Search results for: naturally regenerated acacia forest
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1636

Search results for: naturally regenerated acacia forest

1486 Driving Forces of Net Carbon Emissions in a Tropical Dry Forest, Oaxaca, México

Authors: Rogelio Omar Corona-Núñez, Alma Mendoza-Ponce

Abstract:

The Tropical Dry Forest not only is one of the most important tropical ecosystems in terms of area, but also it is one of the most degraded ecosystems. However, little is known about the degradation impacts on carbon stocks, therefore in carbon emissions. There are different studies which explain its deforestation dynamics, but there is still a lack of understanding of how they correlate to carbon losses. Recently different authors have built current biomass maps for the tropics and Mexico. However, it is not clear how well they predict at the local scale, and how they can be used to estimate carbon emissions. This study quantifies the forest net carbon losses by comparing the potential carbon stocks and the different current biomass maps in the Southern Pacific coast in Oaxaca, Mexico. The results show important differences in the current biomass estimates with not a clear agreement. However, by the aggregation of the information, it is possible to infer the general patterns of biomass distribution and it can identify the driving forces of the carbon emissions. This study estimated that currently ~44% of the potential carbon stock estimated for the region is still present. A total of 6,764 GgC has been emitted due to deforestation and degradation of the forest at a rate of above ground biomass loss of 66.4 Mg ha-1. Which, ~62% of the total carbon emissions can be regarded as being due to forest degradation. Most of carbon losses were identified in places suitable for agriculture, close to rural areas and to roads while the lowest losses were accounted in places with high water stress and within the boundaries of the National Protected Area. Moreover, places not suitable for agriculture, but close to the coast showed carbon losses as a result of urban settlements.

Keywords: above ground biomass, deforestation, degradation, driving forces, tropical deciduous forest

Procedia PDF Downloads 183
1485 Impacts of Urbanization on Forest and Agriculture Areas in Savannakhet Province, Lao People's Democratic Republic

Authors: Chittana Phompila

Abstract:

The current increased population pushes increasing demands for natural resources and living space. In Laos, urban areas have been expanding rapidly in recent years. The rapid urbanization can have negative impacts on landscapes, including forest and agriculture lands. The primary objective of this research were to map current urban areas in a large city in Savannakhet province, in Laos, 2) to compare changes in urbanization between 1990 and 2018, and 3) to estimate forest and agriculture areas lost due to expansions of urban areas during the last over twenty years within study area. Landsat 8 data was used and existing GIS data was collected including spatial data on rivers, lakes, roads, vegetated areas and other land use/land covers). GIS data was obtained from the government sectors. Object based classification (OBC) approach was applied in ECognition for image processing and analysis of urban area using. Historical data from other Landsat instruments (Landsat 5 and 7) were used to allow us comparing changes in urbanization in 1990, 2000, 2010 and 2018 in this study area. Only three main land cover classes were focused and classified, namely forest, agriculture and urban areas. Change detection approach was applied to illustrate changes in built-up areas in these periods. Our study shows that the overall accuracy of map was 95% assessed, kappa~ 0.8. It is found that that there is an ineffective control over forest and land-use conversions from forests and agriculture to urban areas in many main cities across the province. A large area of agriculture and forest has been decreased due to this conversion. Uncontrolled urban expansion and inappropriate land use planning can lead to creating a pressure in our resource utilisation. As consequence, it can lead to food insecurity and national economic downturn in a long term.

Keywords: urbanisation, forest cover, agriculture areas, Landsat 8 imagery

Procedia PDF Downloads 159
1484 Monitoring of Forest Cover Dynamics in the High Atlas of Morocco (Zaouit Ahansal) Using Remote Sensing Techniques and GIS

Authors: Abdelaziz Moujane, Abedelali Boulli, Abdellah Ouigmane

Abstract:

The present work focuses on the assessment of forestlandscape changes in the region of ZaouitAhansal, usingmultitemporal satellite images at high spatial resolution.Severalremotesensingmethodswereappliednamely: The supervised classification algorithm and NDVI whichwerecombined in a GIS environment to quantify the extent and change in density of forest stands (holmoak, juniper, thya, Aleppo pine, crops, and others).The resultsobtainedshowedthat the forest of ZaouitAhansal has undergonesignificantdegradationresulting in a decrease in the area of juniper, cedar, and zeenoak, as well as an increase in the area of baresoil and agricultural land. The remotesensing data providedsatisfactoryresults for identifying and quantifying changes in forestcover. In addition, thisstudycould serve as a reference for the development of management strategies and restoration programs.

Keywords: remote sensing, GIS, satellite image, NDVI, deforestation, zaouit ahansal

Procedia PDF Downloads 153
1483 Using Geographic Information System and Analytic Hierarchy Process for Detecting Forest Degradation in Benslimane Forest, Morocco

Authors: Loubna Khalile, Hicham Lahlaoi, Hassan Rhinane, A. Kaoukaya, S. Fal

Abstract:

Green spaces is an essential element, they contribute to improving the quality of lives of the towns around them. They are a place of relaxation, walk and rest a playground for sport and youths. According to United Nations Organization Forests cover 31% of the land. In Morocco in 2013 that cover 12.65 % of the total land area, still, a small proportion compared to the natural needs of forests as a green lung of our planet. The Benslimane Forest is a large green area It belongs to Chaouia-Ouardigha Region and Greater Casablanca Region, it is located geographically between Casablanca is considered the economic and business Capital of Morocco and Rabat the national political capital, with an area of 12261.80 Hectares. The essential problem usually encountered in suburban forests, is visitation and tourism pressure it is anthropogenic actions, as well as other ecological and environmental factors. In recent decades, Morocco has experienced a drought year that has influenced the forest with increasing human pressure and every day it suffers heavy losses, as well as over-exploitation. The Moroccan forest ecosystems are weak with intense ecological variation, domanial and imposed usage rights granted to the population; forests are experiencing a significant deterioration due to forgetfulness and immoderate use of forest resources which can influence the destruction of animal habitats, vegetation, water cycle and climate. The purpose of this study is to make a model of the degree of degradation of the forest and know the causes for prevention by using remote sensing and geographic information systems by introducing climate and ancillary data. Analytic hierarchy process was used to find out the degree of influence and the weight of each parameter, in this case, it is found that anthropogenic activities have a fairly significant impact has thus influenced the climate.

Keywords: analytic hierarchy process, degradation, forest, geographic information system

Procedia PDF Downloads 326
1482 Seasonal and Monthly Field Soil Respiration Rate and Litter Fall Amounts of Kasuga-Yama Hill Primeval Forest

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

The seasonal (January, April, July and October) and monthly soil respiration rate and the monthly litter fall amounts were examined in the laurel-leaved (B_B-1) and Cryptomeria japonica (B_B-2 and PW) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The change of the seasonal soil respiration rate corresponded to that of the soil temperature. The soil respiration rate was higher in October when fresh organic matter was supplied in the forest floor than in April in spite of the same temperature. The seasonal soil respiration rate of B_B-1 was higher than that of B_B-2, which corresponded to more numbers of bacteria and fungi counted by the dilution plate method and by the direct count method by microscopy in B_B-1 than that of B_B-2. The seasonal soil respiration rate of B_B-2 was higher than that of PW, which corresponded to more microbial biomass by the direct count method by microscopy in B_B-2 than that of PW. The correlation coefficient with the seasonal soil respiration and the soil temperature was higher than that of the monthly soil respiration. The soil respiration carbon was more than the litter fall carbon. It was suggested that the soil respiration included in the carbon dioxide which was emitted by the plant root and soil animal, or that the litter fall supplied to the forest floor included in animal and plant litter.

Keywords: field soil respiration rate, forest soil, litter fall, mineralization rate

Procedia PDF Downloads 290
1481 Geospatial Analysis of Hydrological Response to Forest Fires in Small Mediterranean Catchments

Authors: Bojana Horvat, Barbara Karleusa, Goran Volf, Nevenka Ozanic, Ivica Kisic

Abstract:

Forest fire is a major threat in many regions in Croatia, especially in coastal areas. Although they are often caused by natural processes, the most common cause is the human factor, intentional or unintentional. Forest fires drastically transform landscapes and influence natural processes. The main goal of the presented research is to analyse and quantify the impact of the forest fire on hydrological processes and propose the model that best describes changes in hydrological patterns in the analysed catchments. Keeping in mind the spatial component of the processes, geospatial analysis is performed to gain better insight into the spatial variability of the hydrological response to disastrous events. In that respect, two catchments that experienced severe forest fire were delineated, and various hydrological and meteorological data were collected both attribute and spatial. The major drawback is certainly the lack of hydrological data, common in small torrential karstic streams; hence modelling results should be validated with the data collected in the catchment that has similar characteristics and established hydrological monitoring. The event chosen for the modelling is the forest fire that occurred in July 2019 and burned nearly 10% of the analysed area. Surface (land use/land cover) conditions before and after the event were derived from the two Sentinel-2 images. The mapping of the burnt area is based on a comparison of the Normalized Burn Index (NBR) computed from both images. To estimate and compare hydrological behaviour before and after the event, curve number (CN) values are assigned to the land use/land cover classes derived from the satellite images. Hydrological modelling resulted in surface runoff generation and hence prediction of hydrological responses in the catchments to a forest fire event. The research was supported by the Croatian Science Foundation through the project 'Influence of Open Fires on Water and Soil Quality' (IP-2018-01-1645).

Keywords: Croatia, forest fire, geospatial analysis, hydrological response

Procedia PDF Downloads 136
1480 Natural Regeneration Dynamics in Different Microsites within Gaps of Different Sizes

Authors: M. E. Hammond, R. Pokorny

Abstract:

Not much research has gone into the dynamics of natural regeneration of trees species in tropical forest regions. This study seeks to investigate the impact of gap sizes and light distribution in forest floors on the regeneration of Celtis mildbraedii (CEM), Nesogordonia papaverine (NES) and Terminalia superba (TES). These are selected economically important tree species with different shade tolerance attributes. The spatial distribution patterns and the potential regeneration competition index (RCI) among species using height to diameter ratio (HDR) have been assessed. Gap sizes ranging between 287 – 971 m² were selected at the Bia Tano forest reserve, a tropical moist semi-deciduous forest in Ghana. Four (4) transects in the cardinal directions were constructed from the center of each gap. Along each transect, ten 1 m² sampling zones at 2 m spacing were established. Then, three gap microsites (labeled ecozones I, II, III) were delineated within these sampling zones based on the varying temporal light distribution on the forest floor. Data on height (H), root collar diameter (RCD) and regeneration census were gathered from each of the ten sampling zones. CEM and NES seedlings (≤ 50 cm) and saplings (≥ 51 cm) were present in all ecozones of the large gaps. Seedlings of TES were observed in all ecozones of large and small gaps. Regression analysis showed a significant negative linear relationship between independent RCD and H growth variables on dependent HDR index in ecozones II and III of both large and small gaps. There was a correlation between RCD and H in both large and small gaps. A strong regeneration competition was observed among species in ecozone II in large (df 2, F=3.6, p=0.035) and small (df 2, F=17.9, p=0.000) gaps. These results contribute to the understanding of the natural regeneration of different species with regards to light regimes in forest floors.

Keywords: Celtis mildbraedii, ecozones, gaps, Nesogordonia papaverifera, regeneration, Terminalia superba

Procedia PDF Downloads 140
1479 Localization of Pyrolysis and Burning of Ground Forest Fires

Authors: Pavel A. Strizhak, Geniy V. Kuznetsov, Ivan S. Voytkov, Dmitri V. Antonov

Abstract:

This paper presents the results of experiments carried out at a specialized test site for establishing macroscopic patterns of heat and mass transfer processes at localizing model combustion sources of ground forest fires with the use of barrier lines in the form of a wetted lay of material in front of the zone of flame burning and thermal decomposition. The experiments were performed using needles, leaves, twigs, and mixtures thereof. The dimensions of the model combustion source and the ranges of heat release correspond well to the real conditions of ground forest fires. The main attention is paid to the complex analysis of the effect of dispersion of water aerosol (concentration and size of droplets) used to form the barrier line. It is shown that effective conditions for localization and subsequent suppression of flame combustion and thermal decomposition of forest fuel can be achieved by creating a group of barrier lines with different wetting width and depth of the material. Relative indicators of the effectiveness of one and combined barrier lines were established, taking into account all the main characteristics of the processes of suppressing burning and thermal decomposition of forest combustible materials. We performed the prediction of the necessary and sufficient parameters of barrier lines (water volume, width, and depth of the wetted lay of the material, specific irrigation density) for combustion sources with different dimensions, corresponding to the real fire extinguishing practice.

Keywords: forest fire, barrier water lines, pyrolysis front, flame front

Procedia PDF Downloads 133
1478 Reduce the Impact of Wildfires by Identifying Them Early from Space and Sending Location Directly to Closest First Responders

Authors: Gregory Sullivan

Abstract:

The evolution of global warming has escalated the number and complexity of forest fires around the world. As an example, the United States and Brazil combined generated more than 30,000 forest fires last year. The impact to our environment, structures and individuals is incalculable. The world has learned to try to take this in stride, trying multiple ways to contain fires. Some countries are trying to use cameras in limited areas. There are discussions of using hundreds of low earth orbit satellites and linking them together, and, interfacing them through ground networks. These are all truly noble attempts to defeat the forest fire phenomenon. But there is a better, simpler answer. A bigger piece of the solutions puzzle is to see the fires while they are small, soon after initiation. The approach is to see the fires while they are very small and report their location (latitude and longitude) to local first responders. This is done by placing a sensor at geostationary orbit (GEO: 26,000 miles above the earth). By placing this small satellite in GEO, we can “stare” at the earth, and sense temperature changes. We do not “see” fires, but “measure” temperature changes. This has already been demonstrated on an experimental scale. Fires were seen at close to initiation, and info forwarded to first responders. it were the first to identify the fires 7 out of 8 times. The goal is to have a small independent satellite at GEO orbit focused only on forest fire initiation. Thus, with one small satellite, focused only on forest fire initiation, we hope to greatly decrease the impact to persons, property and the environment.

Keywords: space detection, wildfire early warning, demonstration wildfire detection and action from space, space detection to first responders

Procedia PDF Downloads 70
1477 Forecasting the Fluctuation of Currency Exchange Rate Using Random Forest

Authors: Lule Basha, Eralda Gjika

Abstract:

The exchange rate is one of the most important economic variables, especially for a small, open economy such as Albania. Its effect is noticeable in one country's competitiveness, trade and current account, inflation, wages, domestic economic activity, and bank stability. This study investigates the fluctuation of Albania’s exchange rates using monthly average foreign currency, Euro (Eur) to Albanian Lek (ALL) exchange rate with a time span from January 2008 to June 2021, and the macroeconomic factors that have a significant effect on the exchange rate. Initially, the Random Forest Regression algorithm is constructed to understand the impact of economic variables on the behavior of monthly average foreign currencies exchange rates. Then the forecast of macro-economic indicators for 12 months was performed using time series models. The predicted values received are placed in the random forest model in order to obtain the average monthly forecast of the Euro to Albanian Lek (ALL) exchange rate for the period July 2021 to June 2022.

Keywords: exchange rate, random forest, time series, machine learning, prediction

Procedia PDF Downloads 104
1476 Application of Random Forest Model in The Prediction of River Water Quality

Authors: Turuganti Venkateswarlu, Jagadeesh Anmala

Abstract:

Excessive runoffs from various non-point source land uses, and other point sources are rapidly contaminating the water quality of streams in the Upper Green River watershed, Kentucky, USA. It is essential to maintain the stream water quality as the river basin is one of the major freshwater sources in this province. It is also important to understand the water quality parameters (WQPs) quantitatively and qualitatively along with their important features as stream water is sensitive to climatic events and land-use practices. In this paper, a model was developed for predicting one of the significant WQPs, Fecal Coliform (FC) from precipitation, temperature, urban land use factor (ULUF), agricultural land use factor (ALUF), and forest land-use factor (FLUF) using Random Forest (RF) algorithm. The RF model, a novel ensemble learning algorithm, can even find out advanced feature importance characteristics from the given model inputs for different combinations. This model’s outcomes showed a good correlation between FC and climate events and land use factors (R2 = 0.94) and precipitation and temperature are the primary influencing factors for FC.

Keywords: water quality, land use factors, random forest, fecal coliform

Procedia PDF Downloads 197
1475 Conception of a Predictive Maintenance System for Forest Harvesters from Multiple Data Sources

Authors: Lazlo Fauth, Andreas Ligocki

Abstract:

For cost-effective use of harvesters, expensive repairs and unplanned downtimes must be reduced as far as possible. The predictive detection of failing systems and the calculation of intelligent service intervals, necessary to avoid these factors, require in-depth knowledge of the machines' behavior. Such know-how needs permanent monitoring of the machine state from different technical perspectives. In this paper, three approaches will be presented as they are currently pursued in the publicly funded project PreForst at Ostfalia University of Applied Sciences. These include the intelligent linking of workshop and service data, sensors on the harvester, and a special online hydraulic oil condition monitoring system. Furthermore the paper shows potentials as well as challenges for the use of these data in the conception of a predictive maintenance system.

Keywords: predictive maintenance, condition monitoring, forest harvesting, forest engineering, oil data, hydraulic data

Procedia PDF Downloads 145
1474 Current Status of Nitrogen Saturation in the Upper Reaches of the Kanna River, Japan

Authors: Sakura Yoshii, Masakazu Abe, Akihiro Iijima

Abstract:

Nitrogen saturation has become one of the serious issues in the field of forest environment. The watershed protection forests located in the downwind hinterland of Tokyo Metropolitan Area are believed to be facing nitrogen saturation. In this study, we carefully focus on the balance of nitrogen between load and runoff. Annual nitrogen load via atmospheric deposition was estimated to 461.1 t-N/year in the upper reaches of the Kanna River. Annual nitrogen runoff to the forested headwater stream of the Kanna River was determined to 184.9 t-N/year, corresponding to 40.1% of the total nitrogen load. Clear seasonal change in NO3-N concentration was still observed. Therefore, watershed protection forest of the Kanna River is most likely to be in Stage-1 on the status of nitrogen saturation.

Keywords: atmospheric deposition, nitrogen accumulation, denitrification, forest ecosystems

Procedia PDF Downloads 276
1473 Classification of Forest Types Using Remote Sensing and Self-Organizing Maps

Authors: Wanderson Goncalves e Goncalves, José Alberto Silva de Sá

Abstract:

Human actions are a threat to the balance and conservation of the Amazon forest. Therefore the environmental monitoring services play an important role as the preservation and maintenance of this environment. This study classified forest types using data from a forest inventory provided by the 'Florestal e da Biodiversidade do Estado do Pará' (IDEFLOR-BIO), located between the municipalities of Santarém, Juruti and Aveiro, in the state of Pará, Brazil, covering an area approximately of 600,000 hectares, Bands 3, 4 and 5 of the TM-Landsat satellite image, and Self - Organizing Maps. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training the neural network. The midpoints of each sample of forest inventory have been linked to images. Later the Digital Numbers of the pixels have been extracted, composing the database that fed the training process and testing of the classifier. The neural network was trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and the number of examples in the training data set was 400, 200 examples for each class (Dbe and Dbe + Abp), and the size of the test data set was 100, with 50 examples for each class (Dbe and Dbe + Abp). Therefore, total mass of data consisted of 500 examples. The classifier was compiled in Orange Data Mining 2.7 Software and was evaluated in terms of the confusion matrix indicators. The results of the classifier were considered satisfactory, and being obtained values of the global accuracy equal to 89% and Kappa coefficient equal to 78% and F1 score equal to 0,88. It evaluated also the efficiency of the classifier by the ROC plot (receiver operating characteristics), obtaining results close to ideal ratings, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon.

Keywords: artificial neural network, computational intelligence, pattern recognition, unsupervised learning

Procedia PDF Downloads 361
1472 Wildland Fire in Terai Arc Landscape of Lesser Himalayas Threatning the Tiger Habitat

Authors: Amit Kumar Verma

Abstract:

The present study deals with fire prediction model in Terai Arc Landscape, one of the most dramatic ecosystems in Asia where large, wide-ranging species such as tiger, rhinos, and elephant will thrive while bringing economic benefits to the local people. Forest fires cause huge economic and ecological losses and release considerable quantities of carbon into the air and is an important factor inflating the global burden of carbon emissions. Forest fire is an important factor of behavioral cum ecological habit of tiger in wild. Post fire changes i.e. micro and macro habitat directly affect the tiger habitat or land. Vulnerability of fire depicts the changes in microhabitat (humus, soil profile, litter, vegetation, grassland ecosystem). Microorganism like spider, annelids, arthropods and other favorable microorganism directly affect by the forest fire and indirectly these entire microorganisms are responsible for the development of tiger (Panthera tigris) habitat. On the other hand, fire brings depletion in prey species and negative movement of tiger from wild to human- dominated areas, which may leads the conflict i.e. dangerous for both tiger & human beings. Early forest fire prediction through mapping the risk zones can help minimize the fire frequency and manage forest fires thereby minimizing losses. Satellite data plays a vital role in identifying and mapping forest fire and recording the frequency with which different vegetation types are affected. Thematic hazard maps have been generated by using IDW technique. A prediction model for fire occurrence is developed for TAL. The fire occurrence records were collected from state forest department from 2000 to 2014. Disciminant function models was used for developing a prediction model for forest fires in TAL, random points for non-occurrence of fire have been generated. Based on the attributes of points of occurrence and non-occurrence, the model developed predicts the fire occurrence. The map of predicted probabilities classified the study area into five classes very high (12.94%), high (23.63%), moderate (25.87%), low(27.46%) and no fire (10.1%) based upon the intensity of hazard. model is able to classify 78.73 percent of points correctly and hence can be used for the purpose with confidence. Overall, also the model works correctly with almost 69% of points. This study exemplifies the usefulness of prediction model of forest fire and offers a more effective way for management of forest fire. Overall, this study depicts the model for conservation of tiger’s natural habitat and forest conservation which is beneficial for the wild and human beings for future prospective.

Keywords: fire prediction model, forest fire hazard, GIS, landsat, MODIS, TAL

Procedia PDF Downloads 352
1471 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management

Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.

Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities

Procedia PDF Downloads 72
1470 Antioxidant Property of Honey with Dried Cherry

Authors: Jasna M. Čanadanović-Brunet, Gordana S. Ćetković, Jelena J. Vulić, Sonja M. Djilas, Vesna T. Tumbas Šaponjac, Sladjana M. Stajčić

Abstract:

Honey serves as a source of natural antioxidants, which are effective in reducing the risk of heart disease, cancer, immune-system decline, cataracts, different inflammatory processes, and also prevent deteriorative oxidation reactions in foods such as enzymatic browning of fruit and vegetables. Honey is a natural saturated sugar solution, but it also contains certain minor constituents, proteins, enzymes, amino and organic acids, lipids, vitamins, phenolic acids, flavonoids and carotenoids. It is consumed in its natural form alone, but also in combination with nuts and various kinds of dried fruits. The aim of this research was to investigate the contribution of dried cherry on phenols (TPh) and flavonoids (Fl) contents and antioxidant activities of honey. Phenolic compounds in Serbian polyfloral (PH), linden (LH) and acacia (AH) honey and also in their mixtures with dried cherry, in 40% mass concentrations (PH40; LH40, AH40), were determined. In comparison to honey, TPh increased 2.25 times for LH40, 2.16 times for AH40 and 1.45 times for PH40, while Fl increased 2.81-fold for PH40, 1.21-fold for LH40 and 1.44-fold for AH40. Antioxidant activity was investigated with two assays, DPPH test and reducing power (RP), and expressed as EC50DPPH and RP0.5 values. The EC50DPPH values were: EC50PH40 = 1.16 mg/ml; EC50LH40= 1.42 mg/ml and EC50AH40= 1.69 mg/ml, while RP0.5 were: RP0.5PH40 = 15.05 mg/ml; RP0.5LH40 = 16.09 mg/ml and P0.5AH40 = 17.60 mg/ml. Our results indicate that supplementation of polyfloral, linden and acacia honey with 40% dried cherry improves antioxidant activity of honey by enriching the phenolic composition.

Keywords: antioxidant activity, dried cherry, honey, phenolics

Procedia PDF Downloads 297
1469 Supply, Trade-offs, and Synergies Estimation for Regulating Ecosystem Services of a Local Forest

Authors: Jang-Hwan Jo

Abstract:

The supply management of ecosystem services of local forests is an essential issue as it is linked to the ecological welfare of local residents. This study aims to estimate the supply, trade-offs, and synergies of local forest regulating ecosystem services using a land cover classification map (LCCM) and a forest types map (FTM). Rigorous literature reviews and Expert Delphi analysis were conducted using the detailed variables of 1:5,000 LCCM and FTM. Land-use scoring method and Getis-Ord Gi* Analysis were utilized on detailed variables to propose a method for estimating supply, trade-offs, and synergies of the local forest regulating ecosystem services. The analysis revealed that the rank order (1st to 5th) of supply of regulating ecosystem services was Erosion prevention, Air quality regulation, Heat island mitigation, Water quality regulation, and Carbon storage. When analyzing the correlation between defined services of the entire city, almost all services showed a synergistic effect. However, when analyzing locally, trade-off effects (Heat island mitigation – Air quality regulation, Water quality regulation – Air quality regulation) appeared in the eastern and northwestern forest areas. This suggests the need to consider not only the synergy and trade-offs of the entire forest between specific ecosystem services but also the synergy and trade-offs of local areas in managing the regulating ecosystem services of local forests. The study result can provide primary data for the stakeholders to determine the initial conditions of the planning stage when discussing the establishment of policies related to the adjustment of the supply of regulating ecosystem services of the forests with limited access. Moreover, the study result can also help refine the estimation of the supply of the regulating ecosystem services with the availability of other forms of data.

Keywords: ecosystem service, getis ord gi* analysis, land use scoring method, regional forest, regulating service, synergies, trade-offs

Procedia PDF Downloads 90
1468 Land Cover Classification Using Sentinel-2 Image Data and Random Forest Algorithm

Authors: Thanh Noi Phan, Martin Kappas, Jan Degener

Abstract:

The currently launched Sentinel 2 (S2) satellite (June, 2015) bring a great potential and opportunities for land use/cover map applications, due to its fine spatial resolution multispectral as well as high temporal resolutions. So far, there are handful studies using S2 real data for land cover classification. Especially in northern Vietnam, to our best knowledge, there exist no studies using S2 data for land cover map application. The aim of this study is to provide the preliminary result of land cover classification using Sentinel -2 data with a rising state – of – art classifier, Random Forest. A case study with heterogeneous land use/cover in the eastern of Hanoi Capital – Vietnam was chosen for this study. All 10 spectral bands of 10 and 20 m pixel size of S2 images were used, the 10 m bands were resampled to 20 m. Among several classified algorithms, supervised Random Forest classifier (RF) was applied because it was reported as one of the most accuracy methods of satellite image classification. The results showed that the red-edge and shortwave infrared (SWIR) bands play an important role in land cover classified results. A very high overall accuracy above 90% of classification results was achieved.

Keywords: classify algorithm, classification, land cover, random forest, sentinel 2, Vietnam

Procedia PDF Downloads 388
1467 Effects of Bulblet Induction Medium on Bulb Size and Weight of Endemic Fritillaria aurea Schoot after Treatment with Putrescine for Different Durations of Time

Authors: Suleyman Kizil, Khalid Mahmood Khavar

Abstract:

Fritillaria aurea Schott is an important horticultural crop with high economic potential for the ornamental plant industry and is endemic to the Central and South-Eastern Anatolian regions of Türkiye. This study reports an experiment conducted under in vitro conditions to improve the weight and diameter of the in vitro regenerated bulblets. The micro bulblets used in this study were obtained from callus induced on half-sliced bulblets cultured on MS medium containing 0.1 mg L⁻¹ NAA + 0.05 TDZ (R₁ medium) and 0.1 mg L⁻¹ NAA + 0.10 mg L⁻¹ TDZ (R₂ medium). Thereafter, the micro bulblets obtained from here were treated with 50 mg L⁻¹ putrescine, (tetramethylenediamine) for 3, 5, and 7 weeks. The putrescine treatment has a significant effect on the increase in diameter and weight of bulblets when compared to initial diameters, irrespective of the treatment periods and seed germination medium. When the duration of putrescine in weeks was compared, 7 weeks of treatments with putrescine were more conducive for induction in bulblet weight compared to 3 and 5 weeks treatment periods. Maximum seed weight of 0.52 grams was noted on 7 weeks of putrescine treated bulblets regenerated on 0.1 mg L⁻¹ TDZ. This strategy to increase bulb weight and diameter could be positively used to conserve and multiply this beautiful ornamental and endemic plant species.

Keywords: Fritillaria aurea, bulblet, diameter, weight, micropropagation, polyamine

Procedia PDF Downloads 25
1466 Role of Non-Timber Forest Products in Local Livelihood and Household Economies in Resource-Rich vs. Resource Poor Forest Area of Mizoram

Authors: Uttam Kumar Sahoo, K. Lalhmingsangi, J. H. Lalremruati

Abstract:

Non-timber forest resources particularly the high-value, low volume NTFPs has drawn interest as an activity all over the world during the past three decades that could raise standards of living for the rural folks while being compatible with forest conservation. This is particularly true for the people living in and around or fringes of protected areas. However, the economics that plays between resources’ stock and its utilization by the humans is yet to be validated and evaluated logistically. A study was therefore designed to understand the linkages between resource (especially NTFPs) availability and their utilization, existing threats to this biodiversity conservation and the role of NTFPs within the livelihood systems of those households that are most directly involved in creating conservation threats. About 25% of the households were sampled from the two sites ‘resource-rich’ and ‘resource poor’ area of Dampa Tiger Reserve (Western boundary). Our preliminary findings suggest that the collection of relatively high-volume and low value NTFPs such as fuelwood, fodder has caused degradation of forest resources while the low-volume and high-value NTFPs such as wild edible mushrooms, vegetables, other specialty food products, inputs to crafts, medicinal plants have resulted into species promotion/conservation through their domestication in traditional agroforestry systems including home gardens and/or collateral protection of the Tiger Reserve. It is thus suggested that proper assessment of these biodiversities, their direct and indirect valuation, market and non-market profits etc be carried out in greater details which would result in prescribing effective management plans around the park.

Keywords: household economy, livelihood strategies, non-timber forest products, species conservation

Procedia PDF Downloads 190
1465 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams

Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew

Abstract:

Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.

Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions

Procedia PDF Downloads 114
1464 Carbon Pool Assessment in Community Forests, Nepal

Authors: Medani Prasad Rijal

Abstract:

Forest itself is a factory as well as product. It supplies tangible and intangible goods and services. It supplies timber, fuel wood, fodder, grass leaf litter as well as non timber edible goods and medicinal and aromatic products additionally provides environmental services. These environmental services are of local, national or even global importance. In Nepal, more than 19 thousands community forests are providing environmental service in less economic benefit than actual efficiency. There is a risk of cost of management of those forest exceeds benefits and forests get converted to open access resources in future. Most of the environmental goods and services do not have markets which mean no prices at which they are available to the consumers, therefore the valuation of these services goods and services establishment of paying mechanism for such services and insure the benefit to community is more relevant in local as well as global scale. There are few examples of carbon trading in domestic level to meet the country wide emission goal. In this contest, the study aims to explore the public attitude towards carbon offsetting and their responsibility over service providers. This study helps in promotion of environment service awareness among general people, service provider and community forest. The research helps to unveil the carbon pool scenario in community forest and willingness to pay for carbon offsetting of people who are consuming more energy than general people and emitting relatively more carbon in atmosphere. The study has assessed the carbon pool status in two community forest and valuated carbon service from community forest through willingness to pay in Dharan municipality situated in eastern. In the study, in two community forests carbon pools were assessed following the guideline “Forest Carbon Inventory Guideline 2010” prescribed by Ministry of Forest and soil Conservation, Nepal. Final outcomes of analysis in intensively managed area of Hokse CF recorded as 103.58 tons C /ha with 6173.30 tons carbon stock. Similarly in Hariyali CF carbon density was recorded 251.72 mg C /ha. The total carbon stock of intensively managed blocks in Hariyali CF is 35839.62 tons carbon.

Keywords: carbon, offsetting, sequestration, valuation, willingness to pay

Procedia PDF Downloads 355
1463 Household's Willingness to Pay for Safe Non-Timber Forest Products at Morikouali-Ye Community Forest in Cameroon

Authors: Eke Balla Sophie Michelle

Abstract:

Forest provides a wide range of environmental goods and services among which, biodiversity or consumption goods and constitute public goods. Despite the importance of non-timber forest products (NTFPs) in sustaining livelihood and poverty smoothening in rural communities, they are highly depleted and poorly conserved. Yokadouma is a town where NTFPs is a renewable resource in active exploitation. It has been found that such exploitation is done in the same conditions as other localities that have experienced a rapid depletion of their NTFPs in destination to cities across Cameroon, Central Africa, and overseas. Given these realities, it is necessary to access the consequences of this overexploitation through negative effects on both the population and the environment. Therefore, to enhance participatory conservation initiatives, this study determines the household’s willingness to pay in community forest (CF) of Morikouali-ye, eastern region of Cameroon, for sustainable exploitation of NTFPs using contingent valuation method (CVM) through two approaches, one parametric (Logit model) and the other non-parametric (estimator of the Turnbull lower bound). The results indicate that five species are the most collected in the study area: Irvingia gabonensis, the Ricinodendron heudelotii, Gnetum, the Jujube and bark, their sale contributes significantly to 41 % of total household income. The average willingness to pay through the Logit model and the Turnbull estimator is 6845.2861 FCFA and 4940 FCFA respectively per household per year with a social cost of degradation estimated at 3237820.3253 FCFA years. The probability to pay increases with income, gender, number of women in the household, age, the commercial activity of NTFPs and decreases with the concept of sustainable development.

Keywords: non timber forest product, contingent valuation method, willingness to pay, sustainable development

Procedia PDF Downloads 446
1462 Impact of Climate Change on Forest Ecosystem Services: In situ Biodiversity Conservation and Sustainable Management of Forest Resources in Tropical Forests

Authors: Rajendra Kumar Pandey

Abstract:

Forest genetic resources not only represent regional biodiversity but also have immense value as the wealth for securing livelihood of poor people. These are vulnerable to ecological due to depletion/deforestation and /or impact of climate change. These resources of various plant categories are vulnerable on the floor of natural tropical forests, and leading to the threat on the growth and development of future forests. More than 170 species, including NTFPs, are in critical condition for their survival in natural tropical forests of Central India. Forest degradation, commensurate with biodiversity loss, is now pervasive, disproportionately affecting the rural poor who directly depend on forests for their subsistence. Looking ahead the interaction between forest and water, soil, precipitation, climate change, etc. and its impact on biodiversity of tropical forests, it is inevitable to develop co-operation policies and programmes to address new emerging realities. Forests ecosystem also known as the 'wealth of poor' providing goods and ecosystem services on a sustainable basis, are now recognized as a stepping stone to move poor people beyond subsistence. Poverty alleviation is the prime objective of the Millennium Development Goals (MDGs). However, environmental sustainability including other MDGs, is essential to ensure successful elimination of poverty and well being of human society. Loss and degradation of ecosystem are the most serious threats to achieving development goals worldwide. Millennium Ecosystem Assessment (MEA, 2005) was an attempt to identify provisioning and regulating cultural and supporting ecosystem services to provide livelihood security of human beings. Climate change may have a substantial impact on ecological structure and function of forests, provisioning, regulations and management of resources which can affect sustainable flow of ecosystem services. To overcome these limitations, policy guidelines with respect to planning and consistent research strategy need to be framed for conservation and sustainable development of forest genetic resources.

Keywords: climate change, forest ecosystem services, sustainable forest management, biodiversity conservation

Procedia PDF Downloads 297
1461 Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems.

Keywords: solubility, random forest, molecular descriptors, maccs keys

Procedia PDF Downloads 46
1460 Optimization of Machine Learning Regression Results: An Application on Health Expenditures

Authors: Songul Cinaroglu

Abstract:

Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures.

Keywords: machine learning, lasso regression, random forest regression, support vector regression, hyperparameter tuning, health expenditure

Procedia PDF Downloads 226
1459 Neutral Sugar Contents of Laurel-leaved and Cryptomeria japonica Forests

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

Soil neutral sugar contents in Kasuga-yama Hill Primeval Forest (Nara, Japan) were examined using the Waksman’s approximation analysis to clarify relations with the neutral sugar constituted the soil organic matter and the microbial biomass. Samples were selected from the soil surrounding laurel-leaved (BB-1) and Carpinus japonica (BB-2) trees for analysis. The water and HCl soluble neutral sugars increased microbial biomass of the laurel-leaved forest soil. Arabinose, xylose, and galactose of the HCl soluble fraction were used immediately in comparison with other neutral sugars. Rhamnose, glucose, and fructose of the HCl soluble fraction were re-composed by the microbes.

Keywords: forest soil, neutral sugaras, soil organic matter, Waksman’s approximation analysis

Procedia PDF Downloads 309
1458 Multi-Spectral Deep Learning Models for Forest Fire Detection

Authors: Smitha Haridasan, Zelalem Demissie, Atri Dutta, Ajita Rattani

Abstract:

Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection.

Keywords: deep learning, forest fire detection, multi-spectral learning, natural hazard detection

Procedia PDF Downloads 241
1457 Controlling Deforestation in the Densely Populated Region of Central Java Province, Banjarnegara District, Indonesia

Authors: Guntur Bagus Pamungkas

Abstract:

As part of a tropical country that is normally rich in forest land areas, Indonesia has always been in the world's spotlight due to its significantly increasing process of deforestation. In one hand, it is related to the mainstay for maintaining the sustainability of the earth's ecosystem functions. On the other hand, they also cover the various potential sources of the global economy. Therefore, it can always be the target of different scale of investors to excessively exploit them. No wonder the emergence of disasters in various characteristics always comes up. In fact, the deforestation phenomenon does not only occur in various forest land areas in the main islands of Indonesia but also includes Java Island, the most densely populated areas in the world. This island only remains the forest land of about 9.8% of the total forest land in Indonesia due to its long history of it, especially in Central Java Province, the most densely populated area in Java. Again, not surprisingly, this province belongs to the area with the highest frequency of disasters because of it, landslides in particular. One of the areas that often experience it is Banjarnegara District, especially in mountainous areas that lies in the range from 1000 to 3000 meters above sea level, where the remains of land forest area can easyly still be found. Even among them still leaves less untouchable tropical rain forest whose area also covers part of a neighboring district, Pekalongan, which is considered to be the rest of the world's little paradise on Earth. The district's landscape is indeed beautiful, especially in the Dieng area, a major tourist destination in Central Java Province after Borobudur Temple. However, annually hazardous always threatens this district due to this landslide disaster. Even, there was a tragic event that was buried with its inhabitants a few decades ago. This research aims to find part of the concept of effective forest management through monitoring the presence of remaining forest areas in this area. The research implemented monitoring of deforestation rates using the Stochastic Cellular Automata-Markov Chain (SCA-MC) method, which serves to provide a spatial simulation of land use and cover changes (LULCC). This geospatial process uses the Landsat-8 OLI image product with Thermal Infra-Red Sensors (TIRS) Band 10 in 2020 and Landsat 5 TM with TIRS Band 6 in 2010. Then it is also integrated with physical and social geography issues using the QGIS 2.18.11 application with the Mollusce Plugin, which serves to clarify and calculate the area of land use and cover, especially in forest areas—using the LULCC method, which calculates the rate of forest area reduction in 2010-2020 in Banjarnegara District. Since the dependence of this area on the use of forest land is quite high, concepts and preventive actions are needed, such as rehabilitation and reforestation of critical lands through providing proper monitoring and targeted forest management to restore its ecosystem in the future.

Keywords: deforestation, populous area, LULCC method, proper control and effective forest management

Procedia PDF Downloads 135