection. Examples include explosives, heavy metals for water quality, and toxic chemicals.

Keywords: cell-free lysates, detection, gene circuits, in vitro

Procedia PDF Downloads 394
1070 Damage Assessment Based on Full-Polarimetric Decompositions in the 2017 Colombia Landslide

Authors: Hyeongju Jeon, Yonghyun Kim, Yongil Kim

Abstract:

Synthetic Aperture Radar (SAR) is an effective tool for damage assessment induced by disasters due to its all-weather and night/day acquisition capability. In this paper, the 2017 Colombia landslide was observed using full-polarimetric ALOS/PALSAR-2 data. Polarimetric decompositions, including the Freeman-Durden decomposition and the Cloude decomposition, are utilized to analyze the scattering mechanisms changes before and after-landslide. These analyses are used to detect the damaged areas induced by the landslide. Experimental results validate the efficiency of the full polarimetric SAR data since the damaged areas can be well discriminated. Thus, we can conclude the proposed method using full polarimetric data has great potential for damage assessment of landslides.

Keywords: Synthetic Aperture Radar (SAR), polarimetric decomposition, damage assessment, landslide

Procedia PDF Downloads 390
1069 Ontology Expansion via Synthetic Dataset Generation and Transformer-Based Concept Extraction

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology expansion, synthetic dataset, transformer fine-tuning, concept extraction, DOLCE, BERT, taxonomy, LLM, NER

Procedia PDF Downloads 14
1068 Quest for an Efficient Green Multifunctional Agent for the Synthesis of Metal Nanoparticles with Highly Specified Structural Properties

Authors: Niharul Alam

Abstract:

The development of energy efficient, economic and eco-friendly synthetic protocols for metal nanoparticles (NPs) with tailor-made structural properties and biocompatibility is a highly cherished goal for researchers working in the field of nanoscience and nanotechnology. In this context, green chemistry is highly relevant and the 12 principles of Green Chemistry can be explored to develop such synthetic protocols which are practically implementable. One of the most promising green chemical synthetic methods which can serve the purpose is biogenic synthetic protocol, which utilizes non-toxic multifunctional reactants derived from natural, biological sources ranging from unicellular organisms to higher plants that are often characterized as “medicinal plants”. Over the past few years, a plethora of medicinal plants have been explored as the source of this kind of multifunctional green chemical agents. In this presentation, we focus on the syntheses of stable monometallic Au and Ag NPs and also bimetallic Au/Ag alloy NPs with highly efficient catalytic property using aqueous extract of leaves of Indian Curry leaf plat (Murraya koenigii Spreng.; Fam. Rutaceae) as green multifunctional agents which is extensively used in Indian traditional medicine and cuisine. We have also studied the interaction between the synthesized metal NPs and surface-adsorbed fluorescent moieties, quercetin and quercetin glycoside which are its chemical constituents. This helped us to understand the surface property of the metal NPs synthesized by this plant based biogenic route and to predict a plausible mechanistic pathway which may help in fine-tuning green chemical methods for the controlled synthesis of various metal NPs in future. We observed that simple experimental parameters e.g. pH and temperature of the reaction medium, concentration of multifunctional agent and precursor metal ions play important role in the biogenic synthesis of Au NPs with finely tuned structures.

Keywords: green multifunctional agent, metal nanoparticles, biogenic synthesis

Procedia PDF Downloads 431
1067 Ascidian Styela rustica Proteins’ Structural Domains Predicted to Participate in the Tunic Formation

Authors: M. I. Tyletc, O. I. Podgornya, T. G. Shaposhnikova, S. V. Shabelnikov, A. G. Mittenberg, M. A. Daugavet

Abstract:

Ascidiacea is the most numerous class of the Tunicata subtype. These chordates' distinctive feature of the anatomical structure is a tunic consisting of cellulose fibrils, protein molecules, and single cells. The mechanisms of the tunic formation are not known in detail; tunic formation could be used as the model system for studying the interaction of cells with the extracellular matrix. Our model species is the ascidian Styela rustica, which is prevalent in benthic communities of the White Sea. As previously shown, the tunic formation involves morula blood cells, which contain the major 48 kDa protein p48. P48 participation in the tunic formation was proved using antibodies against the protein. The nature of the protein and its function remains unknown. The current research aims to determine the amino acid sequence of p48, as well as to clarify its role in the tunic formation. The peptides that make up the p48 amino acid sequence were determined by mass spectrometry. A search for peptides in protein sequence databases identified sequences homologous to p48 in Styela clava, Styela plicata, and Styela canopus. Based on sequence alignment, their level of similarity was determined as 81-87%. The correspondent sequence of ascidian Styela canopus was used for further analysis. The Styela rustica p48 sequence begins with a signal peptide, which could indicate that the protein is secretory. This is consistent with experimentally obtained data: the contents of morula cells secreted in the tunic matrix. The isoelectric point of p48 is 9.77, which is consistent with the experimental results of acid electrophoresis of morula cell proteins. However, the molecular weight of the amino acid sequence of ascidian Styela canopus is 103 kDa, so p48 of Styela rustica is a shorter homolog. The search for conservative functional domains revealed the presence of two Ca-binding EGF-like domains, thrombospondin (TSP1) and tyrosinase domains. The p48 peptides determined by mass spectrometry fall into the region of the sequence corresponding to the last two domains and have amino acid substitutions as compared to Styela canopus homolog. The tyrosinase domain (pfam00264) is known to be part of the phenoloxidase enzyme, which participates in melanization processes and the immune response. The thrombospondin domain (smart00209) interacts with a wide range of proteins, and is involved in several biological processes, including coagulation, cell adhesion, modulation of intercellular and cell-matrix interactions, angiogenesis, wound healing and tissue remodeling. It can be assumed that the tyrosinase domain in p48 plays the role of the phenoloxidase enzyme, and TSP1 provides a link between the extracellular matrix and cell surface receptors, and may also be responsible for the repair of the tunic. The results obtained are consistent with experimental data on p48. The domain organization of protein suggests that p48 is an enzyme involved in the tunic tunning and is an important regulator of the organization of the extracellular matrix.

Keywords: ascidian, p48, thrombospondin, tyrosinase, tunic, tunning

Procedia PDF Downloads 115
1066 A Synthetic Strategy to Attach 2,6-Dichlorophenolindophenol onto Multi Walled Carbon Nanotubes and Their Application for Electrocatalytic Determination of Sulfide

Authors: Alireza Mohadesi, Ashraf Salmanipour

Abstract:

A chemically modified glassy carbon electrode for electrocatalytic determination of sulfide was developed using multiwalled carbon nanotubes (MWCNTs) covalently immobilized with 2,6-dichlorophenolindophenol (DPIP). The immobilization of 2,6-dichlorophenolindophenol with MWCNTs was performed with a new synthetic strategy and characterized by UV–visible absorption spectroscopy, Fourier transform infrared spectroscopy and cyclic voltammetry. The cyclic voltammetric response of DPIP grafted onto MWCNTs indicated that it promotes the low potential, sensitive and stable determination of sulfide. The dependence of response currents on the concentration of sulfide was examined and was linear in the range of 10 - 1100 µM. The detection limit of sulfide was 5 µM and RSD for 100 and 500 µM sulfides were 1.8 and 1.3 %. Many interfering species had little or no effect on the determination of sulfide. The procedure was applied to determination of sulfide in waters samples.

Keywords: functionalized carbon nanotubes, sulfide, biological samples, 2, 6-dichlorophenolindophenol

Procedia PDF Downloads 313
1065 Tripeptide Inhibitor: The Simplest Aminogenic PEGylated Drug against Amyloid Beta Peptide Fibrillation

Authors: Sutapa Som Chaudhury, Chitrangada Das Mukhopadhyay

Abstract:

Alzheimer’s disease is a well-known form of dementia since its discovery in 1906. Current Food and Drug Administration approved medications e.g. cholinesterase inhibitors, memantine offer modest symptomatic relief but do not play any role in disease modification or recovery. In last three decades many small molecules, chaperons, synthetic peptides, partial β-secretase enzyme blocker have been tested for the development of a drug against Alzheimer though did not pass the 3rd clinical phase trials. Here in this study, we designed a PEGylated, aminogenic, tripeptidic polymer with two different molecular weights based on the aggregation prone amino acid sequence 17-20 in amyloid beta (Aβ) 1-42. Being conjugated with poly-ethylene glycol (PEG) which self-assembles into hydrophilic nanoparticles, these PEGylated tripeptides constitute a very good drug delivery system crossing the blood brain barrier while the peptide remains protected from proteolytic degradation and non-specific protein interactions. Moreover, being completely aminogenic they would not raise any side effects. These peptide inhibitors were evaluated for their effectiveness against Aβ42 fibrillation at an early stage of oligomer to fibril formation as well as preformed fibril clearance via Thioflavin T (ThT) assay, dynamic light scattering analyses, atomic force microscopy and scanning electron microscopy. The inhibitors were proved to be safe at a higher concentration of 20µM by the reduction assay of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye. Moreover, SHSY5Y neuroblastoma cells have shown a greater survivability when treated with the inhibitors following Aβ42 fibril and oligomer treatment as compared with the control Aβ42 fibril and/or oligomer treated neuroblastoma cells. These make the peptidic inhibitors a promising compound in the aspect of the discovery of alternative medication for Alzheimer’s disease.

Keywords: Alzheimer’s disease, alternative medication, amyloid beta, PEGylated peptide

Procedia PDF Downloads 209
1064 Laser Ultrasonic Imaging Based on Synthetic Aperture Focusing Technique Algorithm

Authors: Sundara Subramanian Karuppasamy, Che Hua Yang

Abstract:

In this work, the laser ultrasound technique has been used for analyzing and imaging the inner defects in metal blocks. To detect the defects in blocks, traditionally the researchers used piezoelectric transducers for the generation and reception of ultrasonic signals. These transducers can be configured into the sparse and phased array. But these two configurations have their drawbacks including the requirement of many transducers, time-consuming calculations, limited bandwidth, and provide confined image resolution. Here, we focus on the non-contact method for generating and receiving the ultrasound to examine the inner defects in aluminum blocks. A Q-switched pulsed laser has been used for the generation and the reception is done by using Laser Doppler Vibrometer (LDV). Based on the Doppler effect, LDV provides a rapid and high spatial resolution way for sensing ultrasonic waves. From the LDV, a series of scanning points are selected which serves as the phased array elements. The side-drilled hole of 10 mm diameter with a depth of 25 mm has been introduced and the defect is interrogated by the linear array of scanning points obtained from the LDV. With the aid of the Synthetic Aperture Focusing Technique (SAFT) algorithm, based on the time-shifting principle the inspected images are generated from the A-scan data acquired from the 1-D linear phased array elements. Thus the defect can be precisely detected with good resolution.

Keywords: laser ultrasonics, linear phased array, nondestructive testing, synthetic aperture focusing technique, ultrasonic imaging

Procedia PDF Downloads 133
1063 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique

Authors: Ghada A. Alfattni

Abstract:

Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates. 

Keywords: imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour

Procedia PDF Downloads 350
1062 Seismic Analysis of Structurally Hybrid Wind Mill Tower

Authors: Atul K. Desai, Hemal J. Shah

Abstract:

The tall windmill towers are designed as monopole tower or lattice tower. In the present research, a 125-meter high hybrid tower which is a combination of lattice and monopole type is proposed. The response of hybrid tower is compared with conventional monopole tower. The towers were analyzed in finite element method software considering nonlinear seismic time history load. The synthetic seismic time history for different soil is derived using the SeismoARTIF software. From the present research, it is concluded that, in the hybrid tower, we are not getting resonance condition. The base shear is less in hybrid tower compared to monopole tower for different soil conditions.

Keywords: dynamic analysis, hybrid wind mill tower, resonance condition, synthetic time history

Procedia PDF Downloads 150
1061 Functional Significance of Qatari Camels Milk: Antioxidant Content and Antimicrobial Activity of Protein Fractions

Authors: Tahra ElObeid, Omnya Ahmed, Reem Al-Sharshani, Doaa Dalloul, Jannat Alnattei

Abstract:

Background: Camelus dormedarius camels are also called ‘the Arabian camels’ and are present in the desert area of North Africa and the Middle East. Recently, camel’s milk has a great attention globally because of their proteins and peptides that have been reported to be beneficial for the health and in the management of many diseases. Objectives: This study was designed to investigate the antioxidant, antimicrobial activity and to evaluate the total phenolic content of camel’s milk proteins in Qatar. Methods: Fresh two camel’s milk samples from Omani breed and called Muhajer (camel’s milk A and B) were collected on the 1st of the December. Both samples were from the same location Al- Shahaniyah, Doha, Qatar, but from different local private farms and feeding system. Camel’s milk A and B were defatted by centrifugation and their proteins were extracted by acid and thermal precipitation. The antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Total phenolic compound (TPC) was evaluated by Folin-Ciocalteu reagent (FCR). On the other hand, the antimicrobial activity against eight different type of pathogenic bacteria was evaluated by disc diffusion method and the zone of inhibition was measured. Results: The of the total phenolic content of whole milk in both camel’s milk A and B were significantly the highest among the protein extracts. The % of the DPPH radical inhibition of casein protein in both camel’s milk A and B were significantly the highest among the protein extracts. In this study, there were marked changes in the antibacterial activity in the different camel milk protein extracts. All extracts showed bacterial overgrowth. Conclusion: The antioxidant activity of the camel milk protein extracts correlated to their unique phenolic compounds and bioactive protein peptides. The antimicrobial activity was not detected perhaps due to the technique, the quality, or the extraction method. Overall, camel's milk exhibits a high antioxidant activity, which is responsible for many health benefits besides the nutritional values.

Keywords: camels milk, antioxidant content, antimicrobial activity, proteins, Qatar

Procedia PDF Downloads 214
1060 Review of Comparison of Subgrade Soil Stabilised with Natural, Synthetic, and Waste Fibers

Authors: Jacqueline Michella Anak Nathen

Abstract:

Subgrade soil is an essential component in the design of road structures as it provides lateral support to the pavement. One of the main reasons for the failure of the pavement is the settlement of the subgrade and the high susceptibility to moisture, which leads to a loss of strength of the subgrade. Construction over weak or soft subgrade affects the performance of the pavement and causes instability of the pavement. If the mechanical properties of the subgrade soils are lower than those required, the soil stabilisation method can be an option to improve the soil properties of the weak subgrade. Soil stabilisation is one of the most popular techniques for improving poor subgrade soils, resulting in a significant improvement in the subgrade soil’s tensile strength, shear strength, and bearing capacity. Soil stabilisation encompasses the various methods used to alter the properties of soil to improve its engineering properties. Soil stabilisation can be broadly divided into four types: thermal, electrical, mechanical, and chemical. The most common method of improving the physical and mechanical properties of soils is stabilisation using binders such as cement and lime. However, soil stabilisation with conventional methods using cement and lime has become uneconomical in recent years, so there is a need to look for an alternative, such as fiber. Although not a new technique, adding fiber is a very practical alternative to soil stabilisation. Various types of fibers, such as natural, synthetic, and waste fibers, have been used as stabilising agents to improve the strength and durability of subgrade soils. This review provides a comprehensive comparison of the effectiveness of natural, synthetic, and waste fibers in stabilising subgrade soils.

Keywords: subgrade, soil stabilisation, pavement, fiber, stabiliser

Procedia PDF Downloads 98
1059 Application of Model Tree in the Prediction of TBM Rate of Penetration with Synthetic Minority Oversampling Technique

Authors: Ehsan Mehryaar

Abstract:

The rate of penetration is (RoP) one of the vital factors in the cost and time of tunnel boring projects; therefore, predicting it can lead to a substantial increase in the efficiency of the project. RoP is heavily dependent geological properties of the project site and TBM properties. In this study, 151-point data from Queen’s water tunnel is collected, which includes unconfined compression strength, peak slope index, angle with weak planes, and distance between planes of weaknesses. Since the size of the data is small, it was observed that it is imbalanced. To solve that problem synthetic minority oversampling technique is utilized. The model based on the model tree is proposed, where each leaf consists of a support vector machine model. Proposed model performance is then compared to existing empirical equations in the literature.

Keywords: Model tree, SMOTE, rate of penetration, TBM(tunnel boring machine), SVM

Procedia PDF Downloads 174
1058 Automatic Vehicle Detection Using Circular Synthetic Aperture Radar Image

Authors: Leping Chen, Daoxiang An, Xiaotao Huang

Abstract:

Automatic vehicle detection using synthetic aperture radar (SAR) image has been widely researched, as well as using optical remote sensing images. However, most researches treat the detection as an independent problem, failing to make full use of SAR data information. In circular SAR (CSAR), the two long borders of vehicle will shrink if the imaging surface is set higher than the reference one. Based on above variance, an automatic vehicle detection using CSAR image is proposed to enhance detection ability under complex environment, such as vehicles’ closely packing, which confuses the detector. The detection method uses the multiple images generated by different height plane to obtain an energy-concentrated image for detecting and then uses the maximally stable extremal regions method (MSER) to detect vehicles. A result of vehicles’ detection is given to verify the effectiveness and correctness of proposed method.

Keywords: circular SAR, vehicle detection, automatic, imaging

Procedia PDF Downloads 367
1057 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition

Authors: Mohamed Lotfy, Ghada Soliman

Abstract:

Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.

Keywords: computer vision, pattern recognition, optical character recognition, deep learning

Procedia PDF Downloads 93
1056 Developing Value Chain of Synthetic Methane for Net-zero Carbon City Gas Supply in Japan

Authors: Ryota Kuzuki, Mitsuhiro Kohara, Noboru Kizuki, Satoshi Yoshida, Hidetaka Hirai, Yuta Nezasa

Abstract:

About fifty years have passed since Japan's gas supply industry became the first in the world to switch from coal and oil to LNG as a city gas feedstock. Since the Japanese government target of net-zero carbon emission in 2050 was announced in October 2020, it has now entered a new era of challenges to commit to the requirement for decarbonization. This paper describes the situation that synthetic methane, produced from renewable energy-derived hydrogen and recycled carbon, is a promising national policy of transition toward net-zero society. In November 2020, the Japan Gas Association announced the 'Carbon Neutral Challenge 2050' as a vision to contribute to the decarbonization of society by converting the city gas supply to carbon neutral. The key technologies is methanation. This paper shows that methanation is a realistic solution to contribute to the decarbonization of the whole country at a lower social cost, utilizing the supply chain that already exists, from LNG plants to burner chips. The challenges during the transition period (2030-2050), as CO2 captured from exhaust of thermal power plants and industrial factories are expected to be used, it is proposed that a system of guarantee of origin (GO) for H2 and CO2 should be established and harmonize international rules for calculating and allocating greenhouse gas emissions in the supply chain, a platform is also needed to manage tracking information on certified environmental values.

Keywords: synthetic methane, recycled carbon fuels, methanation, transition period, environmental value transfer platform

Procedia PDF Downloads 108
1055 Nutrigenetic and Bioinformatic Analysis of Rice Bran Bioactives for the Treatment of Lifestyle Related Disease Diabetes and Hypertension

Authors: Md. Alauddin, Md. Ruhul Amin, Md. Omar Faruque, Muhammad Ali Siddiquee, Zakir Hossain Howlader, Mohammad Asaduzzaman

Abstract:

Diabetes and hypertension are the major lifestyle related diseases. The α-amylase and angiotensin converting enzymes (ACE) are the key enzymes that regulate diabetes and hypertension. The aim was to develop a drug for the treatment of diabetes and hypertension. The Rice Bran (RB) sample (Oryza sativa; BRRI-Dhan-84) was collected from the Bangladesh Rice Research Institute (BRRI), and rice bran proteins were isolated and hydrolyzed by hydrolyzing enzyme alcalase and trypsin. In vivo experiment suggested that rice bran bioactives has an effect on regulating the expression of several key gluconeogenesis and lipogenesis-regulating genes, such as glucose-6-phosphatase, phosphoenolpyruvate carboxykinase, and fatty acid synthase. The above genes have a connection of regulating the glucose level, lipids profile as well as act as an anti-inflammatory agent. A molecular docking, bioinformatics and in vitro experiments were performed. We found rice bran protein hydrolysates significantly (<0.05) influence the peptide concentration in the case of trypsin, alcalase, and (trypsin + alcalase) digestion. The in vitro analysis found that protein hydrolysate significantly (<0.05) reduced diabetic and hypertension as well as oxidative stress. A molecular docking study showed that the YY and IP peptide have a significantly strong binding affinity to the active site of the ACE enzyme and α-amylase with -7.8Kcal/mol and -6.2Kcal/mol, respectively. The Molecular dynamics (MD) simulation and Swiss ADME data analysis showed that less toxicity risk, good physicochemical properties, pharmacokinetics, and drug-likeness with drug scores 0.45 and 0.55 of YY and IP peptides, respectively. Thus, rice bran bioactive could be a good candidate for the treatment of diabetes and hypertension.

Keywords: anti-hypertensive and anti-hyperglycemic, anti-oxidative, bioinformatics, in vitro study, rice bran proteins and peptides

Procedia PDF Downloads 61
1054 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions

Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams

Abstract:

The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.

Keywords: architecture, central pavilions, classicism, machine learning

Procedia PDF Downloads 140
1053 Bio Composites for Substituting Synthetic Packaging Materials

Authors: Menonjyoti Kalita, Pradip Baishya

Abstract:

In recent times, the world has been facing serious environmental concerns and issues, such as sustainability and cost, due to the overproduction of synthetic materials and their participation in degrading the environment by means of industrial waste and non-biodegradable characteristics. As such, biocomposites come in handy to ease such troubles. Bio-based composites are promising materials for future applications for substituting synthetic packaging materials. The challenge of making packaging materials lighter, safer and cheaper leads to investigating advanced materials with desired properties. Also, awareness of environmental issues forces researchers and manufacturers to spend effort on composite and bio-composite materials fields. This paper explores and tests some nature-friendly materials has been done which can replace low-density plastics. The materials selected included sugarcane bagasse, areca palm, and bamboo leaves. Sugarcane bagasse bamboo leaves and areca palm sheath are the primary material or natural fibre for testing. These products were processed, and the tensile strength of the processed parts was tested in Micro UTM; it was found that areca palm can be used as a good building material in replacement to polypropylene and even could be used in the production of furniture with the help of epoxy resin. And for bamboo leaves, it was found that bamboo and cotton, when blended in a 50:50 ratio, it has great tensile strength. For areca, it was found that areca fibres can be a good substitute for polypropylene, which can be used in building construction as binding material and also other products.

Keywords: biodegradable characteristics, bio-composites, areca palm sheath, polypropylene, micro UTM

Procedia PDF Downloads 90
1052 Edge Detection Using Multi-Agent System: Evaluation on Synthetic and Medical MR Images

Authors: A. Nachour, L. Ouzizi, Y. Aoura

Abstract:

Recent developments on multi-agent system have brought a new research field on image processing. Several algorithms are used simultaneously and improved in deferent applications while new methods are investigated. This paper presents a new automatic method for edge detection using several agents and many different actions. The proposed multi-agent system is based on parallel agents that locally perceive their environment, that is to say, pixels and additional environmental information. This environment is built using Vector Field Convolution that attract free agent to the edges. Problems of partial, hidden or edges linking are solved with the cooperation between agents. The presented method was implemented and evaluated using several examples on different synthetic and medical images. The obtained experimental results suggest that this approach confirm the efficiency and accuracy of detected edge.

Keywords: edge detection, medical MRImages, multi-agent systems, vector field convolution

Procedia PDF Downloads 391
1051 Natural and Synthetic Antioxidant in Beef Meatball

Authors: Abul Hashem

Abstract:

The experiment was conducted to find out the effect of different levels of Moringa oleifiera leaf extract and synthetic antioxidant (Beta Hydroxyl Anisole) on fresh and preserved beef meatballs. For this purpose, ground beef samples were divided into five treatment groups. They are treated as control, synthetic antioxidant, 0.1%, 0.2% and 0.3% Moringa oleifera leaf extract as T1, T2, T3, T4 and T5, respectively. Five kinds of meatballs were made and biscuit crushed and egg albumin was mixed with beef meatballs and cooking was practiced properly. Proximate analysis, sensory tests (color, flavor, tenderness, juiciness, overall acceptability), cooking loss, pH value, free fatty acids (FFA), thiobarbituric acid values (TBARS), peroxide value(POV) and microbiological examination were determined in order to evaluate the effect of Moringa oleifiera leaf extract as natural antioxidant & antimicrobial activities in comparing to BHA (Beta Hydroxyl Anisole) at first day before freezing and for maintaining meatballs qualities on the shelf life of beef meat balls stored for 60 days under frozen condition. Freezing temperature was -20˚C. Days of intervals of experiment were on 0, 15th, 30th, and 60th days. Dry matter content of all the treatment groups differ significantly (p<0.05). On the contrary, DM content increased significantly (p<0.05) with the advancement of different days of intervals. CP content of all the treatments were increased significantly (p<0.05) among the different treatment groups. EE content at different treatment levels differ significantly (p<0.05). Ash content at different treatment levels was also differ significantly (p<0.05). FFA values, TBARS, POV were decreased significantly (p<0.05) at different treatment levels. Color, odor, tenderness, juiciness, overall acceptability, raw PH, cooked pH were increased at different treatment levels significantly (p<0.05). The cooking loss (%) at different treatment levels were differ significantly (p<0.05). TVC (logCFU/g), TCC (logCFU/g) and TYMC (logCFU/g) was decreased significantly (p<0.05) at different treatment levels comparison to control. Considering CP, tenderness, juiciness, overall acceptability, cooking loss, FFA, POV, TBARS and microbial parameters it can be concluded that Moringa oleifera leaf extract at 0.1%, 0.2% and 0.3% can be used instead of 0.1% synthetic antioxidant BHA in beef meatballs.

Keywords: antioxidant, beef meatball, BHA, moringa leaf extract, quality

Procedia PDF Downloads 303
1050 Generation of High-Quality Synthetic CT Images from Cone Beam CT Images Using A.I. Based Generative Networks

Authors: Heeba A. Gurku

Abstract:

Introduction: Cone Beam CT(CBCT) images play an integral part in proper patient positioning in cancer patients undergoing radiation therapy treatment. But these images are low in quality. The purpose of this study is to generate high-quality synthetic CT images from CBCT using generative models. Material and Methods: This study utilized two datasets from The Cancer Imaging Archive (TCIA) 1) Lung cancer dataset of 20 patients (with full view CBCT images) and 2) Pancreatic cancer dataset of 40 patients (only 27 patients having limited view images were included in the study). Cycle Generative Adversarial Networks (GAN) and its variant Attention Guided Generative Adversarial Networks (AGGAN) models were used to generate the synthetic CTs. Models were evaluated by visual evaluation and on four metrics, Structural Similarity Index Measure (SSIM), Peak Signal Noise Ratio (PSNR) Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), to compare the synthetic CT and original CT images. Results: For pancreatic dataset with limited view CBCT images, our study showed that in Cycle GAN model, MAE, RMSE, PSNR improved from 12.57to 8.49, 20.94 to 15.29 and 21.85 to 24.63, respectively but structural similarity only marginally increased from 0.78 to 0.79. Similar, results were achieved with AGGAN with no improvement over Cycle GAN. However, for lung dataset with full view CBCT images Cycle GAN was able to reduce MAE significantly from 89.44 to 15.11 and AGGAN was able to reduce it to 19.77. Similarly, RMSE was also decreased from 92.68 to 23.50 in Cycle GAN and to 29.02 in AGGAN. SSIM and PSNR also improved significantly from 0.17 to 0.59 and from 8.81 to 21.06 in Cycle GAN respectively while in AGGAN SSIM increased to 0.52 and PSNR increased to 19.31. In both datasets, GAN models were able to reduce artifacts, reduce noise, have better resolution, and better contrast enhancement. Conclusion and Recommendation: Both Cycle GAN and AGGAN were significantly able to reduce MAE, RMSE and PSNR in both datasets. However, full view lung dataset showed more improvement in SSIM and image quality than limited view pancreatic dataset.

Keywords: CT images, CBCT images, cycle GAN, AGGAN

Procedia PDF Downloads 83
1049 Investigation Particle Behavior in Gas-Solid Filtration with Electrostatic Discharge in a Hybrid System

Authors: Flávia M. Oliveira, Marcos V. Rodrigues, Mônica L. Aguiar

Abstract:

Synthetic fibers are widely used in gas filtration. Previous attempts to optimize the filtration process have employed mixed fibers as the filter medium in gas-solid separation. Some of the materials most frequently used this purpose are composed of polyester, polypropylene, and glass fibers. In order to improve the retention of cement particles in bag filters, the present study investigates the use of synthetic glass fiber filters and polypropylene fiber for particle filtration, with electrostatic discharge of 0 to -2 kV in cement particles. The filtration curves obtained showed that charging increased the particle collection efficiency and lowered the pressure drop. Particle diameter had a direct influence on the formation of the dust cake, and the application of electrostatic discharge to the particles resulted in the retention of more particles, hence increasing the lifetime of fabric filters.

Keywords: glass fiber filter, particle, electrostatic discharge, cement

Procedia PDF Downloads 389
1048 Kantian Epistemology in Examination of the Axiomatic Principles of Economics: The Synthetic a Priori in the Economic Structure of Society

Authors: Mirza Adil Ahmad Mughal

Abstract:

Transcendental analytics, in the critique of pure reason, combines space and time as conditions of the possibility of the phenomenon from the transcendental aesthetic with the pure magnitude-intuition notion. The property of continuity as a qualitative result of the additive magnitude brings the possibility of connecting with experience, even though only as a potential because of the a priori necessity from assumption, as syntheticity of the a priori task of a scientific method of philosophy given by Kant, which precludes the application of categories to something not empirically reducible to the content of such a category's corresponding and possible object. This continuity as the qualitative result of a priori constructed notion of magnitude lies as a fundamental assumption and property of, what in Microeconomic theory is called as, 'choice rules' which combine the potentially-empirical and practical budget-price pairs with preference relations. This latter result is the purest qualitative side of the choice rules', otherwise autonomously, quantitative nature. The theoretical, barring the empirical, nature of this qualitative result is a synthetic a priori truth, which, if at all, it should be, if the axiomatic structure of the economic theory is held to be correct. It has a potentially verifiable content as its possible object in the form of quantitative price-budget pairs. Yet, the object that serves the respective Kantian category is qualitative itself, which is utility. This article explores the validity of Kantian qualifications for this application of 'categories' to the economic structure of society.

Keywords: categories of understanding, continuity, convexity, psyche, revealed preferences, synthetic a priori

Procedia PDF Downloads 98
1047 Radio-Frequency Technologies for Sensing and Imaging

Authors: Cam Nguyen

Abstract:

Rapid, accurate, and safe sensing and imaging of physical quantities or structures finds many applications and is of significant interest to society. Sensing and imaging using radio-frequency (RF) techniques, particularly, has gone through significant development and subsequently established itself as a unique territory in the sensing world. RF sensing and imaging has played a critical role in providing us many sensing and imaging abilities beyond our human capabilities, benefiting both civilian and military applications - for example, from sensing abnormal conditions underneath some structures’ surfaces to detection and classification of concealed items, hidden activities, and buried objects. We present the developments of several sensing and imaging systems implementing RF technologies like ultra-wide band (UWB), synthetic-pulse, and interferometry. These systems are fabricated completely using RF integrated circuits. The UWB impulse system operates over multiple pulse durations from 450 to 1170 ps with 5.5-GHz RF bandwidth. It performs well through tests of various samples, demonstrating its usefulness for subsurface sensing. The synthetic-pulse system operating from 0.6 to 5.6 GHz can assess accurately subsurface structures. The synthetic-pulse system operating from 29.72-37.7 GHz demonstrates abilities for various surface and near-surface sensing such as profile mapping, liquid-level monitoring, and anti-personnel mine locating. The interferometric system operating at 35.6 GHz demonstrates its multi-functional capability for measurement of displacements and slow velocities. These RF sensors are attractive and useful for various surface and subsurface sensing applications. This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: RF sensors, radars, surface sensing, subsurface sensing

Procedia PDF Downloads 316
1046 Efficient Ground Targets Detection Using Compressive Sensing in Ground-Based Synthetic-Aperture Radar (SAR) Images

Authors: Gherbi Nabil

Abstract:

Detection of ground targets in SAR radar images is an important area for radar information processing. In the literature, various algorithms have been discussed in this context. However, most of them are of low robustness and accuracy. To this end, we discuss target detection in SAR images based on compressive sensing. Firstly, traditional SAR image target detection algorithms are discussed, and their limitations are highlighted. Secondly, a compressive sensing method is proposed based on the sparsity of SAR images. Next, the detection problem is solved using Multiple Measurements Vector configuration. Furthermore, a robust Alternating Direction Method of Multipliers (ADMM) is developed to solve the optimization problem. Finally, the detection results obtained using raw complex data are presented. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.

Keywords: compressive sensing, raw complex data, synthetic aperture radar, ADMM

Procedia PDF Downloads 18
1045 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images

Authors: Mehrnoosh Omati, Mahmod Reza Sahebi

Abstract:

The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.

Keywords: coupled Markov random field (MRF), environment, object-based analysis, polarimetric SAR (PolSAR) images

Procedia PDF Downloads 217
1044 Removal of Aromatic Fractions of Natural Organic Matter from Synthetic Water Using Aluminium Based Electrocoagulation

Authors: Tanwi Priya, Brijesh Kumar Mishra

Abstract:

Occurrence of aromatic fractions of Natural Organic Matter (NOM) led to formation of carcinogenic disinfection by products such as trihalomethanes in chlorinated water. In the present study, the efficiency of aluminium based electrocoagulation on the removal of prominent aromatic groups such as phenol, hydrophobic auxochromes, and carboxyl groups from NOM enriched synthetic water has been evaluated using various spectral indices. The effect of electrocoagulation on turbidity has also been discussed. The variation in coagulation performance as a function of pH has been studied. Our result suggests that electrocoagulation can be considered as appropriate remediation approach to reduce trihalomethanes formation in water. It has effectively reduced hydrophobic fractions from NOM enriched low turbid water. The charge neutralization and enmeshment of dispersed colloidal particles inside metallic hydroxides is the possible mechanistic approach in electrocoagulation.

Keywords: aromatic fractions, electrocoagulation, natural organic matter, spectral indices

Procedia PDF Downloads 277
1043 Use of Acid Mine Drainage as a Source of Iron to Initiate the Solar Photo-Fenton Treatment of Municipal Wastewater: Circular Economy Effect

Authors: Tooba Aslam, Efthalia Chatzisymeon

Abstract:

Untreated Municipal Wastewater (MWW) is renowned as the utmost harmful pollution caused to environmental water due to the high presence of nutrients and organic contaminants. Removal of Chemical Oxygen Demand (COD) from synthetic as well as municipal wastewater is investigated by using acid mine drainage as a source of iron to initiate the solar photo-Fenton treatment of municipal wastewater. In this study, Acid Mine Drainage (AMD) and different minerals enriched in iron, such as goethite, hematite, magnetite, and magnesite, have been used as the source of iron to initiate the photo-Fenton process. Co-treatment of real municipal wastewater and acid mine drainage /minerals is widely examined. The effects of different parameters such as minerals recovery from AMD, AMD as a source of iron, H₂O₂ concentration, and COD concentrations on the COD percentage removal of the process are studied. The results show that, out of all the four minerals, only hematite (1g/L) could remove 30% of the pollutants at about 100 minutes and 1000 ppm of H₂O₂. The addition of AMD as a source of iron is performed and compared with both synthetic as well as real wastewater from South Africa under the same conditions, i.e., 1000 ppm of H₂O₂, ambient temperature, 2.8 pH, and solar simulator. In the case of synthetic wastewater, the maximum removal (56%) is achieved with 50 ppm of iron (AMD source) at 160 minutes. On the other hand, in real wastewater, the removal efficiency is 99% with 30 ppm of iron at 90 minutes and 96% with 50 ppm of iron at 120 minutes. In conclusion, overall, the co-treatment of AMD and MWW by solar photo-Fenton treatment appears to be an effective and promising method to remove organic materials from Municipal wastewater.

Keywords: municipal wastewater treatment, acid mine drainage, co-treatment, COD removal, solar photo-Fenton, circular economy

Procedia PDF Downloads 88