Search results for: inverse models of data envelopment analysis
44576 An Overview of Bioinformatics Methods to Detect Novel Riboswitches Highlighting the Importance of Structure Consideration
Authors: Danny Barash
Abstract:
Riboswitches are RNA genetic control elements that were originally discovered in bacteria and provide a unique mechanism of gene regulation. They work without the participation of proteins and are believed to represent ancient regulatory systems in the evolutionary timescale. One of the biggest challenges in riboswitch research is that many are found in prokaryotes but only a small percentage of known riboswitches have been found in certain eukaryotic organisms. The few examples of eukaryotic riboswitches were identified using sequence-based bioinformatics search methods that include some slight structural considerations. These pattern-matching methods were the first ones to be applied for the purpose of riboswitch detection and they can also be programmed very efficiently using a data structure called affix arrays, making them suitable for genome-wide searches of riboswitch patterns. However, they are limited by their ability to detect harder to find riboswitches that deviate from the known patterns. Several methods have been developed since then to tackle this problem. The most commonly used by practitioners is Infernal that relies on Hidden Markov Models (HMMs) and Covariance Models (CMs). Profile Hidden Markov Models were also carried out in the pHMM Riboswitch Scanner web application, independently from Infernal. Other computational approaches that have been developed include RMDetect by the use of 3D structural modules and RNAbor that utilizes Boltzmann probability of structural neighbors. We have tried to incorporate more sophisticated secondary structure considerations based on RNA folding prediction using several strategies. The first idea was to utilize window-based methods in conjunction with folding predictions by energy minimization. The moving window approach is heavily geared towards secondary structure consideration relative to sequence that is treated as a constraint. However, the method cannot be used genome-wide due to its high cost because each folding prediction by energy minimization in the moving window is computationally expensive, enabling to scan only at the vicinity of genes of interest. The second idea was to remedy the inefficiency of the previous approach by constructing a pipeline that consists of inverse RNA folding considering RNA secondary structure, followed by a BLAST search that is sequence-based and highly efficient. This approach, which relies on inverse RNA folding in general and our own in-house fragment-based inverse RNA folding program called RNAfbinv in particular, shows capability to find attractive candidates that are missed by Infernal and other standard methods being used for riboswitch detection. We demonstrate attractive candidates found by both the moving-window approach and the inverse RNA folding approach performed together with BLAST. We conclude that structure-based methods like the two strategies outlined above hold considerable promise in detecting riboswitches and other conserved RNAs of functional importance in a variety of organisms.Keywords: riboswitches, RNA folding prediction, RNA structure, structure-based methods
Procedia PDF Downloads 23444575 Measuring Energy Efficiency Performance of Mena Countries
Authors: Azam Mohammadbagheri, Bahram Fathi
Abstract:
DEA has become a very popular method of performance measure, but it still suffers from some shortcomings. One of these shortcomings is the issue of having multiple optimal solutions to weights for efficient DMUs. The cross efficiency evaluation as an extension of DEA is proposed to avoid this problem. Lam (2010) is also proposed a mixed-integer linear programming formulation based on linear discriminate analysis and super efficiency method (MILP model) to avoid having multiple optimal solutions to weights. In this study, we modified MILP model to determine more suitable weight sets and also evaluate the energy efficiency of MENA countries as an application of the proposed model.Keywords: data envelopment analysis, discriminate analysis, cross efficiency, MILP model
Procedia PDF Downloads 68744574 Regional Adjustment to the Analytical Attenuation Coefficient in the GMPM BSSA 14 for the Region of Spain
Authors: Gonzalez Carlos, Martinez Fransisco
Abstract:
There are various types of analysis that allow us to involve seismic phenomena that cause strong requirements for structures that are designed by society; one of them is a probabilistic analysis which works from prediction equations that have been created based on metadata seismic compiled in different regions. These equations form models that are used to describe the 5% damped pseudo spectra response for the various zones considering some easily known input parameters. The biggest problem for the creation of these models requires data with great robust statistics that support the results, and there are several places where this type of information is not available, for which the use of alternative methodologies helps to achieve adjustments to different models of seismic prediction.Keywords: GMPM, 5% damped pseudo-response spectra, models of seismic prediction, PSHA
Procedia PDF Downloads 7644573 Inverse Scattering of Two-Dimensional Objects Using an Enhancement Method
Authors: A.R. Eskandari, M.R. Eskandari
Abstract:
A 2D complete identification algorithm for dielectric and multiple objects immersed in air is presented. The employed technique consists of initially retrieving the shape and position of the scattering object using a linear sampling method and then determining the electric permittivity and conductivity of the scatterer using adjoint sensitivity analysis. This inversion algorithm results in high computational speed and efficiency, and it can be generalized for any scatterer structure. Also, this method is robust with respect to noise. The numerical results clearly show that this hybrid approach provides accurate reconstructions of various objects.Keywords: inverse scattering, microwave imaging, two-dimensional objects, Linear Sampling Method (LSM)
Procedia PDF Downloads 38744572 Geographic Information System for District Level Energy Performance Simulations
Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck
Abstract:
The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.Keywords: CityGML, EnergyADE, energy performance simulation, GIS
Procedia PDF Downloads 16844571 Towards an Enhanced Compartmental Model for Profiling Malware Dynamics
Authors: Jessemyn Modiini, Timothy Lynar, Elena Sitnikova
Abstract:
We present a novel enhanced compartmental model for malware spread analysis in cyber security. This paper applies cyber security data features to epidemiological compartmental models to model the infectious potential of malware. Compartmental models are most efficient for calculating the infectious potential of a disease. In this paper, we discuss and profile epidemiologically relevant data features from a Domain Name System (DNS) dataset. We then apply these features to epidemiological compartmental models to network traffic features. This paper demonstrates how epidemiological principles can be applied to the novel analysis of key cybersecurity behaviours and trends and provides insight into threat modelling above that of kill-chain analysis. In applying deterministic compartmental models to a cyber security use case, the authors analyse the deficiencies and provide an enhanced stochastic model for cyber epidemiology. This enhanced compartmental model (SUEICRN model) is contrasted with the traditional SEIR model to demonstrate its efficacy.Keywords: cybersecurity, epidemiology, cyber epidemiology, malware
Procedia PDF Downloads 10744570 An Overview of Domain Models of Urban Quantitative Analysis
Authors: Mohan Li
Abstract:
Nowadays, intelligent research technology is more and more important than traditional research methods in urban research work, and this proportion will greatly increase in the next few decades. Frequently such analyzing work cannot be carried without some software engineering knowledge. And here, domain models of urban research will be necessary when applying software engineering knowledge to urban work. In many urban plan practice projects, making rational models, feeding reliable data, and providing enough computation all make indispensable assistance in producing good urban planning. During the whole work process, domain models can optimize workflow design. At present, human beings have entered the era of big data. The amount of digital data generated by cities every day will increase at an exponential rate, and new data forms are constantly emerging. How to select a suitable data set from the massive amount of data, manage and process it has become an ability that more and more planners and urban researchers need to possess. This paper summarizes and makes predictions of the emergence of technologies and technological iterations that may affect urban research in the future, discover urban problems, and implement targeted sustainable urban strategies. They are summarized into seven major domain models. They are urban and rural regional domain model, urban ecological domain model, urban industry domain model, development dynamic domain model, urban social and cultural domain model, urban traffic domain model, and urban space domain model. These seven domain models can be used to guide the construction of systematic urban research topics and help researchers organize a series of intelligent analytical tools, such as Python, R, GIS, etc. These seven models make full use of quantitative spatial analysis, machine learning, and other technologies to achieve higher efficiency and accuracy in urban research, assisting people in making reasonable decisions.Keywords: big data, domain model, urban planning, urban quantitative analysis, machine learning, workflow design
Procedia PDF Downloads 17744569 Exact Energy Spectrum and Expectation Values of the Inverse Square Root Potential Model
Authors: Benedict Ita, Peter Okoi
Abstract:
In this work, the concept of the extended Nikiforov-Uvarov technique is discussed and employed to obtain the exact bound state energy eigenvalues and the corresponding normalized eigenfunctions of the inverse square root potential. With expressions for the exact energy eigenvalues and corresponding eigenfunctions, the expressions for the expectation values of the inverse separation-squared, kinetic energy, and the momentum-squared of the potential are presented using the Hellmann Feynman theorem. For visualization, algorithms written and implemented in Python language are used to generate tables and plots for l-states of the energy eigenvalues and some expectation values. The results obtained here may find suitable applications in areas like atomic and molecular physics, chemical physics, nuclear physics, and solid-state physics.Keywords: Schrodinger equation, Nikoforov-Uvarov method, inverse square root potential, diatomic molecules, Python programming, Hellmann-Feynman theorem, second order differential equation, matrix algebra
Procedia PDF Downloads 1944568 3D Numerical Study of Tsunami Loading and Inundation in a Model Urban Area
Authors: A. Bahmanpour, I. Eames, C. Klettner, A. Dimakopoulos
Abstract:
We develop a new set of diagnostic tools to analyze inundation into a model district using three-dimensional CFD simulations, with a view to generating a database against which to test simpler models. A three-dimensional model of Oregon city with different-sized groups of building next to the coastline is used to run calculations of the movement of a long period wave on the shore. The initial and boundary conditions of the off-shore water are set using a nonlinear inverse method based on Eulerian spatial information matching experimental Eulerian time series measurements of water height. The water movement is followed in time, and this enables the pressure distribution on every surface of each building to be followed in a temporal manner. The three-dimensional numerical data set is validated against published experimental work. In the first instance, we use the dataset as a basis to understand the success of reduced models - including 2D shallow water model and reduced 1D models - to predict water heights, flow velocity and forces. This is because models based on the shallow water equations are known to underestimate drag forces after the initial surge of water. The second component is to identify critical flow features, such as hydraulic jumps and choked states, which are flow regions where dissipation occurs and drag forces are large. Finally, we describe how future tsunami inundation models should be modified to account for the complex effects of buildings through drag and blocking.Financial support from UCL and HR Wallingford is greatly appreciated. The authors would like to thank Professor Daniel Cox and Dr. Hyoungsu Park for providing the data on the Seaside Oregon experiment.Keywords: computational fluid dynamics, extreme events, loading, tsunami
Procedia PDF Downloads 11544567 Application of Regularized Low-Rank Matrix Factorization in Personalized Targeting
Authors: Kourosh Modarresi
Abstract:
The Netflix problem has brought the topic of “Recommendation Systems” into the mainstream of computer science, mathematics, and statistics. Though much progress has been made, the available algorithms do not obtain satisfactory results. The success of these algorithms is rarely above 5%. This work is based on the belief that the main challenge is to come up with “scalable personalization” models. This paper uses an adaptive regularization of inverse singular value decomposition (SVD) that applies adaptive penalization on the singular vectors. The results show far better matching for recommender systems when compared to the ones from the state of the art models in the industry.Keywords: convex optimization, LASSO, regression, recommender systems, singular value decomposition, low rank approximation
Procedia PDF Downloads 45544566 A Human Centered Design of an Exoskeleton Using Multibody Simulation
Authors: Sebastian Kölbl, Thomas Reitmaier, Mathias Hartmann
Abstract:
Trial and error approaches to adapt wearable support structures to human physiology are time consuming and elaborate. However, during preliminary design, the focus lies on understanding the interaction between exoskeleton and the human body in terms of forces and moments, namely body mechanics. For the study at hand, a multi-body simulation approach has been enhanced to evaluate actual forces and moments in a human dummy model with and without a digital mock-up of an active exoskeleton. Therefore, different motion data have been gathered and processed to perform a musculosceletal analysis. The motion data are ground reaction forces, electromyography data (EMG) and human motion data recorded with a marker-based motion capture system. Based on the experimental data, the response of the human dummy model has been calibrated. Subsequently, the scalable human dummy model, in conjunction with the motion data, is connected with the exoskeleton structure. The results of the human-machine interaction (HMI) simulation platform are in particular resulting contact forces and human joint forces to compare with admissible values with regard to the human physiology. Furthermore, it provides feedback for the sizing of the exoskeleton structure in terms of resulting interface forces (stress justification) and the effect of its compliance. A stepwise approach for the setup and validation of the modeling strategy is presented and the potential for a more time and cost-effective development of wearable support structures is outlined.Keywords: assistive devices, ergonomic design, inverse dynamics, inverse kinematics, multibody simulation
Procedia PDF Downloads 16244565 Empirical Roughness Progression Models of Heavy Duty Rural Pavements
Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed
Abstract:
Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.Keywords: roughness progression, empirical model, pavement performance, heavy duty pavement
Procedia PDF Downloads 16844564 Optimizing 3D Shape Parameters of Sports Bra Pads in Motion by Finite Element Dynamic Modelling with Inverse Problem Solution
Authors: Jiazhen Chen, Yue Sun, Joanne Yip, Kit-Lun Yick
Abstract:
The design of sports bras poses a considerable challenge due to the difficulty in accurately predicting the wearing result after computer-aided design (CAD). It needs repeated physical try-on or virtual try-on to obtain a comfortable pressure range during motion. Specifically, in the context of running, the exact support area and force exerted on the breasts remain unclear. Consequently, obtaining an effective method to design the sports bra pads shape becomes particularly challenging. This predicament hinders the successful creation and production of sports bras that cater to women's health needs. The purpose of this study is to propose an effective method to obtain the 3D shape of sports bra pads and to understand the relationship between the supporting force and the 3D shape parameters of the pads. Firstly, the static 3D shape of the sports bra pad and human motion data (Running) are obtained by using the 3D scanner and advanced 4D scanning technology. The 3D shape of the sports bra pad is parameterised and simplified by Free-form Deformation (FFD). Then the sub-models of sports bra and human body are constructed by segmenting and meshing them with MSC Apex software. The material coefficient of sports bras is obtained by material testing. The Marc software is then utilised to establish a dynamic contact model between the human breast and the sports bra pad. To realise the reverse design of the sports bra pad, this contact model serves as a forward model for calculating the inverse problem. Based on the forward contact model, the inverse problem of the 3D shape parameters of the sports bra pad with the target bra-wearing pressure range as the boundary condition is solved. Finally, the credibility and accuracy of the simulation are validated by comparing the experimental results with the simulations by the FE model on the pressure distribution. On the one hand, this research allows for a more accurate understanding of the support area and force distribution on the breasts during running. On the other hand, this study can contribute to the customization of sports bra pads for different individuals. It can help to obtain sports bra pads with comfortable dynamic pressure.Keywords: sports bra design, breast motion, running, inverse problem, finite element dynamic model
Procedia PDF Downloads 5944563 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness
Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers
Abstract:
The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning
Procedia PDF Downloads 28644562 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis
Authors: Meng Su
Abstract:
High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis
Procedia PDF Downloads 10744561 Valuing Social Sustainability in Agriculture: An Approach Based on Social Outputs’ Shadow Prices
Authors: Amer Ait Sidhoum
Abstract:
Interest in sustainability has gained ground among practitioners, academics and policy-makers due to growing stakeholders’ awareness of environmental and social concerns. This is particularly true for agriculture. However, relatively little research has been conducted on the quantification of social sustainability and the contribution of social issues to the agricultural production efficiency. This research's main objective is to propose a method for evaluating prices of social outputs, more precisely shadow prices, by allowing for the stochastic nature of agricultural production that is to say for production uncertainty. In this article, the assessment of social outputs’ shadow prices is conducted within the methodological framework of nonparametric Data Envelopment Analysis (DEA). An output-oriented directional distance function (DDF) is implemented to represent the technology of a sample of Catalan arable crop farms and derive the efficiency scores the overall production technology of our sample is assumed to be the intersection of two different sub-technologies. The first sub-technology models the production of random desirable agricultural outputs, while the second sub-technology reflects the social outcomes from agricultural activities. Once a nonparametric production technology has been represented, the DDF primal approach can be used for efficiency measurement, while shadow prices are drawn from the dual representation of the DDF. Computing shadow prices is a method to assign an economic value to non-marketed social outcomes. Our research uses cross sectional, farm-level data collected in 2015 from a sample of 180 Catalan arable crop farms specialized in the production of cereals, oilseeds and protein (COP) crops. Our results suggest that our sample farms show high performance scores, from 85% for the bad state of nature to 88% for the normal and ideal crop growing conditions. This suggests that farm performance is increasing with an improvement in crop growth conditions. Results also show that average shadow prices of desirable state-contingent output and social outcomes for efficient and inefficient farms are positive, suggesting that the production of desirable marketable outputs and of non-marketable outputs makes a positive contribution to the farm production efficiency. Results also indicate that social outputs’ shadow prices are contingent upon the growing conditions. The shadow prices follow an upward trend as crop-growing conditions improve. This finding suggests that these efficient farms prefer to allocate more resources in the production of desirable outputs than of social outcomes. To our knowledge, this study represents the first attempt to compute shadow prices of social outcomes while accounting for the stochastic nature of the production technology. Our findings suggest that the decision-making process of the efficient farms in dealing with social issues are stochastic and strongly dependent on the growth conditions. This implies that policy-makers should adjust their instruments according to the stochastic environmental conditions. An optimal redistribution of rural development support, by increasing the public payment with the improvement in crop growth conditions, would likely enhance the effectiveness of public policies.Keywords: data envelopment analysis, shadow prices, social sustainability, sustainable farming
Procedia PDF Downloads 12544560 Analysis of Eco-Efficiency and the Determinants of Family Agriculture in Southeast Spain
Authors: Emilio Galdeano-Gómez, Ángeles Godoy-Durán, Juan C. Pérez-Mesa, Laura Piedra-Muñoz
Abstract:
Eco-efficiency is receiving ever-increasing interest as an indicator of sustainability, as it links environmental and economic performances in productive activities. In agriculture, these indicators and their determinants prove relevant due to the close relationships in this activity between the use of natural resources, which is generally limited, and the provision of basic goods to society. In this context, various analyses have focused on eco-efficiency by considering individual family farms as the basic production unit. However, not only must the measure of efficiency be taken into account, but also the existence of a series of factors which constitute socio-economic, political-institutional, and environmental determinants. Said factors have been studied to a lesser extent in the literature. The present work analyzes eco-efficiency at a micro level, focusing on small-scale family farms as the main decision-making units in horticulture in southeast Spain, a sector which represents about 30% of the fresh vegetables produced in the country and about 20% of those consumed in Europe. The objectives of this study are a) to obtain a series of eco-efficiency indicators by estimating several pressure ratios and economic value added in farming, b) to analyze the influence of specific social, economic and environmental variables on the aforementioned eco-efficiency indicators. The present work applies the method of Data Envelopment Analysis (DEA), which calculates different combinations of environmental pressures (water usage, phytosanitary contamination, waste management, etc.) and aggregate economic value. In a second stage, an analysis is conducted on the influence of the socio-economic and environmental characteristics of family farms on the eco-efficiency indicators, as endogeneous variables, through the use of truncated regression and bootstrapping techniques, following Simar-Wilson methodology. The results reveal considerable inefficiency in aspects such as waste management, while there is relatively little inefficiency in water usage and nitrogen balance. On the other hand, characteristics, such as product specialization, the adoption of quality certifications and belonging to a cooperative do have a positive impact on eco-efficiency. These results are deemed to be of interest to agri-food systems structured on small-scale producers, and they may prove useful to policy-makers as regards managing public environmental programs in agriculture.Keywords: data envelopment analysis, eco-efficiency, family farms, horticulture, socioeconomic features
Procedia PDF Downloads 19344559 Comparative Analysis of Effecting Factors on Fertility by Birth Order: A Hierarchical Approach
Authors: Ali Hesari, Arezoo Esmaeeli
Abstract:
Regarding to dramatic changes of fertility and higher order births during recent decades in Iran, access to knowledge about affecting factors on different birth orders has crucial importance. In this study, According to hierarchical structure of many of social sciences data and the effect of variables of different levels of social phenomena that determine different birth orders in 365 days ending to 1390 census have been explored by multilevel approach. In this paper, 2% individual row data for 1390 census is analyzed by HLM software. Three different hierarchical linear regression models are estimated for data analysis of the first and second, third, fourth and more birth order. Research results displays different outcomes for three models. Individual level variables entered in equation are; region of residence (rural/urban), age, educational level and labor participation status and province level variable is GDP per capita. Results show that individual level variables have different effects in these three models and in second level we have different random and fixed effects in these models.Keywords: fertility, birth order, hierarchical approach, fixe effects, random effects
Procedia PDF Downloads 33944558 Impacts of Financial Development and Operational Scale on Bank Efficiencies in Taiwan
Authors: Ying-Hsiu Chen, Pao-Peng Hsu
Abstract:
This paper adopts a two-stage data envelopment analysis to explore the impacts of financial development and bank operational scale on bank efficiencies. The sample comprises of unbalanced panel data of 32 Taiwanese enlisted in domestic commercial banks over the period 1998 to 2013. Empirical results show that technical efficiency is positively related to financial development, whereas the effect of financial development on scale efficiency is insignificant. The effect of operational scale exerts a significantly positive effect on bank efficiencies, but the gain of efficiency is decreased gradually when operational scale increases. Furthermore, increase in capital adequacy ratio and market power of banks leads to a growth of bank efficiencies.Keywords: financial development, operational scale, efficiency, DEA
Procedia PDF Downloads 52544557 Exchange Rate Forecasting by Econometric Models
Authors: Zahid Ahmad, Nosheen Imran, Nauman Ali, Farah Amir
Abstract:
The objective of the study is to forecast the US Dollar and Pak Rupee exchange rate by using time series models. For this purpose, daily exchange rates of US and Pakistan for the period of January 01, 2007 - June 2, 2017, are employed. The data set is divided into in sample and out of sample data set where in-sample data are used to estimate as well as forecast the models, whereas out-of-sample data set is exercised to forecast the exchange rate. The ADF test and PP test are used to make the time series stationary. To forecast the exchange rate ARIMA model and GARCH model are applied. Among the different Autoregressive Integrated Moving Average (ARIMA) models best model is selected on the basis of selection criteria. Due to the volatility clustering and ARCH effect the GARCH (1, 1) is also applied. Results of analysis showed that ARIMA (0, 1, 1 ) and GARCH (1, 1) are the most suitable models to forecast the future exchange rate. Further the GARCH (1,1) model provided the volatility with non-constant conditional variance in the exchange rate with good forecasting performance. This study is very useful for researchers, policymakers, and businesses for making decisions through accurate and timely forecasting of the exchange rate and helps them in devising their policies.Keywords: exchange rate, ARIMA, GARCH, PAK/USD
Procedia PDF Downloads 56144556 Investigating the Relationship between Growth, Beta and Liquidity
Authors: Zahra Amirhosseini, Mahtab Nameni
Abstract:
The aim of this study was to investigate the relationship between growth, beta, and Company's cash. We calculate cash as dependent variable and growth opportunity and beta as independent variables. This study was based on an analysis of panel data. Population of the study is the companies which listed in Tehran Stock exchange and a financial data of 215 companies during the period 2010 to 2015 have been selected as the sample through systematic sampling. The results of the first hypothesis showed there is a significant relationship between growth opportunities cash holdings. Also according to the analysis done in the second hypothesis, we determined that there is an inverse relation between company risk and cash holdings.Keywords: growth, beta, liquidity, company
Procedia PDF Downloads 39544555 A Study on Characteristics of Hedonic Price Models in Korea Based on Meta-Regression Analysis
Authors: Minseo Jo
Abstract:
The purpose of this paper is to examine the factors in the hedonic price models, that has significance impact in determining the price of apartments. There are many variables employed in the hedonic price models and their effectiveness vary differently according to the researchers and the regions they are analysing. In order to consider various conditions, the meta-regression analysis has been selected for the study. In this paper, four meta-independent variables, from the 65 hedonic price models to analysis. The factors that influence the prices of apartments, as well as including factors that influence the prices of apartments, regions, which are divided into two of the research performed, years of research performed, the coefficients of the functions employed. The covariance between the four meta-variables and p-value of the coefficients and the four meta-variables and number of data used in the 65 hedonic price models have been analyzed in this study. The six factors that are most important in deciding the prices of apartments are positioning of apartments, the noise of the apartments, points of the compass and views from the apartments, proximity to the public transportations, companies that have constructed the apartments, social environments (such as schools etc.).Keywords: hedonic price model, housing price, meta-regression analysis, characteristics
Procedia PDF Downloads 40244554 Methods for Solving Identification Problems
Authors: Fadi Awawdeh
Abstract:
In this work, we highlight the key concepts in using semigroup theory as a methodology used to construct efficient formulas for solving inverse problems. The proposed method depends on some results concerning integral equations. The experimental results show the potential and limitations of the method and imply directions for future work.Keywords: identification problems, semigroup theory, methods for inverse problems, scientific computing
Procedia PDF Downloads 48144553 Efficiency Analysis of Trader in Thailand and Laos Border Trade: Case Study of Textile and Garment Products
Authors: Varutorn Tulnawat, Padcharee Phasuk
Abstract:
This paper investigates the issue of China’s dumping on border trade between Thailand and Laos. From the pass mostly, the border trade goods are traditional textile and garment mainly served locals and tourists which majority of traders is of small and medium size. In the present day the competition is fierce, the volume of trade has expanded far beyond its original intent. The major competitors in Thai-Laos border trade are China, Vietnam and also South Korea. This research measures and compares the efficiency and ability to survive the onslaught of Thai and Laos firm along Thailand (Nong Kai province) and Laos (Vientiane) border. Two attack strategies are observed, price cutting and incense such as full facilitation for big volume order. Data Envelopment Analysis (DEA) is applied to data surveyed from 90 Thai and Laos entrepreneurs. The expected results are the proportion of efficiency and inefficiency firms. Points of inefficiency and suggested improvement are also discussed.Keywords: border trade, dea, textile, garment
Procedia PDF Downloads 24544552 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images
Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann
Abstract:
FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design
Procedia PDF Downloads 27844551 Evaluation of Football Forecasting Models: 2021 Brazilian Championship Case Study
Authors: Flavio Cordeiro Fontanella, Asla Medeiros e Sá, Moacyr Alvim Horta Barbosa da Silva
Abstract:
In the present work, we analyse the performance of football results forecasting models. In order to do so, we have performed the data collection from eight different forecasting models during the 2021 Brazilian football season. First, we guide the analysis through visual representations of the data, designed to highlight the most prominent features and enhance the interpretation of differences and similarities between the models. We propose using a 2-simplex triangle to investigate visual patterns from the results forecasting models. Next, we compute the expected points for every team playing in the championship and compare them to the final league standings, revealing interesting contrasts between actual to expected performances. Then, we evaluate forecasts’ accuracy using the Ranked Probability Score (RPS); models comparison accounts for tiny scale differences that may become consistent in time. Finally, we observe that the Wisdom of Crowds principle can be appropriately applied in the context, driving into a discussion of results forecasts usage in practice. This paper’s primary goal is to encourage football forecasts’ performance discussion. We hope to accomplish it by presenting appropriate criteria and easy-to-understand visual representations that can point out the relevant factors of the subject.Keywords: accuracy evaluation, Brazilian championship, football results forecasts, forecasting models, visual analysis
Procedia PDF Downloads 9544550 Analyzing Business Model Choices and Sustainable Value Capturing: A Multiple Case Study of Sharing Economy Business Models
Authors: Minttu Laukkanen, Janne Huiskonen
Abstract:
This study investigates the sharing economy business models as examples of the sustainable business models. The aim is to contribute to the limited literature on sharing economy in connection with sustainable business models by explaining sharing economy business models value capturing. Specifically, this research answers the following question: How business model choices affect captured sustainable value? A multiple case study approach is applied in this study. Twenty different successful sharing economy business models focusing on consumer business and covering four main areas, accommodation, mobility, food, and consumer goods, are selected for analysis. The secondary data available on companies’ websites, previous research, reports, and other public documents are used. All twenty cases are analyzed through the sharing economy business model framework and sustainable value analysis framework using qualitative data analysis. This study represents general sharing economy business model value attributes and their specifications, i.e. sustainable value propositions for different stakeholders, and further explains the sustainability impacts of different sharing economy business models through captured and uncaptured value. In conclusion, this study represents how business model choices affect sustainable value capturing through eight business model attributes identified in this study. This paper contributes to the research on sustainable business models and sharing economy by examining how business model choices affect captured sustainable value. This study highlights the importance of careful business model and sustainability impacts analyses including the triple bottom line, multiple stakeholders and value captured and uncaptured perspectives as well as sustainability trade-offs. It is not self-evident that sharing economy business models advance sustainability, and business model choices does matter.Keywords: sharing economy, sustainable business model innovation, sustainable value, value capturing
Procedia PDF Downloads 17244549 Inverse Prediction of Thermal Parameters of an Annular Hyperbolic Fin Subjected to Thermal Stresses
Authors: Ashis Mallick, Rajeev Ranjan
Abstract:
The closed form solution for thermal stresses in an annular fin with hyperbolic profile is derived using Adomian decomposition method (ADM). The conductive-convective fin with variable thermal conductivity is considered in the analysis. The nonlinear heat transfer equation is efficiently solved by ADM considering insulated convective boundary conditions at the tip of fin. The constant of integration in the solution is to be estimated using minimum decomposition error method. The solution of temperature field is represented in a polynomial form for convenience to use in thermo-elasticity equation. The non-dimensional thermal stress fields are obtained using the ADM solution of temperature field coupled with the thermo-elasticity solution. The influence of the various thermal parameters in temperature field and stress fields are presented. In order to show the accuracy of the ADM solution, the present results are compared with the results available in literature. The stress fields in fin with hyperbolic profile are compared with those of uniform thickness profile. Result shows that hyperbolic fin profile is better choice for enhancing heat transfer. Moreover, less thermal stresses are developed in hyperbolic profile as compared to rectangular profile. Next, Nelder-Mead based simplex search method is employed for the inverse estimation of unknown non-dimensional thermal parameters in a given stress fields. Owing to the correlated nature of the unknowns, the best combinations of the model parameters which are satisfying the predefined stress field are to be estimated. The stress fields calculated using the inverse parameters give a very good agreement with the stress fields obtained from the forward solution. The estimated parameters are suitable to use for efficient and cost effective fin designing.Keywords: Adomian decomposition, inverse analysis, hyperbolic fin, variable thermal conductivity
Procedia PDF Downloads 32744548 Window Analysis and Malmquist Index for Assessing Efficiency and Productivity Growth in a Pharmaceutical Industry
Authors: Abbas Al-Refaie, Ruba Najdawi, Nour Bata, Mohammad D. AL-Tahat
Abstract:
The pharmaceutical industry is an important component of health care systems throughout the world. Measurement of a production unit-performance is crucial in determining whether it has achieved its objectives or not. This paper applies data envelopment (DEA) window analysis to assess the efficiencies of two packaging lines; Allfill (new) and DP6, in the Penicillin plant in a Jordanian Medical Company in 2010. The CCR and BCC models are used to estimate the technical efficiency, pure technical efficiency, and scale efficiency. Further, the Malmquist productivity index is computed to measure then employed to assess productivity growth relative to a reference technology. Two primary issues are addressed in computation of Malmquist indices of productivity growth. The first issue is the measurement of productivity change over the period, while the second is to decompose changes in productivity into what are generally referred to as a ‘catching-up’ effect (efficiency change) and a ‘frontier shift’ effect (technological change). Results showed that DP6 line outperforms the Allfill in technical and pure technical efficiency. However, the Allfill line outperforms DP6 line in scale efficiency. The obtained efficiency values can guide production managers in taking effective decisions related to operation, management, and plant size. Moreover, both machines exhibit a clear fluctuations in technological change, which is the main reason for the positive total factor productivity change. That is, installing a new Allfill production line can be of great benefit to increasing productivity. In conclusions, the DEA window analysis combined with the Malmquist index are supportive measures in assessing efficiency and productivity in pharmaceutical industry.Keywords: window analysis, malmquist index, efficiency, productivity
Procedia PDF Downloads 60944547 On the Equalization of Nonminimum Phase Electroacoustic Systems Using Digital Inverse Filters
Authors: Avelino Marques, Diamantino Freitas
Abstract:
Some important electroacoustic systems, like loudspeaker systems, exhibit a nonminimum phase behavior that poses considerable effort when applying advanced digital signal processing techniques, such as linear equalization. In this paper, the position and the number of zeros and poles of the inverse filter, FIR type or IIR type, designed using time domain techniques, are studied, compared and related to the nonminimum phase zeros of system to be equalized. Conclusions about the impact of the position of the system non-minimum phase zeros, on the length/order of the inverse filter and on the delay of the equalized system are outlined as a guide to previously decide which type of filter will be more adequate.Keywords: loudspeaker systems, nonminimum phase system, FIR and IIR filter, delay
Procedia PDF Downloads 77