Search results for: shared parameter model
18699 Effect of the Tidal Charge Parameter on CMBR Temperature Anisotropies
Authors: Evariste Boj, Jan Schee
Abstract:
We present the temperature anisotropy of the cosmic microwave background radiation due to the inhomogeneity region constructed on a 3-brane in the framework of a Randall-Sundrum one brane immersed into a 5D bulk $AdS_5$ spacetime. We employ the Brane-World Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological model to describe the cosmic expansion on the brane. The inhomogeneity is modeled by the static, spherically symmetric spacetime that replaces the spherically symmetric part of a dust-filled universe and is connected to the FLRW spacetime through the junction conditions. As the vacuum region expands it induces an additional frequency shift to a CMBR photon passing through this inhomogeneity in comparison to the case of a photon propagating through a pure FLRW spacetime. This frequency shift is associated with the effective temperature change of the CMBR in the corresponding direction. We give an estimate of the CMBR effective temperature changes with the change of the value of the tidal charge parameter.Keywords: CMBR, Randall-Sundrum model, Rees-Sciama effect, Braneworld
Procedia PDF Downloads 21418698 Effect of Viscosity on Void Structure in Dusty Plasma
Authors: El Amine Nebbat
Abstract:
A void is a dust-free region in dusty plasma, a medium formed of electrons, ions, and charged dust (grain). This structure appears in multiple experimental works. Several researchers have developed models to understand it. Recently, Nebbat and Annou proposed a nonlinear model that describes the void in non-viscos plasma, where the particles of the dusty plasma are treated as a fluid. In fact, the void appears even in dense dusty plasma where viscosity exists through the strong interaction between grains, so in this work, we augment the nonlinear model of Nebbat and Annou by introducing viscosity into the fluid equations. The analysis of the data of the numerical resolution confirms the important effect of this parameter (viscosity). The study revealed that the viscosity increases the dimension of the void for certain dimensions of the grains, and its effect on the value of the density of the grains at the boundary of the void is inversely proportional to their radii, i.e., this density increase for submicron grains and decrease for others. Finally, this parameter reduces the rings of dust density which surround the void.Keywords: voids, dusty plasmas, variable charge, density, viscosity
Procedia PDF Downloads 5718697 Loudspeaker Parameters Inverse Problem for Improving Sound Frequency Response Simulation
Authors: Y. T. Tsai, Jin H. Huang
Abstract:
The sound pressure level (SPL) of the moving-coil loudspeaker (MCL) is often simulated and analyzed using the lumped parameter model. However, the SPL of a MCL cannot be simulated precisely in the high frequency region, because the value of cone effective area is changed due to the geometry variation in different mode shapes, it is also related to affect the acoustic radiation mass and resistance. Herein, the paper presents the inverse method which has a high ability to measure the value of cone effective area in various frequency points, also can estimate the MCL electroacoustic parameters simultaneously. The proposed inverse method comprises the direct problem, adjoint problem, and sensitivity problem in collaboration with nonlinear conjugate gradient method. Estimated values from the inverse method are validated experimentally which compared with the measured SPL curve result. Results presented in this paper not only improve the accuracy of lumped parameter model but also provide the valuable information on loudspeaker cone design.Keywords: inverse problem, cone effective area, loudspeaker, nonlinear conjugate gradient method
Procedia PDF Downloads 30318696 Non Linear Stability of Non Newtonian Thin Liquid Film Flowing down an Incline
Authors: Lamia Bourdache, Amar Djema
Abstract:
The effect of non-Newtonian property (power law index n) on traveling waves of thin layer of power law fluid flowing over an inclined plane is investigated. For this, a simplified second-order two-equation model (SM) is used. The complete model is second-order four-equation (CM). It is derived by combining the weighted residual integral method and the lubrication theory. This is due to the fact that at the beginning of the instability waves, a very small number of waves is observed. Using a suitable set of test functions, second order terms are eliminated from the calculus so that the model is still accurate to the second order approximation. Linear, spatial, and temporal stabilities are studied. For travelling waves, a particular type of wave form that is steady in a moving frame, i.e., that travels at a constant celerity without changing its shape is studied. This type of solutions which are characterized by their celerity exists under suitable conditions, when the widening due to dispersion is balanced exactly by the narrowing effect due to the nonlinearity. Changing the parameter of celerity in some range allows exploring the entire spectrum of asymptotic behavior of these traveling waves. The (SM) model is converted into a three dimensional dynamical system. The result is that the model exhibits bifurcation scenarios such as heteroclinic, homoclinic, Hopf, and period-doubling bifurcations for different values of the power law index n. The influence of the non-Newtonian parameter on the nonlinear development of these travelling waves is discussed. It is found at the end that the qualitative characters of bifurcation scenarios are insensitive to the variation of the power law index.Keywords: inclined plane, nonlinear stability, non-Newtonian, thin film
Procedia PDF Downloads 28318695 Identification of Impact Load and Partial System Parameters Using 1D-CNN
Authors: Xuewen Yu, Danhui Dan
Abstract:
The identification of impact load and some hard-to-obtain system parameters is crucial for the activities of analysis, validation, and evaluation in the engineering field. This paper proposes a method that utilizes neural networks based on 1D-CNN to identify the impact load and partial system parameters from measured responses. To this end, forward computations are conducted to provide datasets consisting of the triples (parameter θ, input u, output y). Then neural networks are trained to learn the mapping from input to output, fu|{θ} : y → u, as well as from input and output to parameter, fθ : (u, y) → θ. Afterward, feeding the trained neural networks the measured output response, the input impact load and system parameter can be calculated, respectively. The method is tested on two simulated examples and shows sound accuracy in estimating the impact load (waveform and location) and system parameters.Keywords: convolutional neural network, impact load identification, system parameter identification, inverse problem
Procedia PDF Downloads 12218694 Number of Parameters of Anantharam's Model with Single-Input Single-Output Case
Authors: Kazuyoshi Mori
Abstract:
In this paper, we consider the parametrization of Anantharam’s model within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters of Anantharam’s model. We consider single-input single-output systems in this paper. By the investigation, we find three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.Keywords: linear systems, parametrization, coprime factorization, number of parameters
Procedia PDF Downloads 21318693 An Alternative Richards’ Growth Model Based on Hyperbolic Sine Function
Authors: Samuel Oluwafemi Oyamakin, Angela Unna Chukwu
Abstract:
Richrads growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richards growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richards growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richards nonlinear growth models better than the classical Richards growth model.Keywords: height, diameter at breast height, DBH, hyperbolic sine function, Pinus caribaea, Richards' growth model
Procedia PDF Downloads 39218692 A Numerical Model Simulation for an Updraft Gasifier Using High-Temperature Steam
Authors: T. M. Ismail, M. A. El-Salam
Abstract:
A mathematical model study was carried out to investigate gasification of biomass fuels using high-temperature air and steam as a gasifying agent using high-temperature air up to 1000°C. In this study, a 2D computational fluid dynamics model was developed to study the gasification process in an updraft gasifier, considering drying, pyrolysis, combustion, and gasification reactions. The gas and solid phases were resolved using a Euler−Euler multiphase approach, with exchange terms for the momentum, mass, and energy. The standard k−ε turbulence model was used in the gas phase, and the particle phase was modeled using the kinetic theory of granular flow. The results show that the present model giving a promising way in its capability and sensitivity for the parameter effects that influence the gasification process.Keywords: computational fluid dynamics, gasification, biomass fuel, fixed bed gasifier
Procedia PDF Downloads 40618691 Exposure to Bullying and General Psychopathology: A Prospective, Longitudinal Study
Authors: Jolien Rijlaarsdam, Charlotte A. M. Cecil, J. Marieke Buil, Pol A. C. Van Lier, Edward D. Barker
Abstract:
Although there is mounting evidence that the experience of being bullied associates with both internalizing and externalizing symptoms, it is not known yet whether the identified associations are specific to these symptoms or shared between them. The primary focus of this study is to assess the prospective associations of bullying exposure with both general and specific (i.e., internalizing, externalizing) factors of psychopathology. This study included data from 6,210 children participating in the Avon Longitudinal Study of Parents and Children (ALSPAC). Child bullying was measured by self-report at ages 8 and 10 years. Child psychopathology symptoms were assessed by parent-interview, using the Development and Well-being Assessment (DAWBA) at ages 7 and 13 years. Bullying exposure is significantly associated with the general psychopathology factor in early adolescence. In particular, chronically victimized youth exposed to multiple forms of bullying (i.e., both overt and relational) showed the highest levels of general psychopathology. Bullying exposure is also associated with both internalizing and externalizing factors from the correlated-factors model. However, the effect estimates for these factors decreased considerably in size and dropped to insignificant for the internalizing factor after extracting the shared variance that belongs to the general factor of psychopathology. In an integrative longitudinal model, higher levels of general psychopathology at age seven are associated with bullying exposure at age eight, which, in turn, is associated with general psychopathology at age 13 through its two-year continuity. Findings suggest that exposure to bullying is a risk factor for a more general vulnerability to psychopathology through mutually influencing relationships.Keywords: bullying exposure, externalizing, general psychopathology, internalizing, longitudinal
Procedia PDF Downloads 13918690 An Estimating Parameter of the Mean in Normal Distribution by Maximum Likelihood, Bayes, and Markov Chain Monte Carlo Methods
Authors: Autcha Araveeporn
Abstract:
This paper is to compare the parameter estimation of the mean in normal distribution by Maximum Likelihood (ML), Bayes, and Markov Chain Monte Carlo (MCMC) methods. The ML estimator is estimated by the average of data, the Bayes method is considered from the prior distribution to estimate Bayes estimator, and MCMC estimator is approximated by Gibbs sampling from posterior distribution. These methods are also to estimate a parameter then the hypothesis testing is used to check a robustness of the estimators. Data are simulated from normal distribution with the true parameter of mean 2, and variance 4, 9, and 16 when the sample sizes is set as 10, 20, 30, and 50. From the results, it can be seen that the estimation of MLE, and MCMC are perceivably different from the true parameter when the sample size is 10 and 20 with variance 16. Furthermore, the Bayes estimator is estimated from the prior distribution when mean is 1, and variance is 12 which showed the significant difference in mean with variance 9 at the sample size 10 and 20.Keywords: Bayes method, Markov chain Monte Carlo method, maximum likelihood method, normal distribution
Procedia PDF Downloads 35618689 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods
Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow
Abstract:
A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.Keywords: forecasting model, steel demand uncertainty, hierarchical Bayesian framework, exponential smoothing method
Procedia PDF Downloads 35018688 Molecular Dynamics Simulation of Free Vibration of Graphene Sheets
Authors: Seyyed Feisal Asbaghian Namin, Reza Pilafkan, Mahmood Kaffash Irzarahimi
Abstract:
TThis paper considers vibration of single-layered graphene sheets using molecular dynamics (MD) and nonlocal elasticity theory. Based on the MD simulations, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), an open source software, is used to obtain fundamental frequencies. On the other hand, governing equations are derived using nonlocal elasticity and first order shear deformation theory (FSDT) and solved using generalized differential quadrature method (GDQ). The small-scale effect is applied in governing equations of motion by nonlocal parameter. The effect of different side lengths, boundary conditions and nonlocal parameter are inspected for aforementioned methods. Results are obtained from MD simulations is compared with those of the nonlocal elasticity theory to calculate appropriate values for the nonlocal parameter. The nonlocal parameter value is suggested for graphene sheets with various boundary conditions. Furthermore, it is shown that the nonlocal elasticity approach using classical plate theory (CLPT) assumptions overestimates the natural frequencies.Keywords: graphene sheets, molecular dynamics simulations, fundamental frequencies, nonlocal elasticity theory, nonlocal parameter
Procedia PDF Downloads 52118687 Cellular Traffic Prediction through Multi-Layer Hybrid Network
Authors: Supriya H. S., Chandrakala B. M.
Abstract:
Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.Keywords: MLHN, network traffic prediction
Procedia PDF Downloads 8818686 Modified Form of Margin Based Angular Softmax Loss for Speaker Verification
Authors: Jamshaid ul Rahman, Akhter Ali, Adnan Manzoor
Abstract:
Learning-based systems have received increasing interest in recent years; recognition structures, including end-to-end speak recognition, are one of the hot topics in this area. A famous work on end-to-end speaker verification by using Angular Softmax Loss gained significant importance and is considered useful to directly trains a discriminative model instead of the traditional adopted i-vector approach. The margin-based strategy in angular softmax is beneficial to learn discriminative speaker embeddings where the random selection of margin values is a big issue in additive angular margin and multiplicative angular margin. As a better solution in this matter, we present an alternative approach by introducing a bit similar form of an additive parameter that was originally introduced for face recognition, and it has a capacity to adjust automatically with the corresponding margin values and is applicable to learn more discriminative features than the Softmax. Experiments are conducted on the part of Fisher dataset, where it observed that the additive parameter with angular softmax to train the front-end and probabilistic linear discriminant analysis (PLDA) in the back-end boosts the performance of the structure.Keywords: additive parameter, angular softmax, speaker verification, PLDA
Procedia PDF Downloads 10218685 Parameter Identification Analysis in the Design of Rock Fill Dams
Authors: G. Shahzadi, A. Soulaimani
Abstract:
This research work aims to identify the physical parameters of the constitutive soil model in the design of a rockfill dam by inverse analysis. The best parameters of the constitutive soil model, are those that minimize the objective function, defined as the difference between the measured and numerical results. The Finite Element code (Plaxis) has been utilized for numerical simulation. Polynomial and neural network-based response surfaces have been generated to analyze the relationship between soil parameters and displacements. The performance of surrogate models has been analyzed and compared by evaluating the root mean square error. A comparative study has been done based on objective functions and optimization techniques. Objective functions are categorized by considering measured data with and without uncertainty in instruments, defined by the least square method, which estimates the norm between the predicted displacements and the measured values. Hydro Quebec provided data sets for the measured values of the Romaine-2 dam. Stochastic optimization, an approach that can overcome local minima, and solve non-convex and non-differentiable problems with ease, is used to obtain an optimum value. Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) are compared for the minimization problem, although all these techniques take time to converge to an optimum value; however, PSO provided the better convergence and best soil parameters. Overall, parameter identification analysis could be effectively used for the rockfill dam application and has the potential to become a valuable tool for geotechnical engineers for assessing dam performance and dam safety.Keywords: Rockfill dam, parameter identification, stochastic analysis, regression, PLAXIS
Procedia PDF Downloads 14618684 Riesz Mixture Model for Brain Tumor Detection
Authors: Mouna Zitouni, Mariem Tounsi
Abstract:
This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution.Keywords: EM algorithm, segmentation, Riesz probability distribution, Wishart probability distribution
Procedia PDF Downloads 1718683 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model
Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong
Abstract:
In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.Keywords: artificial neural network, Taguchi method, real estate valuation model, investors
Procedia PDF Downloads 48818682 Electronic Spectral Function of Double Quantum Dots–Superconductors Nanoscopic Junction
Authors: Rajendra Kumar
Abstract:
We study the Electronic spectral density of a double coupled quantum dots sandwich between superconducting leads, where one of the superconducting leads (QD1) are connected with left superconductor lead and (QD1) also connected right superconductor lead. (QD1) and (QD2) are coupling to each other. The electronic spectral density through a quantum dots between superconducting leads having s-wave symmetry of the superconducting order parameter. Such junction is called superconducting –quantum dot (S-QD-S) junction. For this purpose, we have considered a renormalized Anderson model that includes the double coupled of the superconducting leads with the quantum dots level and an attractive BCS-type effective interaction in superconducting leads. We employed the Green’s function technique to obtain superconducting order parameter with the BCS framework and Ambegaoker-Baratoff formalism to analyze the electronic spectral density through such (S-QD-S) junction. It has been pointed out that electronic spectral density through such a junction is dominated by the attractive the paring interaction in the leads, energy of the level on the dot with respect to Fermi energy and also on the coupling parameter of the two in an essential way. On the basis of numerical analysis we have compared the theoretical results of electronic spectral density with the recent transport existing theoretical analysis. QDs is the charging energy that may give rise to effects based on the interplay of Coulomb repulsion and superconducting correlations. It is, therefore, an interesting question to ask how the discrete level spectrum and the charging energy affect the DC and AC Josephson transport between two superconductors coupled via a QD. In the absence of a bias voltage, a finite DC current can be sustained in such an S-QD-S by the DC Josephson effect.Keywords: quantum dots, S-QD-S junction, BCS superconductors, Anderson model
Procedia PDF Downloads 37418681 Robust Shrinkage Principal Component Parameter Estimator for Combating Multicollinearity and Outliers’ Problems in a Poisson Regression Model
Authors: Arum Kingsley Chinedu, Ugwuowo Fidelis Ifeanyi, Oranye Henrietta Ebele
Abstract:
The Poisson regression model (PRM) is a nonlinear model that belongs to the exponential family of distribution. PRM is suitable for studying count variables using appropriate covariates and sometimes experiences the problem of multicollinearity in the explanatory variables and outliers on the response variable. This study aims to address the problem of multicollinearity and outliers jointly in a Poisson regression model. We developed an estimator called the robust modified jackknife PCKL parameter estimator by combining the principal component estimator, modified jackknife KL and transformed M-estimator estimator to address both problems in a PRM. The superiority conditions for this estimator were established, and the properties of the estimator were also derived. The estimator inherits the characteristics of the combined estimators, thereby making it efficient in addressing both problems. And will also be of immediate interest to the research community and advance this study in terms of novelty compared to other studies undertaken in this area. The performance of the estimator (robust modified jackknife PCKL) with other existing estimators was compared using mean squared error (MSE) as a performance evaluation criterion through a Monte Carlo simulation study and the use of real-life data. The results of the analytical study show that the estimator outperformed other existing estimators compared with by having the smallest MSE across all sample sizes, different levels of correlation, percentages of outliers and different numbers of explanatory variables.Keywords: jackknife modified KL, outliers, multicollinearity, principal component, transformed M-estimator.
Procedia PDF Downloads 6618680 Studying the Load Sharing and Failure Mechanism of Hybrid Composite Joints Using Experiment and Finite Element Modeling
Authors: Seyyed Mohammad Hasheminia, Heoung Jae Chun, Jong Chan Park, Hong Suk Chang
Abstract:
Composite joints have been getting attention recently due to their high specific mechanical strength to weight ratio that is crucial for structures such as aircrafts and automobiles. In this study on hybrid joints, quasi-static experiments and finite element analysis were performed to investigate the failure mechanism of hybrid composite joint with respect to the joint properties such as the adhesive material, clamping force, and joint geometry. The outcomes demonstrated that the stiffness of the adhesive is the most imperative design parameter. In this investigation, two adhesives with various stiffness values were utilized. Regarding the joints utilizing the adhesive with the lower stiffness modulus, it was observed that the load was exchanged promptly through the adhesive since it was shared more proficiently between the bolt and adhesive. This phenomenon permitted the hybrid joints with low-modulus adhesive to support more prominent loads before failure when contrasted with the joints that utilize the stiffer adhesive. In the next step, the stress share between the bond and bolt as a function of various design parameters was studied using a finite element model in which it was understood that the geometrical parameters such as joint overlap and width have a significant influence on the load sharing between the bolt and the adhesive.Keywords: composite joints, composite materials, hybrid joints, single-lap joint
Procedia PDF Downloads 40618679 Simulation Study on Vehicle Drag Reduction by Surface Dimples
Authors: S. F. Wong, S. S. Dol
Abstract:
Automotive designers have been trying to use dimples to reduce drag in vehicles. In this work, a car model has been applied with dimple surface with a parameter called dimple ratio DR, the ratio between the depths of the half dimple over the print diameter of the dimple, has been introduced and numerically simulated via k-ε turbulence model to study the aerodynamics performance with the increasing depth of the dimples The Ahmed body car model with 25 degree slant angle is simulated with the DR of 0.05, 0.2, 0.3 0.4 and 0.5 at Reynolds number of 176387 based on the frontal area of the car model. The geometry of dimple changes the kinematics and dynamics of flow. Complex interaction between the turbulent fluctuating flow and the mean flow escalates the turbulence quantities. The maximum level of turbulent kinetic energy occurs at DR = 0.4. It can be concluded that the dimples have generated extra turbulence energy at the surface and as a result, the application of dimples manages to reduce the drag coefficient of the car model compared to the model with smooth surface.Keywords: aerodynamics, boundary layer, dimple, drag, kinetic energy, turbulence
Procedia PDF Downloads 31518678 MHD Stagnation-Point Flow over a Plate
Authors: H. Niranjan, S. Sivasankaran
Abstract:
Heat and mass transfer near a steady stagnation point boundary layer flow of viscous incompressible fluid through porous media investigates along a vertical plate is thoroughly studied under the presence of magneto hydrodynamic (MHD) effects. The fluid flow is steady, laminar, incompressible and in two-dimensional. The nonlinear differential coupled parabolic partial differential equations of continuity, momentum, energy and specie diffusion are converted into the non-similar boundary layer equations using similarity transformation, which are then solved numerically using the Runge-Kutta method along with shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.Keywords: MHD, porous medium, slip, convective boundary condition, stagnation point
Procedia PDF Downloads 30218677 Estimation of the Pore Electrical Conductivity Using Dielectric Sensors
Authors: Fethi Bouksila, Magnus Persson, Ronny Berndtsson, Akissa Bahri
Abstract:
Under salinity conditions, we evaluate the performance of Hilhost (2000) model to predict pore electrical conductivity ECp from dielectric permittivity and bulk electrical conductivity (ECa) using Time and Frequency Domain Reflectometry sensors (TDR, FDR). Using FDR_WET sensor, RMSE of ECp was 4.15 dS m-1. By replacing the standard soil parameter (K0) in Hilhost model by K0-ECa relationship, the RMSE of ECp decreased to 0.68 dS m-1. WET sensor could give similar accuracy to estimate ECp than TDR if calibrated values of K0 were used instead of standard values in Hilhost model.Keywords: hilhost model, soil salinity, time domain reflectometry, frequency domain reflectometry, dielectric methods
Procedia PDF Downloads 13518676 Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models
Authors: Panudet Saengseedam, Nanthachai Kantanantha
Abstract:
This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.Keywords: Bayesian method, linear mixed model, multivariate conditional autoregressive model, spatial time series
Procedia PDF Downloads 39518675 Agricultural Knowledge Management System Design, Use, and Consequence for Knowledge Sharing and Integration
Authors: Dejen Alemu, Murray E. Jennex, Temtim Assefa
Abstract:
This paper is investigated to understand the design, the use, and the consequence of Knowledge Management System (KMS) for knowledge systems sharing and integration. A KMS for knowledge systems sharing and integration is designed to meet the challenges raised by knowledge management researchers and practitioners: the technical, the human, and social factors. Agricultural KMS involves various members coming from different Communities of Practice (CoPs) who possess their own knowledge of multiple practices which need to be combined in the system development. However, the current development of the technology ignored the indigenous knowledge of the local communities, which is the key success factor for agriculture. This research employed the multi-methodological approach to KMS research in action research perspective which consists of four strategies: theory building, experimentation, observation, and system development. Using the KMS development practice of Ethiopian agricultural transformation agency as a case study, this research employed an interpretive analysis using primary qualitative data acquired through in-depth semi-structured interviews and participant observations. The Orlikowski's structuration model of technology has been used to understand the design, the use, and the consequence of the KMS. As a result, the research identified three basic components for the architecture of the shared KMS, namely, the people, the resources, and the implementation subsystems. The KMS were developed using web 2.0 tools to promote knowledge sharing and integration among diverse groups of users in a distributed environment. The use of a shared KMS allows users to access diverse knowledge from a number of users in different groups of participants, enhances the exchange of different forms of knowledge and experience, and creates high interaction and collaboration among participants. The consequences of a shared KMS on the social system includes, the elimination of hierarchical structure, enhance participation, collaboration, and negotiation among users from different CoPs having common interest, knowledge and skill development, integration of diverse knowledge resources, and the requirement of policy and guideline. The research contributes methodologically for the application of system development action research for understanding a conceptual framework for KMS development and use. The research have also theoretical contribution in extending structuration model of technology for the incorporation of variety of knowledge and practical implications to provide management understanding in developing strategies for the potential of web 2.0 tools for sharing and integration of indigenous knowledge.Keywords: communities of practice, indigenous knowledge, participation, structuration model of technology, Web 2.0 tools
Procedia PDF Downloads 25318674 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning
Authors: Michael A. Sprayberry, Vincent C. Paquit
Abstract:
Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization
Procedia PDF Downloads 9018673 Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition
Authors: Aref Ghafouri, Mohammad javad Mollakazemi, Farhad Asadi
Abstract:
In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.Keywords: frequency response, order of model reduction, frequency matching condition, nonlinear experimental data
Procedia PDF Downloads 40218672 Heat and Mass Transfer of Triple Diffusive Convection in a Rotating Couple Stress Liquid Using Ginzburg-Landau Model
Authors: Sameena Tarannum, S. Pranesh
Abstract:
A nonlinear study of triple diffusive convection in a rotating couple stress liquid has been analysed. It is performed to study the effect of heat and mass transfer by deriving Ginzburg-Landau equation. Heat and mass transfer are quantified in terms of Nusselt number and Sherwood numbers, which are obtained as a function of thermal and solute Rayleigh numbers. The obtained Ginzburg-Landau equation is Bernoulli equation, and it has been elucidated numerically by using Mathematica. The effects of couple stress parameter, solute Rayleigh numbers, and Taylor number on the onset of convection and heat and mass transfer have been examined. It is found that the effects of couple stress parameter and Taylor number are to stabilize the system and to increase the heat and mass transfer.Keywords: couple stress liquid, Ginzburg-Landau model, rotation, triple diffusive convection
Procedia PDF Downloads 33718671 The Management Accountant’s Roles for Creation of Corporate Shared Value
Authors: Prateep Wajeetongratana
Abstract:
This study investigates the management accountant’s roles that link with the creation of corporate shared value to enable more effective decision-making and improve the information needs of stakeholders. Mixed method is employed to collect using triangulation for credibility. A quantitative approach is employed to conduct a survey of 200 Thai companies providing annual reports in the Stock Exchange of Thailand. The results of the study reveal that environmental and social data incorporated in a corporate social responsibility (CSR) disclosure are based on the indicators of the Global Reporting Initiatives (GRI) at a statistically significant level of 0.01. Environmental and social indicators in CSR are associated with environmental and social data disclosed in the annual report to support stakeholders’ and the public’s interests that are addressed and show that a significant relationship between environmental and social in CSR disclosures and the information in annual reports is statistically significant at the 0.01 level.Keywords: corporate social responsibility, creating shared value, management accountant’s roles, stock exchange of Thailand
Procedia PDF Downloads 22118670 R Software for Parameter Estimation of Spatio-Temporal Model
Authors: Budi Nurani Ruchjana, Atje Setiawan Abdullah, I. Gede Nyoman Mindra Jaya, Eddy Hermawan
Abstract:
In this paper, we propose the application package to estimate parameters of spatiotemporal model based on the multivariate time series analysis using the R open-source software. We build packages mainly to estimate the parameters of the Generalized Space Time Autoregressive (GSTAR) model. GSTAR is a combination of time series and spatial models that have parameters vary per location. We use the method of Ordinary Least Squares (OLS) and use the Mean Average Percentage Error (MAPE) to fit the model to spatiotemporal real phenomenon. For case study, we use oil production data from volcanic layer at Jatibarang Indonesia or climate data such as rainfall in Indonesia. Software R is very user-friendly and it is making calculation easier, processing the data is accurate and faster. Limitations R script for the estimation of model parameters spatiotemporal GSTAR built is still limited to a stationary time series model. Therefore, the R program under windows can be developed either for theoretical studies and application.Keywords: GSTAR Model, MAPE, OLS method, oil production, R software
Procedia PDF Downloads 242