Search results for: Fourier series analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30095

Search results for: Fourier series analysis

29945 Prediction of SOC Stock using ROTH-C Model and Mapping in Different Agroclimatic Zones of Tamil Nadu

Authors: R. Rajeswari

Abstract:

An investigation was carried out to know the SOC stock and its change over time in benchmark soils of different agroclimatic zones of Tamil Nadu. Roth.C model was used to assess SOC stock under existing and alternate cropping pattern. Soil map prepared on 1:50,000 scale from Natural Resources Information System (NRIS) employed under satellite data (IRS-1C/1D-PAN sharpened LISS-III image) was used to estimate SOC stock in different agroclimatic zones of Tamil Nadu. Fifteen benchmark soils were selected in different agroclimatic zones of Tamil Nadu based on their land use and the areal extent to assess SOC level and its change overtime. This revealed that, between eleven years of period (1997 - 2007). SOC buildup was higher in soils under horticulture system, followed by soils under rice cultivation. Among different agroclimatic zones of Tamil Nadu hilly zone have the highest SOC stock, followed by north eastern, southern, western, cauvery delta, north western, and high rainfall zone. Although organic carbon content in the soils of North eastern, southern, western, North western, Cauvery delta were less than high rainfall zone, the SOC stock was high. SOC density was higher in high rainfall and hilly zone than other agroclimatic zones of Tamil Nadu. Among low rainfall regions of Tamil Nadu cauvery delta zone recorded higher SOC density. Roth.C model was used to assess SOC stock under existing and alternate cropping pattern in viz., Periyanaickenpalayam series (western zone), Peelamedu series (southern zone), Vallam series (north eastern zone), Vannappatti series (north western zone) and Padugai series (cauvery delta zone). Padugai series recorded higher TOC, BIO, and HUM, followed by Periyanaickenpalayam series, Peelamedu series, Vallam series, and Vannappatti series. Vannappatti and Padugai series develop high TOC, BIO, and HUM under existing cropping pattern. Periyanaickenpalayam, Peelamedu, and Vallam series develop high TOC, BIO, and HUM under alternate cropping pattern. Among five selected soil series, Periyanaickenpalayam, Peelamedu, and Padugai series recorded 0.75 per cent TOC during 2025 and 2018, 2100 and 2035, 2013 and 2014 under existing and alternate cropping pattern, respectively.

Keywords: agro climatic zones, benchmark soil, land use, soil organic carbon

Procedia PDF Downloads 96
29944 Study of Pottery And Glazed Canopic Vessels

Authors: Abdelrahman Mohamed

Abstract:

The ancient Egyptians used canopic vessels in embalming operations in order to preserve the guts of the mummified corpse. Canopic vessels were made of many materials, including pottery and glazed pottery. In this research, we study a pottery canopic vessel and a glazed pottery vessel. An analysis to find out the compounds and elements of the materials from which the container is made and the colors, and also to make some analysis for the organic materials present inside it, such as the Fourier Transform Infrared Spectroscopy analysis and the Gas chromatograph mass spectrometers analysis of the organic residue. Through the study and analysis, it was proved that some of the materials present in the pot were coniferous oil and animal fats. In the other pot, the analysis showed the presence of some plant resins (mastic) inside rolls of linen. Restoration operations were carried out, such as mechanical cleaning, strengthening, and completing the reinforcement of the pots.

Keywords: canopic jar, embalming, FTIR, GCMS, linen.

Procedia PDF Downloads 85
29943 Inflating the Public: A Series of Urban Interventions

Authors: Veronika Antoniou, Rene Carraz, Yiorgos Hadjichristou

Abstract:

The Green Urban Lab took the form of public installations that were placed at various locations in four cities in Cyprus. These installations - through which a series of events, activities, workshops and research took place - were the main tools in regenerating a series of urban public spaces in Cyprus. The purpose of this project was to identify issues and opportunities related to public space and to offer guidelines on how design and participatory democracy improvements could strengthen civil society, while raising the quality of the urban public scene. Giant inflatable structures were injected in important urban fragments in order to accommodate series of events. The design and playful installation generated a wide community engagement. The fluid presence of the installations acted as a catalyst for social interaction. They were accessed and viewed effortlessly and surprisingly, creating opportunities to rediscover public spaces.

Keywords: bottom-up initiatives, creativity, public space, social innovation, urban environments

Procedia PDF Downloads 518
29942 Detailed Investigation of Thermal Degradation Mechanism and Product Characterization of Co-Pyrolysis of Indian Oil Shale with Rubber Seed Shell

Authors: Bhargav Baruah, Ali Shemsedin Reshad, Pankaj Tiwari

Abstract:

This work presents a detailed study on the thermal degradation kinetics of co-pyrolysis of oil shale of Upper Assam, India with rubber seed shell, and lab-scale pyrolysis to investigate the influence of pyrolysis parameters on product yield and composition of products. The physicochemical characteristics of oil shale and rubber seed shell were studied by proximate analysis, elemental analysis, Fourier transform infrared spectroscopy and X-ray diffraction. The physicochemical study showed the mixture to be of low moisture, high ash, siliceous, sour with the presence of aliphatic, aromatic, and phenolic compounds. The thermal decomposition of the oil shale with rubber seed shell was studied using thermogravimetric analysis at heating rates of 5, 10, 20, 30, and 50 °C/min. The kinetic study of the oil shale pyrolysis process was performed on the thermogravimetric (TGA) data using three model-free isoconversional methods viz. Friedman, Flynn Wall Ozawa (FWO), and Kissinger Akahira Sunnose (KAS). The reaction mechanisms were determined using the Criado master plot. The understanding of the composition of Indian oil shale and rubber seed shell and pyrolysis process kinetics can help to establish the experimental parameters for the extraction of valuable products from the mixture. Response surface methodology (RSM) was employed usinf central composite design (CCD) model to setup the lab-scale experiment using TGA data, and optimization of process parameters viz. heating rate, temperature, and particle size. The samples were pre-dried at 115°C for 24 hours prior to pyrolysis. The pyrolysis temperatures were set from 450 to 650 °C, at heating rates of 2 to 20°C/min. The retention time was set between 2 to 8 hours. The optimum oil yield was observed at 5°C/min and 550°C with a retention time of 5 hours. The pyrolytic oil and gas obtained at optimum conditions were subjected to characterization using Fourier transform infrared spectroscopy (FT-IR) gas chromatography and mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR).

Keywords: Indian oil shale, rubber seed shell, co-pyrolysis, isoconversional methods, gas chromatography, nuclear magnetic resonance, Fourier transform infrared spectroscopy

Procedia PDF Downloads 146
29941 Time Series Regression with Meta-Clusters

Authors: Monika Chuchro

Abstract:

This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.

Keywords: clustering, data analysis, data mining, predictive models

Procedia PDF Downloads 466
29940 Development and Validation of a Green Analytical Method for the Analysis of Daptomycin Injectable by Fourier-Transform Infrared Spectroscopy (FTIR)

Authors: Eliane G. Tótoli, Hérida Regina N. Salgado

Abstract:

Daptomycin is an important antimicrobial agent used in clinical practice nowadays, since it is very active against some Gram-positive bacteria that are particularly challenges for the medicine, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). The importance of environmental preservation has receiving special attention since last years. Considering the evident need to protect the natural environment and the introduction of strict quality requirements regarding analytical procedures used in pharmaceutical analysis, the industries must seek environmentally friendly alternatives in relation to the analytical methods and other processes that they follow in their routine. In view of these factors, green analytical chemistry is prevalent and encouraged nowadays. In this context, infrared spectroscopy stands out. This is a method that does not use organic solvents and, although it is formally accepted for the identification of individual compounds, also allows the quantitation of substances. Considering that there are few green analytical methods described in literature for the analysis of daptomycin, the aim of this work was the development and validation of a green analytical method for the quantification of this drug in lyophilized powder for injectable solution, by Fourier-transform infrared spectroscopy (FT-IR). Method: Translucent potassium bromide pellets containing predetermined amounts of the drug were prepared and subjected to spectrophotometric analysis in the mid-infrared region. After obtaining the infrared spectrum and with the assistance of the IR Solution software, quantitative analysis was carried out in the spectral region between 1575 and 1700 cm-1, related to a carbonyl band of the daptomycin molecule, and this band had its height analyzed in terms of absorbance. The method was validated according to ICH guidelines regarding linearity, precision (repeatability and intermediate precision), accuracy and robustness. Results and discussion: The method showed to be linear (r = 0.9999), precise (RSD% < 2.0), accurate and robust, over a concentration range from 0.2 to 0.6 mg/pellet. In addition, this technique does not use organic solvents, which is one great advantage over the most common analytical methods. This fact contributes to minimize the generation of organic solvent waste by the industry and thereby reduces the impact of its activities on the environment. Conclusion: The validated method proved to be adequate to quantify daptomycin in lyophilized powder for injectable solution and can be used for its routine analysis in quality control. In addition, the proposed method is environmentally friendly, which is in line with the global trend.

Keywords: daptomycin, Fourier-transform infrared spectroscopy, green analytical chemistry, quality control, spectrometry in IR region

Procedia PDF Downloads 381
29939 'Detective Chinatown' Series: Writing and Rewriting of Orientalism through the Lens of Culture Industry

Authors: Cai Yiting

Abstract:

As China's globalization has accelerated, Chinese films have begun to explore and express foreign cultures with greater frequency while simultaneously disseminating Chinese culture. Films shot abroad, including Finding Mr. Right (2013), Somewhere Only We Know (2015), and Wolf Warrior 2 (2017), and others, can be viewed as a reflection of how Chinese cinema conceptualizes and represents foreign countries in the context of globalization. Furthermore, they facilitate the exchange of Chinese and foreign cultures in the context of China's ‘going out’ policy and the Belt and Road Initiative. Nevertheless, it is apparent that these films are primarily motivated by commercial considerations with regard to their initial release. The consistent placement of the Chinatown Detective' film series in the Chinese New Year slot is indicative of the significant influence of the cultural industry on the series' creation. Moreover, the series represents Chen Sicheng's inaugural venture into filming in a multitude of international locations. This paper examines the film series Detective Chinatown through the lens of the cultural industry, analyzing how its production and presentation cater to the demands of the cultural industry by presenting Orientalism and contributing new connotations to it. The series, a product of standardized mass production, commodification and global appeal, reflects Orientalist representations through the exoticization of Chinese culture and the stereotypical and commercial-oriented imagination of Bangkok, New York and Tokyo. This study provides an understanding of the film series' role in contributing to contemporary Orientalism in the context of the culture industry.

Keywords: orientalism, culture industry, Chinese globalisation, Detective Chinatown

Procedia PDF Downloads 20
29938 An Image Enhancement Method Based on Curvelet Transform for CBCT-Images

Authors: Shahriar Farzam, Maryam Rastgarpour

Abstract:

Image denoising plays extremely important role in digital image processing. Enhancement of clinical image research based on Curvelet has been developed rapidly in recent years. In this paper, we present a method for image contrast enhancement for cone beam CT (CBCT) images based on fast discrete curvelet transforms (FDCT) that work through Unequally Spaced Fast Fourier Transform (USFFT). These transforms return a table of Curvelet transform coefficients indexed by a scale parameter, an orientation and a spatial location. Accordingly, the coefficients obtained from FDCT-USFFT can be modified in order to enhance contrast in an image. Our proposed method first uses a two-dimensional mathematical transform, namely the FDCT through unequal-space fast Fourier transform on input image and then applies thresholding on coefficients of Curvelet to enhance the CBCT images. Consequently, applying unequal-space fast Fourier Transform leads to an accurate reconstruction of the image with high resolution. The experimental results indicate the performance of the proposed method is superior to the existing ones in terms of Peak Signal to Noise Ratio (PSNR) and Effective Measure of Enhancement (EME).

Keywords: curvelet transform, CBCT, image enhancement, image denoising

Procedia PDF Downloads 300
29937 A Molding Surface Auto-inspection System

Authors: Ssu-Han Chen, Der-Baau Perng

Abstract:

Molding process in IC manufacturing secures chips against the harms done by hot, moisture or other external forces. While a chip was being molded, defects like cracks, dilapidation, or voids may be embedding on the molding surface. The molding surfaces the study poises to treat and the ones on the market, though, differ in the surface where texture similar to defects is everywhere. Manual inspection usually passes over low-contrast cracks or voids; hence an automatic optical inspection system for molding surface is necessary. The proposed system is consisted of a CCD, a coaxial light, a back light as well as a motion control unit. Based on the property of statistical textures of the molding surface, a series of digital image processing and classification procedure is carried out. After training of the parameter associated with above algorithm, result of the experiment suggests that the accuracy rate is up to 93.75%, contributing to the inspection quality of IC molding surface.

Keywords: molding surface, machine vision, statistical texture, discrete Fourier transformation

Procedia PDF Downloads 432
29936 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction

Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé

Abstract:

One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.

Keywords: input variable disposition, machine learning, optimization, performance, time series prediction

Procedia PDF Downloads 111
29935 Fault Detection and Diagnosis of Broken Bar Problem in Induction Motors Base Wavelet Analysis and EMD Method: Case Study of Mobarakeh Steel Company in Iran

Authors: M. Ahmadi, M. Kafil, H. Ebrahimi

Abstract:

Nowadays, induction motors have a significant role in industries. Condition monitoring (CM) of this equipment has gained a remarkable importance during recent years due to huge production losses, substantial imposed costs and increases in vulnerability, risk, and uncertainty levels. Motor current signature analysis (MCSA) is one of the most important techniques in CM. This method can be used for rotor broken bars detection. Signal processing methods such as Fast Fourier transformation (FFT), Wavelet transformation and Empirical Mode Decomposition (EMD) are used for analyzing MCSA output data. In this study, these signal processing methods are used for broken bar problem detection of Mobarakeh steel company induction motors. Based on wavelet transformation method, an index for fault detection, CF, is introduced which is the variation of maximum to the mean of wavelet transformation coefficients. We find that, in the broken bar condition, the amount of CF factor is greater than the healthy condition. Based on EMD method, the energy of intrinsic mode functions (IMF) is calculated and finds that when motor bars become broken the energy of IMFs increases.

Keywords: broken bar, condition monitoring, diagnostics, empirical mode decomposition, fourier transform, wavelet transform

Procedia PDF Downloads 150
29934 Development of Time Series Forecasting Model for Dengue Cases in Nakhon Si Thammarat, Southern Thailand

Authors: Manit Pollar

Abstract:

Identifying the dengue epidemic periods early would be helpful to take necessary actions to prevent the dengue outbreaks. Providing an accurate prediction on dengue epidemic seasons will allow sufficient time to take the necessary decisions and actions to safeguard the situation for local authorities. This study aimed to develop a forecasting model on number of dengue incidences in Nakhon Si Thammarat Province, Southern Thailand using time series analysis. We develop Seasonal Autoregressive Moving Average (SARIMA) models on the monthly data collected between 2003-2011 and validated the models using data collected between January-September 2012. The result of this study revealed that the SARIMA(1,1,0)(1,2,1)12 model closely described the trends and seasons of dengue incidence and confirmed the existence of dengue fever cases in Nakhon Si Thammarat for the years between 2003-2011. The study showed that the one-step approach for predicting dengue incidences provided significantly more accurate predictions than the twelve-step approach. The model, even if based purely on statistical data analysis, can provide a useful basis for allocation of resources for disease prevention.

Keywords: SARIMA, time series model, dengue cases, Thailand

Procedia PDF Downloads 360
29933 Fuzzy Time Series Forecasting Based on Fuzzy Logical Relationships, PSO Technique, and Automatic Clustering Algorithm

Authors: A. K. M. Kamrul Islam, Abdelhamid Bouchachia, Suang Cang, Hongnian Yu

Abstract:

Forecasting model has a great impact in terms of prediction and continues to do so into the future. Although many forecasting models have been studied in recent years, most researchers focus on different forecasting methods based on fuzzy time series to solve forecasting problems. The forecasted models accuracy fully depends on the two terms that are the length of the interval in the universe of discourse and the content of the forecast rules. Moreover, a hybrid forecasting method can be an effective and efficient way to improve forecasts rather than an individual forecasting model. There are different hybrids forecasting models which combined fuzzy time series with evolutionary algorithms, but the performances are not quite satisfactory. In this paper, we proposed a hybrid forecasting model which deals with the first order as well as high order fuzzy time series and particle swarm optimization to improve the forecasted accuracy. The proposed method used the historical enrollments of the University of Alabama as dataset in the forecasting process. Firstly, we considered an automatic clustering algorithm to calculate the appropriate interval for the historical enrollments. Then particle swarm optimization and fuzzy time series are combined that shows better forecasting accuracy than other existing forecasting models.

Keywords: fuzzy time series (fts), particle swarm optimization, clustering algorithm, hybrid forecasting model

Procedia PDF Downloads 252
29932 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker

Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.

Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation

Procedia PDF Downloads 28
29931 Application of Residual Correction Method on Hyperbolic Thermoelastic Response of Hollow Spherical Medium in Rapid Transient Heat Conduction

Authors: Po-Jen Su, Huann-Ming Chou

Abstract:

In this article we uses the residual correction method to deal with transient thermoelastic problems with a hollow spherical region when the continuum medium possesses spherically isotropic thermoelastic properties. Based on linear thermoelastic theory, the equations of hyperbolic heat conduction and thermoelastic motion were combined to establish the thermoelastic dynamic model with consideration of the deformation acceleration effect and non-Fourier effect under the condition of transient thermal shock. The approximate solutions of temperature and displacement distributions are obtained using the residual correction method based on the maximum principle in combination with the finite difference method, making it easier and faster to obtain upper and lower approximations of exact solutions. The proposed method is found to be an effective numerical method with satisfactory accuracy. Moreover, the result shows that the effect of transient thermal shock induced by deformation acceleration is enhanced by non-Fourier heat conduction with increased peak stress. The influence on the stress increases with the thermal relaxation time.

Keywords: maximum principle, non-Fourier heat conduction, residual correction method, thermo-elastic response

Procedia PDF Downloads 427
29930 Spectral Analysis of Heart Rate Variability for Normal and Preeclamptic Pregnants

Authors: Abdulnasir Hossen, Alaa Barhoum, Deepali Jaju, V. Gowri, L. Al-Kharusi, M. Hassan, K. Al-Hashmi

Abstract:

Preeclampsia is a pregnancy disorder associated with increase in blood pressure and excess amount of protein in the urine. HRV analysis has been used by many researchers to identify preeclamptic pregnancy from normal pregnancy. A study in this regard to identify preeclamptic pregnancy in Oman from normal pregnant was conducted on 40 subjects (20 patients and 20 normal). The subjects were collected from two hospitals in Oman. A Fast Fourier transform (FFT) spectral analysis has shown that patients with preeclamptic pregnancy have a reduction in the power of the HF band and an increase in the power of the LF band of HRV compared with subjects with normal pregnancy. The accuracy of identification obtained was 80%.

Keywords: preelampsia, pregnancy hypertension, normal pregnant, FFT, spectral analysis, HRV

Procedia PDF Downloads 556
29929 Sororicide in the Forbidden City: Women Oppressing Each Other in the Chinese TV Drama “The Legend of Zhen Huan”

Authors: Muriel Canas-Walker

Abstract:

The 2012 TV series "The Legend of Zhen Huan" is one of the most popular and influential historical dramas on Chinese television and is regularly discussed on Chinese social media such as Weibo. Set in the Qing dynasty, the 76 episodes series features palace intrigues focused on female characters. In the Forbidden City, concubines must survive the cruelty of an extreme polygamy system, constantly competing against each other. The patriarchal oppression of the women sequestred in the harem relies on fierce female competition and does not leave much room for compassion. Using Michel Foucault’s theory of power, feminist theories, and visual anthropology, this paper analyzes the complex relationships between the female characters, from their rise to power to their fall from grace, from alliances to betrayals, from sorority to sororicide. This analysis aims to understand what makes this series particularly popular with young female audiences in China and explain its importance in Chinese media.

Keywords: Chinese TV Drama, feminism, popular culture, Theory of Power

Procedia PDF Downloads 198
29928 Depolymerization of Lignin in Sugarcane Bagasse by Hydrothermal Liquefaction to Optimize Catechol Formation

Authors: Nirmala Deenadayalu, Kwanele B. Mazibuko, Lethiwe D. Mthembu

Abstract:

Sugarcane bagasse is the residue obtained after the extraction of sugar from the sugarcane. The main aim of this work was to produce catechol from sugarcane bagasse. The optimization of catechol production was investigated using a Box-Behnken design of experiments. The sugarcane bagasse was heated in a Parr reactor at a set temperature. The reactions were carried out at different temperatures (100-250) °C, catalyst loading (1% -10% KOH (m/v)) and reaction times (60 – 240 min) at 17 bar pressure. The solid and liquid fractions were then separated by vacuum filtration. The liquid fraction was analyzed for catechol using high-pressure liquid chromatography (HPLC) and characterized for the functional groups using Fourier transform infrared spectroscopy (FTIR). The optimized condition for catechol production was 175 oC, 240 min, and 10 % KOH with a catechol yield of 79.11 ppm. Since the maximum time was 240 min and 10 % KOH, a further series of experiments were conducted at 175 oC, 260 min, and 20 % KOH and yielded 2.46 ppm catechol, which was a large reduction in catechol produced. The HPLC peak for catechol was obtained at 2.5 min for the standards and the samples. The FTIR peak at 1750 cm⁻¹ was due to the C=C vibration band of the aromatic ring in the catechol present for both the standard and the samples. The peak at 3325 cm⁻¹ was due to the hydrogen-bonded phenolic OH vibration bands for the catechol. The ANOVA analysis was also performed on the set of experimental data to obtain the factors that most affected the amount of catechol produced.

Keywords: catechol, sugarcane bagasse, lignin, hydrothermal liquefaction

Procedia PDF Downloads 102
29927 A Systematic Review of the Methodological and Reporting Quality of Case Series in Surgery

Authors: Riaz A. Agha, Alexander J. Fowler, Seon-Young Lee, Buket Gundogan, Katharine Whitehurst, Harkiran K. Sagoo, Kyung Jin Lee Jeong, Douglas G. Altman, Dennis P. Orgill

Abstract:

Introduction: Case Series are an important and common study type. Currently, no guideline exists for reporting case series and there is evidence of key data being missed from such reports. We propose to develop a reporting guideline for case series using a methodologically robust technique. The first step in this process is a systematic review of literature relevant to the reporting deficiencies of case series. Methods: A systematic review of methodological and reporting quality in surgical case series was performed. The electronic search strategy was developed by an information specialist and included MEDLINE, EMBASE, Cochrane Methods Register, Science Citation index and Conference Proceedings Citation index, from the start of indexing until 5th November 2014. Independent screening, eligibility assessments and data extraction was performed. Included articles were analyzed for five areas of deficiency: failure to use standardized definitions missing or selective data transparency or incomplete reporting whether alternate study designs were considered. Results: The database searching identified 2,205 records. Through the process of screening and eligibility assessments, 92 articles met inclusion criteria. Frequency of methodological and reporting issues identified was a failure to use standardized definitions (57%), missing or selective data (66%), transparency, or incomplete reporting (70%), whether alternate study designs were considered (11%) and other issues (52%). Conclusion: The methodological and reporting quality of surgical case series needs improvement. Our data shows that clear evidence-based guidelines for the conduct and reporting of a case series may be useful to those planning or conducting them.

Keywords: case series, reporting quality, surgery, systematic review

Procedia PDF Downloads 359
29926 OFDM Radar for Detecting a Rayleigh Fluctuating Target in Gaussian Noise

Authors: Mahboobeh Eghtesad, Reza Mohseni

Abstract:

We develop methods for detecting a target for orthogonal frequency division multiplexing (OFDM) based radars. As a preliminary step we introduce the target and Gaussian noise models in discrete–time form. Then, resorting to match filter (MF) we derive a detector for two different scenarios: a non-fluctuating target and a Rayleigh fluctuating target. It will be shown that a MF is not suitable for Rayleigh fluctuating targets. In this paper we propose a reduced-complexity method based on fast Fourier transfrom (FFT) for such a situation. The proposed method has better detection performance.

Keywords: constant false alarm rate (CFAR), match filter (MF), fast Fourier transform (FFT), OFDM radars, Rayleigh fluctuating target

Procedia PDF Downloads 363
29925 Preparation of Chemically Activated Carbon from Waste Tire Char for Lead Ions Adsorption and Optimization Using Response Surface Methodology

Authors: Lucky Malise, Hilary Rutto, Tumisang Seodigeng

Abstract:

The use of tires in automobiles is very important in the automobile industry. However, there is a serious environmental problem concerning the disposal of these rubber tires once they become worn out. The main aim of this study was to prepare activated carbon from waste tire pyrolysis char by impregnating KOH on pyrolytic char. Adsorption studies on lead onto chemically activated carbon was carried out using response surface methodology. The effect of process parameters such as temperature (°C), adsorbent dosage (g/1000ml), pH, contact time (minutes) and initial lead concentration (mg/l) on the adsorption capacity were investigated. It was found that the adsorption capacity increases with an increase in contact time, pH, temperature and decreases with an increase in lead concentration. Optimization of the process variables was done using a numerical optimization method. Fourier Transform Infrared Spectra (FTIR) analysis, XRay diffraction (XRD), Thermogravimetric analysis (TGA) and scanning electron microscope was used to characterize the pyrolytic carbon char before and after activation. The optimum points 1g/ 100 ml for adsorbent dosage, 7 for pH value of the solution, 115.2 min for contact time, 100 mg/l for initial metal concentration, and 25°C for temperature were obtained to achieve the highest adsorption capacity of 93.176 mg/g with a desirability of 0.994. Fourier Transform Infrared Spectra (FTIR) analysis and Thermogravimetric analysis (TGA) show the presence of oxygen-containing functional groups on the surface of the activated carbon produced and that the weight loss taking place during the activation step is small.

Keywords: waste tire pyrolysis char, chemical activation, central composite design (CCD), adsorption capacity, numerical optimization

Procedia PDF Downloads 226
29924 Design of Electromagnetic Field of PMSG for VTOL Series-Hybrid UAV

Authors: Sooyoung Cho, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

Series hybrid UAV(Unmanned aerial vehicle) that is proposed in this paper performs VTOL(Vertical take-off and landing) using the battery and generator, and it applies the series hybrid system with combination of the small engine and generator when cruising flight. This system can be described as the next-generation system that can dramatically increase the UAV flight times. Also, UAV systems require a large energy at the time of VTOL to be conducted for a short time. Therefore, this paper designs PMSG(Permanent Magnet Synchronous Generator) having a high specific power considering VTOL through the FEA.

Keywords: PMSG, VTOL, UAV, high specific power density

Procedia PDF Downloads 521
29923 Modification of Aliphatic-Aromatic Copolyesters with Polyether Block for Segmented Copolymers with Elastothemoplastic Properties

Authors: I. Irska, S. Paszkiewicz, D. Pawlikowska, E. Piesowicz, A. Linares, T. A. Ezquerra

Abstract:

Due to the number of advantages such as high tensile strength, sensitivity to hydrolytic degradation, and biocompatibility poly(lactic acid) (PLA) is one of the most common polyesters for biomedical and pharmaceutical applications. However, PLA is a rigid, brittle polymer with low heat distortion temperature and slow crystallization rate. In order to broaden the range of PLA applications, it is necessary to improve these properties. In recent years a number of new strategies have been evolved to obtain PLA-based materials with improved characteristics, including manipulation of crystallinity, plasticization, blending, and incorporation into block copolymers. Among the other methods, synthesis of aliphatic-aromatic copolyesters has been attracting considerable attention as they may combine the mechanical performance of aromatic polyesters with biodegradability known from aliphatic ones. Given the need for highly flexible biodegradable polymers, in this contribution, a series of aromatic-aliphatic based on poly(butylene terephthalate) and poly(lactic acid) (PBT-b-PLA) copolyesters exhibiting superior mechanical properties were copolymerized with an additional poly(tetramethylene oxide) (PTMO) soft block. The structure and properties of both series were characterized by means of attenuated total reflectance – Fourier transform infrared spectroscopy (ATR-FTIR), nuclear magnetic resonance spectroscopy (¹H NMR), differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS) and dynamic mechanical, thermal analysis (DMTA). Moreover, the related changes in tensile properties have been evaluated and discussed. Lastly, the viscoelastic properties of synthesized poly(ester-ether) copolymers were investigated in detail by step cycle tensile tests. The block lengths decreased with the advance of treatment, and the block-random diblock terpolymers of (PBT-ran-PLA)-b-PTMO were obtained. DSC and DMTA analysis confirmed unambiguously that synthesized poly(ester-ether) copolymers are microphase-separated systems. The introduction of polyether co-units resulted in a decrease in crystallinity degree and melting temperature. X-ray diffraction patterns revealed that only PBT blocks are able to crystallize. The mechanical properties of (PBT-ran-PLA)-b-PTMO copolymers are a result of a unique arrangement of immiscible hard and soft blocks, providing both strength and elasticity.

Keywords: aliphatic-aromatic copolymers, multiblock copolymers, phase behavior, thermoplastic elastomers

Procedia PDF Downloads 140
29922 R Software for Parameter Estimation of Spatio-Temporal Model

Authors: Budi Nurani Ruchjana, Atje Setiawan Abdullah, I. Gede Nyoman Mindra Jaya, Eddy Hermawan

Abstract:

In this paper, we propose the application package to estimate parameters of spatiotemporal model based on the multivariate time series analysis using the R open-source software. We build packages mainly to estimate the parameters of the Generalized Space Time Autoregressive (GSTAR) model. GSTAR is a combination of time series and spatial models that have parameters vary per location. We use the method of Ordinary Least Squares (OLS) and use the Mean Average Percentage Error (MAPE) to fit the model to spatiotemporal real phenomenon. For case study, we use oil production data from volcanic layer at Jatibarang Indonesia or climate data such as rainfall in Indonesia. Software R is very user-friendly and it is making calculation easier, processing the data is accurate and faster. Limitations R script for the estimation of model parameters spatiotemporal GSTAR built is still limited to a stationary time series model. Therefore, the R program under windows can be developed either for theoretical studies and application.

Keywords: GSTAR Model, MAPE, OLS method, oil production, R software

Procedia PDF Downloads 243
29921 Analysing the Behaviour of Local Hurst Exponent and Lyapunov Exponent for Prediction of Market Crashes

Authors: Shreemoyee Sarkar, Vikhyat Chadha

Abstract:

In this paper, the local fractal properties and chaotic properties of financial time series are investigated by calculating two exponents, the Local Hurst Exponent: LHE and Lyapunov Exponent in a moving time window of a financial series.y. For the purpose of this paper, the Dow Jones Industrial Average (DIJA) and S&P 500, two of the major indices of United States have been considered. The behaviour of the above-mentioned exponents prior to some major crashes (1998 and 2008 crashes in S&P 500 and 2002 and 2008 crashes in DIJA) is discussed. Also, the optimal length of the window for obtaining the best possible results is decided. Based on the outcomes of the above, an attempt is made to predict the crashes and accuracy of such an algorithm is decided.

Keywords: local hurst exponent, lyapunov exponent, market crash prediction, time series chaos, time series local fractal properties

Procedia PDF Downloads 153
29920 A Fault Analysis Cracked-Rotor-to-Stator Rub and Unbalance by Vibration Analysis Technique

Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu

Abstract:

An analytical 4-DOF nonlinear model of a de Laval rotor-stator system based on Energy Principles has been used theoretically and experimentally to investigate fault symptoms in a rotating system. The faults, namely rotor-stator-rub, crack and unbalance are modelled as excitations on the rotor shaft. Mayes steering function is used to simulate the breathing behaviour of the crack. The fault analysis technique is based on waveform signal, orbits and Fast Fourier Transform (FFT) derived from simulated and real measured signals. Simulated and experimental results manifest considerable mutual resemblance of elliptic-shaped orbits and FFT for a same range of test data.

Keywords: a breathing crack, fault, FFT, nonlinear, orbit, rotor-stator rub, vibration analysis

Procedia PDF Downloads 309
29919 Peak Frequencies in the Collective Membrane Potential of a Hindmarsh-Rose Small-World Neural Network

Authors: Sun Zhe, Ruggero Micheletto

Abstract:

As discussed extensively in many studies, noise in neural networks have an important role in the functioning and time evolution of the system. The mechanism by which noise induce stochastic resonance enhancing and influencing certain operations is not clarified nor is the mechanism of information storage and coding. With the present research we want to study the role of noise, especially focusing on the frequency peaks in a three variable Hindmarsh−Rose Small−World network. We investigated the behaviour of the network to external noises. We demonstrate that a variation of signal to noise ratio of about 10 dB induces an increase in membrane potential signal of about 15%, averaged over the whole network. We also considered the integral of the whole membrane potential as a paradigm of internal noise, the one generated by the brain network. We showed that this internal noise is attenuated with the size of the network or with the number of random connections. By means of Fourier analysis we found that it has distinct peaks of frequencies, moreover, we showed that increasing the size of the network introducing more neurons, reduced the maximum frequencies generated by the network, whereas the increase in the number of random connections (determined by the small-world probability p) led to a trend toward higher frequencies. This study may give clues on how networks utilize noise to alter the collective behaviour of the system in their operations.

Keywords: neural networks, stochastic processes, small-world networks, discrete Fourier analysis

Procedia PDF Downloads 292
29918 Harmonic Mitigation and Total Harmonic Distortion Reduction in Grid-Connected PV Systems: A Case Study Using Real-Time Data and Filtering Techniques

Authors: Atena Tazikeh Lemeski, Ismail Ozdamar

Abstract:

This study presents a detailed analysis of harmonic distortion in a grid-connected photovoltaic (PV) system using real-time data captured from a solar power plant. Harmonics introduced by inverters in PV systems can degrade power quality and lead to increased Total Harmonic Distortion (THD), which poses challenges such as transformer overheating, increased power losses, and potential grid instability. This research addresses these issues by applying Fast Fourier Transform (FFT) to identify significant harmonic components and employing notch filters to target specific frequencies, particularly the 3rd harmonic (150 Hz), which was identified as the largest contributor to THD. Initial analysis of the unfiltered voltage signal revealed a THD of 21.15%, with prominent harmonic peaks at 150 Hz, 250 Hz and 350 Hz, corresponding to the 3rd, 5th, and 7th harmonics, respectively. After implementing the notch filters, the THD was reduced to 5.72%, demonstrating the effectiveness of this approach in mitigating harmonic distortion without affecting the fundamental frequency. This paper provides practical insights into the application of real-time filtering techniques in PV systems and their role in improving overall grid stability and power quality. The results indicate that targeted harmonic mitigation is crucial for the sustainable integration of renewable energy sources into modern electrical grids.

Keywords: grid-connected photovoltaic systems, fast Fourier transform, harmonic filtering, inverter-induced harmonics

Procedia PDF Downloads 41
29917 PBI Based Composite Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells

Authors: Kwangwon Seo, Haksoo Han

Abstract:

Al-Si was synthesized and introduced in poly 2,2’-m-(phenylene)-5,5’-bibenzimidazole (PBI). As a result, a series of five Al-Si/PBI composite (ASPBI) membranes (0, 3, 6, 9, and 12 wt.%) were developed and characterized for application in high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). The chemical and morphological structure of ASPBI membranes were analyzed by Fourier transform infrared spectroscopy, X-ray diffractometer and scanning electron microscopy. According to the doping level test and thermogravimetric analysis, as the concentration of Al-Si increased, the doping level increased up to 475%. Moreover, the proton conductivity, current density at 0.6V, and maximum power density of ASPBI membranes increased up to 0.31 Scm-1, 0.320 Acm-2, and 0.370 Wcm-2, respectively, because the increased concentration of Al-Si allows the membranes to hold more PA. Alternatively, as the amount of Al-Si increased, the tensile strength of PA-doped and -undoped membranes decreased. This was resulted by both excess PA and aggregation, which can cause serious degradation of the membrane and induce cracks. Moreover, the PA-doped and -undoped ASPBI12 had the lowest tensile strength. The improved performances of ASPBI membranes imply that ASPBI membranes are possible candidates for HT-PEMFC applications. However, further studies searching to improve the compatibility between PBI matrix and inorganic and optimize the loading of Al-Si should be performed.

Keywords: composite membrane, high temperature polymer electrolyte membrane fuel cell, membrane electrode assembly, polybenzimidazole, polymer electrolyte membrane, proton conductivity

Procedia PDF Downloads 529
29916 Theory and Practice of Wavelets in Signal Processing

Authors: Jalal Karam

Abstract:

The methods of Fourier, Laplace, and Wavelet Transforms provide transfer functions and relationships between the input and the output signals in linear time invariant systems. This paper shows the equivalence among these three methods and in each case presenting an application of the appropriate (Fourier, Laplace or Wavelet) to the convolution theorem. In addition, it is shown that the same holds for a direct integration method. The Biorthogonal wavelets Bior3.5 and Bior3.9 are examined and the zeros distribution of their polynomials associated filters are located. This paper also presents the significance of utilizing wavelets as effective tools in processing speech signals for common multimedia applications in general, and for recognition and compression in particular. Theoretically and practically, wavelets have proved to be effective and competitive. The practical use of the Continuous Wavelet Transform (CWT) in processing and analysis of speech is then presented along with explanations of how the human ear can be thought of as a natural wavelet transformer of speech. This generates a variety of approaches for applying the (CWT) to many paradigms analysing speech, sound and music. For perception, the flexibility of implementation of this transform allows the construction of numerous scales and we include two of them. Results for speech recognition and speech compression are then included.

Keywords: continuous wavelet transform, biorthogonal wavelets, speech perception, recognition and compression

Procedia PDF Downloads 417