Search results for: harmonics estimation
1860 Developing Fuzzy Logic Model for Reliability Estimation: Case Study
Authors: Soroor K. H. Al-Khafaji, Manal Mohammad Abed
Abstract:
The research aim of this paper is to evaluate the reliability of a complex engineering system and to design a fuzzy model for the reliability estimation. The designed model has been applied on Vegetable Oil Purification System (neutralization system) to help the specialist user based on the concept of FMEA (Failure Mode and Effect Analysis) to estimate the reliability of the repairable system at the vegetable oil industry. The fuzzy model has been used to predict the system reliability for a future time period, depending on a historical database for the two past years. The model can help to specify the system malfunctions and to predict its reliability during a future period in more accurate and reasonable results compared with the results obtained by the traditional method of reliability estimation.Keywords: fuzzy logic, reliability, repairable systems, FMEA
Procedia PDF Downloads 6141859 Unified Power Quality Conditioner Presentation and Dimensioning
Authors: Abderrahmane Kechich, Othmane Abdelkhalek
Abstract:
Static converters behave as nonlinear loads that inject harmonic currents into the grid and increase the consumption of the inactive power. On the other hand, the increased use of sensitive equipment requires the application of sinusoidal voltages. As a result, the electrical power quality control has become a major concern in the field of power electronics. In this context, the active power conditioner (UPQC) was developed. It combines both serial and parallel structures; the series filter can protect sensitive loads and compensate for voltage disturbances such as voltage harmonics, voltage dips or flicker when the shunt filter compensates for current disturbances such as current harmonics, reactive currents and imbalance. This double feature is that it is one of the most appropriate devices. Calculating parameters is an important step and in the same time it’s not easy for that reason several researchers based on trial and error method for calculating parameters but this method is not easy for beginners researchers especially what about the controller’s parameters, for that reason this paper gives a mathematical way to calculate of almost all of UPQC parameters away from trial and error method. This paper gives also a new approach for calculating of PI regulators parameters for purpose to have a stable UPQC able to compensate for disturbances acting on the waveform of line voltage and load current in order to improve the electrical power quality.Keywords: UPQC, Shunt active filer, series active filer, PI controller, PWM control, dual-loop control
Procedia PDF Downloads 4031858 Spatiotemporal Neural Network for Video-Based Pose Estimation
Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan
Abstract:
Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series
Procedia PDF Downloads 1481857 The Ability of Forecasting the Term Structure of Interest Rates Based on Nelson-Siegel and Svensson Model
Authors: Tea Poklepović, Zdravka Aljinović, Branka Marasović
Abstract:
Due to the importance of yield curve and its estimation it is inevitable to have valid methods for yield curve forecasting in cases when there are scarce issues of securities and/or week trade on a secondary market. Therefore in this paper, after the estimation of weekly yield curves on Croatian financial market from October 2011 to August 2012 using Nelson-Siegel and Svensson models, yield curves are forecasted using Vector auto-regressive model and Neural networks. In general, it can be concluded that both forecasting methods have good prediction abilities where forecasting of yield curves based on Nelson Siegel estimation model give better results in sense of lower Mean Squared Error than forecasting based on Svensson model Also, in this case Neural networks provide slightly better results. Finally, it can be concluded that most appropriate way of yield curve prediction is neural networks using Nelson-Siegel estimation of yield curves.Keywords: Nelson-Siegel Model, neural networks, Svensson Model, vector autoregressive model, yield curve
Procedia PDF Downloads 3321856 Applicability of Cameriere’s Age Estimation Method in a Sample of Turkish Adults
Authors: Hatice Boyacioglu, Nursel Akkaya, Humeyra Ozge Yilanci, Hilmi Kansu, Nihal Avcu
Abstract:
The strong relationship between the reduction in the size of the pulp cavity and increasing age has been reported in the literature. This relationship can be utilized to estimate the age of an individual by measuring the pulp cavity size using dental radiographs as a non-destructive method. The purpose of this study is to develop a population specific regression model for age estimation in a sample of Turkish adults by applying Cameriere’s method on panoramic radiographs. The sample consisted of 100 panoramic radiographs of Turkish patients (40 men, 60 women) aged between 20 and 70 years. Pulp and tooth area ratios (AR) of the maxilla¬¬ry canines were measured by two maxillofacial radiologists and then the results were subjected to regression analysis. There were no statistically significant intra-observer and inter-observer differences. The correlation coefficient between age and the AR of the maxillary canines was -0.71 and the following regression equation was derived: Estimated Age = 77,365 – ( 351,193 × AR ). The mean prediction error was 4 years which is within acceptable errors limits for age estimation. This shows that the pulp/tooth area ratio is a useful variable for assessing age with reasonable accuracy. Based on the results of this research, it was concluded that Cameriere’s method is suitable for dental age estimation and it can be used for forensic procedures in Turkish adults. These instructions give you guidelines for preparing papers for conferences or journals.Keywords: age estimation by teeth, forensic dentistry, panoramic radiograph, Cameriere's method
Procedia PDF Downloads 4491855 Identification of Wiener Model Using Iterative Schemes
Authors: Vikram Saini, Lillie Dewan
Abstract:
This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates.Keywords: hard non-linearity, least square, parameter estimation, stochastic approximation gradient, Wiener model
Procedia PDF Downloads 4051854 GPS Refinement in Cities Using Statistical Approach
Authors: Ashwani Kumar
Abstract:
GPS plays an important role in everyday life for safe and convenient transportation. While pedestrians use hand held devices to know their position in a city, vehicles in intelligent transport systems use relatively sophisticated GPS receivers for estimating their current position. However, in urban areas where the GPS satellites are occluded by tall buildings, trees and reflections of GPS signals from nearby vehicles, GPS position estimation becomes poor. In this work, an exhaustive GPS data is collected at a single point in urban area under different times of day and under dynamic environmental conditions. The data is analyzed and statistical refinement methods are used to obtain optimal position estimate among all the measured positions. The results obtained are compared with publically available datasets and obtained position estimation refinement results are promising.Keywords: global positioning system, statistical approach, intelligent transport systems, least squares estimation
Procedia PDF Downloads 2881853 An Estimation Process for Progress Rate Based on Labor-Quantity in Republic of Korea
Authors: Dong-Ho Kim, Zheng-Xun Jin, Yong-Woon Cha, Su-Sang Lim, Sang-Won Han, Chang-Taek Hyun
Abstract:
As construction is a labor-intensive industry, it is important to identify and manage labor quantities for accurate progress management of the construction project. However, the progress management that focuses on construction cost calculated based on materials rather than labor quantities has led to a difference in the implementation of cost and progress of the actual construction. In addition, since it is not easy to predict accurate labor quantities in the estimation of labor quantity-based progress rate, there have been limited researches into the progress rate estimation based on labor quantity. Accordingly, this study proposed a process for labor quantity-based progress rate estimation using a standard of estimate to predict accurate progress rate of the construction project in Republic Korea. It is expected that the utilization of the proposed process will help to identify the progress rate closer to that of the actual site management and adjust the workforce in each construction type, thereby contributing to improving construction efficiency.Keywords: labor based, labor cost, progress management, progress rate, progress payment
Procedia PDF Downloads 3441852 Recent Advancement in Fetal Electrocardiogram Extraction
Authors: Savita, Anurag Sharma, Harsukhpreet Singh
Abstract:
Fetal Electrocardiogram (fECG) is a widely used technique to assess the fetal well-being and identify any changes that might be with problems during pregnancy and to evaluate the health and conditions of the fetus. Various techniques or methods have been employed to diagnose the fECG from abdominal signal. This paper describes the facile approach for the estimation of the fECG known as Adaptive Comb. Filter (ACF). The ACF can adjust according to the temporal variations in fundamental frequency by itself that used for the estimation of the quasi periodic signal of ECG signal.Keywords: aECG, ACF, fECG, mECG
Procedia PDF Downloads 4081851 Parameter Estimation of Gumbel Distribution with Maximum-Likelihood Based on Broyden Fletcher Goldfarb Shanno Quasi-Newton
Authors: Dewi Retno Sari Saputro, Purnami Widyaningsih, Hendrika Handayani
Abstract:
Extreme data on an observation can occur due to unusual circumstances in the observation. The data can provide important information that can’t be provided by other data so that its existence needs to be further investigated. The method for obtaining extreme data is one of them using maxima block method. The distribution of extreme data sets taken with the maxima block method is called the distribution of extreme values. Distribution of extreme values is Gumbel distribution with two parameters. The parameter estimation of Gumbel distribution with maximum likelihood method (ML) is difficult to determine its exact value so that it is necessary to solve the approach. The purpose of this study was to determine the parameter estimation of Gumbel distribution with quasi-Newton BFGS method. The quasi-Newton BFGS method is a numerical method used for nonlinear function optimization without constraint so that the method can be used for parameter estimation from Gumbel distribution whose distribution function is in the form of exponential doubel function. The quasi-New BFGS method is a development of the Newton method. The Newton method uses the second derivative to calculate the parameter value changes on each iteration. Newton's method is then modified with the addition of a step length to provide a guarantee of convergence when the second derivative requires complex calculations. In the quasi-Newton BFGS method, Newton's method is modified by updating both derivatives on each iteration. The parameter estimation of the Gumbel distribution by a numerical approach using the quasi-Newton BFGS method is done by calculating the parameter values that make the distribution function maximum. In this method, we need gradient vector and hessian matrix. This research is a theory research and application by studying several journals and textbooks. The results of this study obtained the quasi-Newton BFGS algorithm and estimation of Gumbel distribution parameters. The estimation method is then applied to daily rainfall data in Purworejo District to estimate the distribution parameters. This indicates that the high rainfall that occurred in Purworejo District decreased its intensity and the range of rainfall that occurred decreased.Keywords: parameter estimation, Gumbel distribution, maximum likelihood, broyden fletcher goldfarb shanno (BFGS)quasi newton
Procedia PDF Downloads 3231850 A Transformer-Based Approach for Multi-Human 3D Pose Estimation Using Color and Depth Images
Authors: Qiang Wang, Hongyang Yu
Abstract:
Multi-human 3D pose estimation is a challenging task in computer vision, which aims to recover the 3D joint locations of multiple people from multi-view images. In contrast to traditional methods, which typically only use color (RGB) images as input, our approach utilizes both color and depth (D) information contained in RGB-D images. We also employ a transformer-based model as the backbone of our approach, which is able to capture long-range dependencies and has been shown to perform well on various sequence modeling tasks. Our method is trained and tested on the Carnegie Mellon University (CMU) Panoptic dataset, which contains a diverse set of indoor and outdoor scenes with multiple people in varying poses and clothing. We evaluate the performance of our model on the standard 3D pose estimation metrics of mean per-joint position error (MPJPE). Our results show that the transformer-based approach outperforms traditional methods and achieves competitive results on the CMU Panoptic dataset. We also perform an ablation study to understand the impact of different design choices on the overall performance of the model. In summary, our work demonstrates the effectiveness of using a transformer-based approach with RGB-D images for multi-human 3D pose estimation and has potential applications in real-world scenarios such as human-computer interaction, robotics, and augmented reality.Keywords: multi-human 3D pose estimation, RGB-D images, transformer, 3D joint locations
Procedia PDF Downloads 791849 Presentation of a Mix Algorithm for Estimating the Battery State of Charge Using Kalman Filter and Neural Networks
Authors: Amin Sedighfar, M. R. Moniri
Abstract:
Determination of state of charge (SOC) in today’s world becomes an increasingly important issue in all the applications that include a battery. In fact, estimation of the SOC is a fundamental need for the battery, which is the most important energy storage in Hybrid Electric Vehicles (HEVs), smart grid systems, drones, UPS and so on. Regarding those applications, the SOC estimation algorithm is expected to be precise and easy to implement. This paper presents an online method for the estimation of the SOC of Valve-Regulated Lead Acid (VRLA) batteries. The proposed method uses the well-known Kalman Filter (KF), and Neural Networks (NNs) and all of the simulations have been done with MATLAB software. The NN is trained offline using the data collected from the battery discharging process. A generic cell model is used, and the underlying dynamic behavior of the model has used two capacitors (bulk and surface) and three resistors (terminal, surface, and end), where the SOC determined from the voltage represents the bulk capacitor. The aim of this work is to compare the performance of conventional integration-based SOC estimation methods with a mixed algorithm. Moreover, by containing the effect of temperature, the final result becomes more accurate.Keywords: Kalman filter, neural networks, state-of-charge, VRLA battery
Procedia PDF Downloads 1921848 Improved Estimation Strategies of Sensitive Characteristics Using Scrambled Response Techniques in Successive Sampling
Authors: S. Suman, G. N. Singh
Abstract:
This research work is an effort to analyse the consequences of scrambled response technique to estimate the current population mean in two-occasion successive sampling when the characteristic of interest is sensitive in nature. The generalized estimation procedures have been proposed using sensitive auxiliary variables under additive and multiplicative scramble models. The properties of resultant estimators have been deeply examined. Simulation, as well as empirical studies, are carried out to evaluate the performances of the proposed estimators with respect to other competent estimators. The results of our studies suggest that the proposed estimation procedures are highly effective under the presence of non-response situation. The result of this study also suggests that additive scrambled response model is a better choice in the perspective of cost of the survey and privacy of the respondents.Keywords: scrambled response, sensitive characteristic, successive sampling, optimum replacement strategy
Procedia PDF Downloads 1771847 Comparative Analysis of Spectral Estimation Methods for Brain-Computer Interfaces
Authors: Rafik Djemili, Hocine Bourouba, M. C. Amara Korba
Abstract:
In this paper, we present a method in order to classify EEG signals for Brain-Computer Interfaces (BCI). EEG signals are first processed by means of spectral estimation methods to derive reliable features before classification step. Spectral estimation methods used are standard periodogram and the periodogram calculated by the Welch method; both methods are compared with Logarithm of Band Power (logBP) features. In the method proposed, we apply Linear Discriminant Analysis (LDA) followed by Support Vector Machine (SVM). Classification accuracy reached could be as high as 85%, which proves the effectiveness of classification of EEG signals based BCI using spectral methods.Keywords: brain-computer interface, motor imagery, electroencephalogram, linear discriminant analysis, support vector machine
Procedia PDF Downloads 4991846 Estimation of the State of Charge of the Battery Using EFK and Sliding Mode Observer in MATLAB-Arduino/Labview
Authors: Mouna Abarkan, Abdelillah Byou, Nacer M'Sirdi, El Hossain Abarkan
Abstract:
This paper presents the estimation of the state of charge of the battery using two types of observers. The battery model used is the combination of a voltage source, which is the open circuit battery voltage of a strength corresponding to the connection of resistors and electrolyte and a series of parallel RC circuits representing charge transfer phenomena and diffusion. An adaptive observer applied to this model is proposed, this observer to estimate the battery state of charge of the battery is based on EFK and sliding mode that is known for their robustness and simplicity implementation. The results are validated by simulation under MATLAB/Simulink and implemented in Arduino-LabView.Keywords: model of the battery, adaptive sliding mode observer, the EFK observer, estimation of state of charge, SOC, implementation in Arduino/LabView
Procedia PDF Downloads 3041845 A Novel Approach to Design of EDDR Architecture for High Speed Motion Estimation Testing Applications
Authors: T. Gangadhararao, K. Krishna Kishore
Abstract:
Motion Estimation (ME) plays a critical role in a video coder, testing such a module is of priority concern. While focusing on the testing of ME in a video coding system, this work presents an error detection and data recovery (EDDR) design, based on the residue-and-quotient (RQ) code, to embed into ME for video coding testing applications. An error in processing Elements (PEs), i.e. key components of a ME, can be detected and recovered effectively by using the proposed EDDR design. The proposed EDDR design for ME testing can detect errors and recover data with an acceptable area overhead and timing penalty.Keywords: area overhead, data recovery, error detection, motion estimation, reliability, residue-and-quotient (RQ) code
Procedia PDF Downloads 4311844 Reasons for the Slow Uptake of Embodied Carbon Estimation in the Sri Lankan Building Sector
Authors: Amalka Nawarathna, Nirodha Fernando, Zaid Alwan
Abstract:
Global carbon reduction is not merely a responsibility of environmentally advanced developed countries, but also a responsibility of developing countries regardless of their less impact on global carbon emissions. In recognition of that, Sri Lanka as a developing country has initiated promoting green building construction as one reduction strategy. However, notwithstanding the increasing attention on Embodied Carbon (EC) reduction in the global building sector, they still mostly focus on Operational Carbon (OC) reduction (through improving operational energy). An adequate attention has not yet been given on EC estimation and reduction. Therefore, this study aims to identify the reasons for the slow uptake of EC estimation in the Sri Lankan building sector. To achieve this aim, 16 numbers of global barriers to estimate EC were identified through existing literature. They were then subjected to a pilot survey to identify the significant reasons for the slow uptake of EC estimation in the Sri Lankan building sector. A questionnaire with a three-point Likert scale was used to this end. The collected data were analysed using descriptive statistics. The findings revealed that 11 out of 16 challenges/ barriers are highly relevant as reasons for the slow uptake in estimating EC in buildings in Sri Lanka while the other five challenges/ barriers remain as moderately relevant reasons. Further, the findings revealed that there are no low relevant reasons. Eventually, the paper concluded that all the known reasons are significant to the Sri Lankan building sector and it is necessary to address them in order to upturn the attention on EC reduction.Keywords: embodied carbon emissions, embodied carbon estimation, global carbon reduction, Sri Lankan building sector
Procedia PDF Downloads 2061843 Voltage Stabilization of Hybrid PV and Battery Systems by Considering Temperature and Irradiance Changes in Standalone Operation
Authors: S. Jalilzadeh, S. M. Mohseni Bonab
Abstract:
Solar and battery energy storage systems are very useful for consumers who live in deprived areas and do not have access to electricity distribution networks. Nowadays one of the problems that photo voltaic systems (PV) have changing of output power in temperature and irradiance variations, which directly affects the load that is connected to photo voltaic systems. In this paper, with considering the fact that the solar array varies with change in temperature and solar power radiation, a voltage stabilizer system of a load connected to photo voltaic array is designed to stabilize the load voltage and to transfer surplus power of the battery. Also, in proposed hybrid system, the needed load power amount is supplemented considering the voltage stabilization in standalone operation for supplying unbalanced AC load. Electrical energy storage system for voltage control and improvement of the performance of PV by a DC/DC converter is connected to the DC bus. The load is also feed by an AC/DC converter. In this paper, when the voltage increases in its reference limit, the battery gets charged by the photo voltaic array and when it decreases in its defined limit, the power gets injected to the DC bus by this battery. The constant of DC bus Voltage is the cause for the reduced harmonics generated by the inverter. In addition, a series of filters are provided in the inverter output in to reduced harmonics. The inverter control circuit is designed that the voltage and frequency of the load remain almost constant at different load conditions. This paper has focused on controlling strategies of converters to improve their performance.Keywords: photovoltaic array (PV), DC/DC Boost converter, battery converter, inverters control
Procedia PDF Downloads 4851842 Monocular Depth Estimation Benchmarking with Thermal Dataset
Authors: Ali Akyar, Osman Serdar Gedik
Abstract:
Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers
Procedia PDF Downloads 321841 Random Access in IoT Using Naïve Bayes Classification
Authors: Alhusein Almahjoub, Dongyu Qiu
Abstract:
This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.Keywords: random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation
Procedia PDF Downloads 1451840 Tracking Filtering Algorithm Based on ConvLSTM
Authors: Ailing Yang, Penghan Song, Aihua Cai
Abstract:
The nonlinear maneuvering target tracking problem is mainly a state estimation problem when the target motion model is uncertain. Traditional solutions include Kalman filtering based on Bayesian filtering framework and extended Kalman filtering. However, these methods need prior knowledge such as kinematics model and state system distribution, and their performance is poor in state estimation of nonprior complex dynamic systems. Therefore, in view of the problems existing in traditional algorithms, a convolution LSTM target state estimation (SAConvLSTM-SE) algorithm based on Self-Attention memory (SAM) is proposed to learn the historical motion state of the target and the error distribution information measured at the current time. The measured track point data of airborne radar are processed into data sets. After supervised training, the data-driven deep neural network based on SAConvLSTM can directly obtain the target state at the next moment. Through experiments on two different maneuvering targets, we find that the network has stronger robustness and better tracking accuracy than the existing tracking methods.Keywords: maneuvering target, state estimation, Kalman filter, LSTM, self-attention
Procedia PDF Downloads 1761839 Real Time Video Based Smoke Detection Using Double Optical Flow Estimation
Authors: Anton Stadler, Thorsten Ike
Abstract:
In this paper, we present a video based smoke detection algorithm based on TVL1 optical flow estimation. The main part of the algorithm is an accumulating system for motion angles and upward motion speed of the flow field. We optimized the usage of TVL1 flow estimation for the detection of smoke with very low smoke density. Therefore, we use adapted flow parameters and estimate the flow field on difference images. We show in theory and in evaluation that this improves the performance of smoke detection significantly. We evaluate the smoke algorithm using videos with different smoke densities and different backgrounds. We show that smoke detection is very reliable in varying scenarios. Further we verify that our algorithm is very robust towards crowded scenes disturbance videos.Keywords: low density, optical flow, upward smoke motion, video based smoke detection
Procedia PDF Downloads 3541838 Blind Channel Estimation for Frequency Hopping System Using Subspace Based Method
Authors: M. M. Qasaymeh, M. A. Khodeir
Abstract:
Subspace channel estimation methods have been studied widely. It depends on subspace decomposition of the covariance matrix to separate signal subspace from noise subspace. The decomposition normally is done by either Eigenvalue Decomposition (EVD) or Singular Value Decomposition (SVD) of the Auto-Correlation matrix (ACM). However, the subspace decomposition process is computationally expensive. In this paper, the multipath channel estimation problem for a Slow Frequency Hopping (SFH) system using noise space based method is considered. An efficient method to estimate multipath the time delays basically is proposed, by applying MUltiple Signal Classification (MUSIC) algorithm which used the null space extracted by the Rank Revealing LU factorization (RRLU). The RRLU provides accurate information about the rank and the numerical null space which make it a valuable tool in numerical linear algebra. The proposed novel method decreases the computational complexity approximately to the half compared with RRQR methods keeping the same performance. Computer simulations are also included to demonstrate the effectiveness of the proposed scheme.Keywords: frequency hopping, channel model, time delay estimation, RRLU, RRQR, MUSIC, LS-ESPRIT
Procedia PDF Downloads 4101837 Light-Weight Network for Real-Time Pose Estimation
Authors: Jianghao Hu, Hongyu Wang
Abstract:
The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone
Procedia PDF Downloads 1541836 Remote Sensing and GIS Integration for Paddy Production Estimation in Bali Province, Indonesia
Authors: Sarono, Hamim Zaky Hadibasyir, dan Ridho Kurniawan
Abstract:
Estimation of paddy production is one of the areas that can be examined using the techniques of remote sensing and geographic information systems (GIS) in the field of agriculture. The purpose of this research is to know the amount of the paddy production estimation and how remote sensing and geographic information systems (GIS) are able to perform analysis of paddy production estimation in Tegalallang and Payangan Sub district, Bali Province, Indonesia. The method used is the method of land suitability. This method associates a physical parameters which are to be embodied in the smallest unit of a mapping that represents a mapping unit in a particular field and connecting with its field productivity. Analysis of estimated production using standard land suitability from FAO using matching technique. The parameters used to create the land unit is slope (FAO), climate classification (Oldeman), landform (Prapto Suharsono), and soil type. Land use map consist of paddy and non paddy field information obtained from Geo-eye 1 imagery using visual interpretation technique. Landsat image of the Data used for the interpretation of the landform, the classification of the slopes obtained from high point identification with method of interpolation spline, whereas climate data, soil, use secondary data originating from institutions-related institutions. The results of this research indicate Tegallalang and Payangan Districts in known wetland suitability consists of S1 (very suitable) covering an area of 2884,7 ha with the productivity of 5 tons/ha and S2 (suitable) covering an area of 482,9 ha with the productivity of 3 tons/ha. The sum of paddy production estimation as a results in both districts are 31.744, 3 tons in one year.Keywords: production estimation, paddy, remote sensing, geography information system, land suitability
Procedia PDF Downloads 3411835 Estimation and Forecasting with a Quantile AR Model for Financial Returns
Authors: Yuzhi Cai
Abstract:
This talk presents a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. We establish that the joint posterior distribution of the model parameters and future values is well defined. The associated MCMC algorithm for parameter estimation and forecasting converges to the posterior distribution quickly. We also present a combining forecasts technique to produce more accurate out-of-sample forecasts by using a weighted sequence of fitted QAR models. A moving window method to check the quality of the estimated conditional quantiles is developed. We verify our methodology using simulation studies and then apply it to currency exchange rate data. An application of the method to the USD to GBP daily currency exchange rates will also be discussed. The results obtained show that an unequally weighted combining method performs better than other forecasting methodology.Keywords: combining forecasts, MCMC, quantile modelling, quantile forecasting, predictive density functions
Procedia PDF Downloads 3471834 Estimation of Opc, Fly Ash and Slag Contents in Blended and Composite Cements by Selective Dissolution Method
Authors: Suresh Palla
Abstract:
This research paper presents the results of the study on the estimation of fly ash, slag and cement contents in blended and composite cements by novel selective dissolution method. Types of cement samples investigated include OPC with fly ash as performance improver, OPC with slag as performance improver, PPC, PSC and Composite cement confirming to respective Indian Standards. Slag and OPC contents in PSC were estimated by selectively dissolving OPC in stage 1 and selectively dissolving slag in stage 2. In the case of composite cement sample, the percentage of cement, slag and fly ash were estimated systematically by selective dissolution of cement, slag and fly ash in three stages. In the first stage, cement dissolved and separated by leaving the residue of slag and fly ash, designated as R1. The second stage involves gravimetric estimation of fractions of OPC, residue and selective dissolution of fly ash and slag contents. Fly ash content, R2 was estimated through gravimetric analysis. Thereafter, the difference between the R1 and R2 is considered as slag content. The obtained results of cement, fly ash and slag using selective dissolution method showed 10% of standard deviation with the corresponding percentage of respective constituents. The results suggest that this novel selective dissolution method can be successfully used for estimation of OPC and SCMs contents in different types of cements.Keywords: selective dissolution method , fly ash, ggbfs slag, edta
Procedia PDF Downloads 1561833 Polynomially Adjusted Bivariate Density Estimates Based on the Saddlepoint Approximation
Authors: S. B. Provost, Susan Sheng
Abstract:
An alternative bivariate density estimation methodology is introduced in this presentation. The proposed approach involves estimating the density function associated with the marginal distribution of each of the two variables by means of the saddlepoint approximation technique and applying a bivariate polynomial adjustment to the product of these density estimates. Since the saddlepoint approximation is utilized in the context of density estimation, such estimates are determined from empirical cumulant-generating functions. In the univariate case, the saddlepoint density estimate is itself adjusted by a polynomial. Given a set of observations, the coefficients of the polynomial adjustments are obtained from the sample moments. Several illustrative applications of the proposed methodology shall be presented. Since this approach relies essentially on a determinate number of sample moments, it is particularly well suited for modeling massive data sets.Keywords: density estimation, empirical cumulant-generating function, moments, saddlepoint approximation
Procedia PDF Downloads 2801832 Motion Estimator Architecture with Optimized Number of Processing Elements for High Efficiency Video Coding
Authors: Seongsoo Lee
Abstract:
Motion estimation occupies the heaviest computation in HEVC (high efficiency video coding). Many fast algorithms such as TZS (test zone search) have been proposed to reduce the computation. Still the huge computation of the motion estimation is a critical issue in the implementation of HEVC video codec. In this paper, motion estimator architecture with optimized number of PEs (processing element) is presented by exploiting early termination. It also reduces hardware size by exploiting parallel processing. The presented motion estimator architecture has 8 PEs, and it can efficiently perform TZS with very high utilization of PEs.Keywords: motion estimation, test zone search, high efficiency video coding, processing element, optimization
Procedia PDF Downloads 3631831 Human Posture Estimation Based on Multiple Viewpoints
Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo
Abstract:
This study aimed to address the problem of improving the confidence of key points by fusing multi-view information, thereby estimating human posture more accurately. We first obtained multi-view image information and then used the MvP algorithm to fuse this multi-view information together to obtain a set of high-confidence human key points. We used these as the input for the Spatio-Temporal Graph Convolution (ST-GCN). ST-GCN is a deep learning model used for processing spatio-temporal data, which can effectively capture spatio-temporal relationships in video sequences. By using the MvP algorithm to fuse multi-view information and inputting it into the spatio-temporal graph convolution model, this study provides an effective method to improve the accuracy of human posture estimation and provides strong support for further research and application in related fields.Keywords: multi-view, pose estimation, ST-GCN, joint fusion
Procedia PDF Downloads 70